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Antiphase synchronism in chaotic systems
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We report our finding and analysis of a type of synchronism that occurs in chaotic systems with symmetry.
Specifically, we find that the amplitudes of the dynamical variables of such a system can be synchronized with
those of its replica, but that the variables can have different signs with respect to each other. This type of
antiphase chaotic synchronism is observable in wide parameter regimes even for hyperchaotic systems. The
mechanism of the synchronism suggests a systematic anda priori way to construct synchronizable chaotic
systems. Application to nonlinear digital communication is pointed out.@S1063-651X~98!02607-5#
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I. INTRODUCTION

One of the most striking discoveries in the study of cha
is that chaotic systems can be made to synchronize with e
other@1#. This discovery by Pecora and Carroll in 1990 w
both theoretically surprising and practically significan
Theoretically, chaos stipulates that nearby trajectories
verge exponentially in time and, thus, synchronization
chaotic systems seems unlikely in the presence of inevit
small differences in parameters of the systems, and nois
was shown by Pecora and Carroll@1#, however, that when an
appropriately chosen state variable of a chaotic system
used to drive a subsystem~the ‘‘slave’’!, the subsystem syn
chronizes with its replica if its Lyapunov exponents are
negative. Practically, synchronization of chaos provide
way to transmit information via a chaotic carrier and, the
fore, synchronous chaotic systems can be utilized for co
munication@2#. Due to these appealing features, synchron
in chaotic systems has become a direction of intense re
research@3#.

In this paper we report our finding of a class of synch
nism that exists in chaotic systems with symmetry. Spec
cally, consider a chaotic system described by either
N-dimensional continuous flowdz/dt5F(z,p) or an
N-dimensional discrete mapzn115F(zn ,p), wherez is the
state variable,F is a nonlinear vector function that has
simple type of symmetry, andp is a system parameter. Whe
the variablez is decomposed in the mannerz5(x,y), where
x is the driving system andy is the slaving subsystem, w
find that the subsystemy can synchronize with its replica in
amplitude but with opposite sign for initial conditions chos
from large regions in the phase space. That is, for a rep
y8 of the slaving subsystem, the following can occur:

y~ t !52y8~ t ! as t→`. ~1!

We call this type of behaviorantiphase chaotic synchronism.
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There also exist regions of the phase space, from which
tial conditions chosen yield full synchronization, that
y(t)5y8(t) as t→`.

There are several features associated with the above
chronization scheme.~i! In most studies reported in the lit
erature@1–3#, in order to search for synchronizable chao
systems, one usually tests various combinations of a su
of state variables to look for a subsystem that possesses
negative Lyapunov exponents. Our scheme provides a
tematic anda priori way to design synchronizable chaot
systems.~ii ! In our scheme, synchronization can be read
achieved even when the system has more than one pos
Lyapunov exponent~hyperchaotic!. ~iii ! The combination of
in-phase and antiphase synchronization provides a wa
encode messages into an array of synchronous chaotic
tems for massive communication of digital information~see
Sec. V!.

The rest of the paper is organized as follows. In Sec.
we present a theory for the antiphase synchronism. In S
III, we give a numerical example with a two-dimension
map. In Sec. IV, we demonstrate, by utilizing a si
dimensional hyperchaotic flow, that antiphase synchron
can also occur in continuous chaotic systems. In Sec. V,
present discussions and conclusions.

II. THEORY

Consider anN-dimensional mapzn115F(zn ,p) with the
decomposition of the system into a driving subsystemx ~di-
mensionNx! and a subsystemy to be synchronized~dimen-
sion Ny , whereNx1Ny5N!. We write the following equa-
tions for x andy:

xn115f~xn!,

yn115h~xn ,p!G~yn!, ~2!

where f(xn) is a nonlinear map that generates a chaotic
tractor, h(x,p) is a scalar driving function, andG(yn) is a
vector function that possesses symmetry. For simplicity,
consider the reflecting symmetry inG(yn): G(2yn)5
2G(yn). There is then an invariant subspace defined by
50, in which there is a chaotic attractor generated by
382 © 1998 The American Physical Society
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PRE 58 383ANTIPHASE SYNCHRONISM IN CHAOTIC SYSTEMS
map f(xn). The subspacey50 is invariant because a trajec
tory starting withy50 is confined toy50 at all subsequen
times. The replica of the subsystem to be synchronized

yn118 5h~xn ,p!G~yn8!. ~3!

In order to achieve synchronization betweeny andy8, the
largest Lyapunov exponent of they subsystem must be nega
tive @1#. For our system@Eq. ~2!#, this exponent can be writ
ten asLy5 limT→`(1/T)Sn51

T lnuh(xn ,p)DG(yn)•uu, where
u is a unit vector in the y subspace, andDG(yn)
[]G/]yuyn

is the Ny3Ny Jacobian matrix of the function
G~y! evaluated along a typical trajectory in the phase spa
To search for synchronizable subsystems that satisfyLy
,0, we expressDG(yn) by using a Taylor expansion
DG(yn)5DG(0)1A(yn), whereDG(0)[DG(y)uyn50 is the

Jacobian matrix evaluated aty50, andA(yn) represents all
the high-order terms in the expansion, which is anNy3Ny
matrix that depends onyn. We thus obtain

Ly5LT1l, ~4!

where

LT5 lim
T→`

1

T (
n51

T

lnuh~xn ,p!DG~0!•uu,

and

l5 lim
T→`

1

T (
n51

T

lnuh~xn ,p!A~yn!•uu. ~5!

Notice thatLT is the transverse Lyapunov exponent defin
locally with respect to the invariant subspacey50 @4#. When
LT,0, trajectories in the vicinity of they50 approach it
asymptotically. The chaotic attractor in the invariant su
space thus attracts initial conditions in the entire phase sp
if there are no other attractors. This leads to the asympt
solutiony50, which is not interesting from the standpoint
synchronization. To achieve nontrivial chaotic synchroni
tion, we must haveLT.0. In this case, trajectories in th
vicinity of y50 can be repelled away from it and the dynam
ics near the invariant subspace is chaotic. From Eq.~4!, we
see that in order to haveLy,0 , we can chooseLT*0 and
l,0. As we shall see in numerical examples, it is in fa
quite straightforward to choose the functionsh(xn ,p) and
G(y) to satisfy this condition.

The key observation that antiphase synchronism can
cur is that the system can have symmetry-broken attrac
whenLT*0 @5#. Specifically, it was shown in Ref.@5# that
the transition fromLT,0 to LT.0, as the parameterp
changes through a critical valuepc @6#, can in general be a
symmetry-breaking bifurcation. Forp,pc (LT,0), the
chaotic attractor in the invariant subspace is the only att
tor of the system. Forp.pc (LT.0), the attractor in the
invariant subspace is no longer an attractor of the en
phase space. Instead, two isolated attractors, perfectly s
metric with respect to each other, are born atp5pc , one
lying in the upper half spacey.0 and another in the lowe
half spacey,0. The boundary between basins of attracti
e.
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of these two attractors isy50. These attractors are symmet
broken because they are confined only within half of t
phase space and, hence, they do not possess the refle
symmetry in the equations of the system Eq.~2!. Due to
symmetry in the system equations, all the statistical prop
ties such as averages and the Lyapunov exponents are
tical for both attractors. In this case, ifLy,0, trajectories
starting from two random initial conditions, one iny.0 and
another iny,0, tend to evolve as ‘‘mirror image’’ of each
other. Thus, depending on the choice of initial condition
both in-phase and antiphase synchronism can occur. In
ticular, when initial conditions for both the subsystem and
replica are chosen in they.0 ~or y,0! space, we have an
in-phase synchronism: limn→`yn5yn8 . However, if the initial
condition of the subsystem is chosen iny.0 but that of its
replica is chosen iny,0, or vice versa, then antiphase sy
chronism, limn→`yn52yn8 , can occur.

III. NUMERICAL EXAMPLE:
A TWO-DIMENSIONAL MAP

We first give a simple numerical example to illustra
antiphase synchronism. We consider the following tw
dimensional version of Eq.~2!:

xn115rxn~12xn!,

yn115
1

2p
pxn sin~2pyn!, ~6!

where the invariant subspace isy50, in which the dynamics
is described by the one-dimensional logistic map inx, andp
is a parameter. We choose the parameterr such that the
logistic map generates a chaotic attractor. We concentrat
the phase space region (0<x<1,20.5<y<0.5) because of
the range of the logistic map and the periodicity in they
equation. The replica of they subsystem to be synchronize
is yn118 5(1/2p)pxn sin(2pyn8). The transverse Lyapunov ex
ponent of Eq.~6! is LT5*0

1 lnupxur(x)dx, wherer(x) is the
invariant density ofx for the logistic map. Thus, we hav
pc5exp@2*0

1 lnuxur(x)dx#, where LT>0 for p>pc and
LT,0 for p,pc . It was shown in Ref.@5# that the bifurca-
tion at pc is a symmetry-breaking bifurcation. Forp,pc ,
y50 is the only attractor of Eq.~6!. For p*pc , there are
two attractors, completely symmetric to each other with
spect toy50, one in the upper half planey.0 and another
in the lower half planey,0. The boundary between basin
of attraction of the two attractors is the line segmenty50
and 0<x<1. For Eq.~6!, a symmetry-increasing bifurcatio
occurs at parameter valueps5p @5# after which the two
symmetry-broken attractors merge into a single chaotic
tractor with two positive Lyapunov exponents through a c
sis. Thus we expect antiphase synchronism to occur in
parameter rangepc,p&ps .

The Lyapunov exponent of they subsystem is given by
Ly5LT1* lnucos(2pyn)ury(y)dy, wherery(y) is the prob-
ability distribution ofy. The integral iny is always negative
and, hence, it is possible to haveLy,0 while LT.0. We
note that forp,pc , we haveLy5LT becauseyn50 asymp-
totically and, therefore,* lnucos(2pyn)ury(y)dy50. Figure 1
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showsLy and LT versusp for 1.5<p<3.5 ~r 53.8 in the
logistic map!. We see thatLy remains negative forpc,p
,ps except whenp is very close tops . Figure 2~a! shows
the time seriesyn and yn8 for a case of antiphase synchr
nism, where the initial conditions arey0.0 andy08,0. We
see that the two trajectories rapidly become symmetric
each other with respect toy50. Figure 2~b! shows, on a
logarithmic scale, the quantityuyn

22yn8
2u versus time.

Clearly, the amplitudes of they subsystem and its replic
become synchronized asn→`, but the phases of the chaot
time series are just opposite.

IV. NUMERICAL EXAMPLE:
A SIX-DIMENSIONAL FLOW

The antiphase synchronism can also occur in continu
chaotic systems. To demonstrate this, we now study a
dimensional hyperchaotic flow

FIG. 1. Ly and LT vs the parameterp in the model system
Eq. ~6!.

FIG. 2. Antiphase synchronism atp51.85. ~a! Time seriesyn

andyn8 . ~b! uyn
22yn8

2u1/2 vs n on a logarithmic scale.
o

s
x-

dx1

dt
52x22x31ay,

dx2

dt
5x110.25x21x41bz2,

dx3

dt
53.01x1x3 ,

~7!

dx4

dt
520.5x310.05x4 ,

dy

dt
5z,

dz

dt
52az2gy31~b1 f 1 sin x11 f 2 sin x2!sin~2py!,

where the invariant subspace is four-dimensio
(x1 ,x2 ,x3 ,x4) defined byy50 andz50, the transverse sub
system to be synchronized is two-dimensional (y,z), anda,
b, a, g, b, f 1 , and f 2 are parameters. Note that the cas
whereaÞ0, bÞ0, anda5b50 correspond to bidirectiona
and unidirectional couplings from the invariant subspace
the transverse subspace, respectively. The choices of the
pling terms such asay andbz2 are chosen rather arbitrarily
In Eq. ~7!, the variables (x1 ,x2 ,x3 ,x4) constitute the hyper-
chaotic Ro¨ssler chaotic system with two positive Lyapuno
exponents@7#. The replica of the transverse subsystem to
synchronized is

dy8

dt
5z8,

~8!

dz8

dt
52az82g~y8!31~b1 f 1 sin x1

1 f 2 sin x2!sin~2py8!.

For concreteness, we fixa51.0, b52.0, g52.0, f 153.5,
and f 255.0, and changea andb to identify synchronizable
parameter regimes withLT.0 and Ly,0. We find that
there are large parameter regions for which antiphase
chronism can be achieved. Figure 3~a! shows such a case fo
a510 andb51.6, wherez(t) versust andz8(t) versust are
plotted. Figure 3~b! shows, on a semilogarithmic scale, th
quantity D(t)[A@ uy(t)u2uy8(t)u#21@ uz(t)u2uz8(t)u#2 ver-
sus t. We see that @y(t),z(t)# approaches@2y8(t),
2z8(t)# rapidly. We note that at this parameter setting, t
full six-dimensional system@Eq. ~7!# possesses the following
Lyapunov spectrum~approximately!: ~0.109, 0.021, 0,
21.891,27.749,224.450! and, hence, the synchronism i
lustrated in Fig. 3 occurs in a hyperchaotic system with t
positive Lyapunov exponents.

V. DISCUSSIONS AND CONCLUSIONS

In summary, we find that both in-phase and antipha
synchronism can occur in chaotic systems with symmetry
parameter regimes where there is symmetry breaking.
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synchronization mechanism elucidated in this paper sugg
a general anda priori approach to construct synchronizab
chaotic systems. The synchronism can be readily real
even for hyperchaotic systems. Due to these advantages
expect the chaotic synchronism reported here to be pra
cally useful.

The antiphase synchronism reported in this paper relie
the system possessing a simple symmetry. That is, in ord
realize y(t)→2y8(t), where y and y8 are the two sub-
system’s to be synchronized, it is necessary that both s
systems have an identical symmetry. Antiphase synchron
tion occurs simply because the trajectories of one subsys
live on a chaotic attractor, while the trajectories of the s
ond subsystem wander on a chaotic attractor which is c
pletely symmetric to the first attractor. Mathematically, th
demands that the functionsh(x,p) and G(y) in Eq. ~2! be
identical for both subsystems. A slight mismatch betwe
these functions for both subsystems may be allowed, bu
such a case the quality of the synchronization, measure
@ uy(t)u2uy8(t)u#, will be proportional to the amount of th
mismatch. Antiphase synchronism may fail if the misma
is too large.

A potential usage of the phenomenon of antiphase s
chronism lies in nonlinear digital communication, which h
become a field of recent interest. So far there have been
different approaches to the problem. One is to use the p
ciple of synchronous chaos@1–3# to embed and transmi
digital information. Call this method 1. Another is to exten
the principle of controlling chaos@8# to dynamical systems
with well-defined symbolic dynamics to encode informati

FIG. 3. Antiphase synchronism for the six-dimensional hyp
chaotic flow@Eq. ~7!#. ~a! Time seriesz(t) andz8(t). ~b! D(t) vs t
on a semilogarithmic scale. See text for details.
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@9,10#. This approach makes explicit use of the fundamen
principle that chaotic systems are natural informati
sources. By manipulating the symbolic dynamics of a chao
system in an intelligent way, the system produces trajecto
in which digital information is embedded in the symbol
dynamics. Call this method 2. Here we wish to point out th
the coexistence of in-phase and antiphase synchroniza
may be quite useful in nonlinear digital communication.The
idea is to combine the principles of both method 1 a
method 2, by utilizing antiphase and in-phase synchroni
tion, to massively encode a large amount of digital inform
tion into an array of chaotic systems. Say we construct an
array of M synchronizable subsystems~or oscillators! yi ( i
51,...,M ), all driven by the same chaotic signalx. Initial
conditions are chosen so that some of the oscillators are
of phase with the remaining oscillators. Due to the existe
of the two distinct phases, one can now assign binary s
bols to the array of oscillators. For instance, oscillators w
y.0 are assigned symbol1, and those withy,0 are as-
signed symbol0. A digital message, represented by a fin
sequence of binary symbols, can now be encoded into
array of oscillators, with each oscillator bearing one inform
tion bit. The whole message is thus encodedsimultaneously.
To encode a new message, one waits untiluyu is close to the
symmetric axisy50, at which time small perturbations t
the oscillator’s dynamical variables are applied to change
state of the oscillator fromy.0 to y,0, or vice versa, de-
pending on details of the binary representation of the n
message. By symmetry,all oscillators come close to the
symmetric axis simultaneously. Thus small perturbations ar
applied at the same time. An advantage of this type of
coding is that the amount of information that can be enco
can be made large by simply increasing the number of dri
oscillators. This is thus essentially a multichannel digi
communication scheme, and the aspect of the synchron
tion utilized offers many advantages such as a good tim
for decoding messages.

Finally, we remark that recently, the phenomena of ph
and lag synchronization have been discovered and stu
@11#. In such a case, an anglelike phase function of a cha
oscillator, defined with respect to some rotation of chao
trajectories in the phase space, can be made to stay clo
the phase function of another chaotic oscillator~not neces-
sarily identical to the first oscillator! when the two oscillators
are weakly coupled to each other. The antiphase sync
nism discussed in this paper is different from both the ph
and lag synchronization. This can be seen by noting t
dynamically, antiphase synchronism occurs when the larg
Lyapunov exponents of both subsystems become nega
Thus antiphase synchronism is essentially the same typ
synchronism first studied by Pecora and Carroll@1#. The dif-
ference is that we allow for the coexistence of chaotic attr
tors which are symmetric to each other.
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