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Bifurcation to strange nonchaotic attractors

Tolga Yalçınkaya* and Ying-Cheng Lai†

Department of Physics and Astronomy and Department of Mathematics, The University of Kansas, Lawrence, Kansas 660
~Received 24 March 1997!

Strange nonchaotic attractors are attractors that are geometrically strange, but have nonpositive Lyapunov
exponents. These attractors occur in regimes of nonzero Lebesgue measure in the parameter space of quasi-
periodically driven dissipative dynamical systems. We investigate a route to strange nonchaotic attractors in
systems with a symmetric invariant subspace. Assuming there is a quasiperiodic torus in the invariant sub-
space, we show that the loss of the transverse stability of the torus can lead to the birth of a strange nonchaotic
attractor. A physical phenomenon accompanying this route to strange nonchaotic attractors is an extreme type
of intermittency. We expect this route to be physically observable, and we present theoretical arguments and
numerical examples with both quasiperiodically driven maps and quasiperiodically driven flows. The transition
to chaos from the strange nonchaotic behavior is also studied.@S1063-651X~97!10908-4#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

A central problem in the study of deterministic dynamic
systems is to identify different types of asymptotic behavi
of the system and to understand how the behavior change
a system parameter changes. The asymptotic behaviors
be, for instance, a steady state, a periodic oscillation, a qu
periodic motion, and a random or a chaotic motion. Th
has been a lot of work in the past addressing how dynam
systems develop chaos from periodic or quasiperiodic m
tions. It is known so far that there are four major routes
chaotic attractors@1–5#: ~i! the period-doubling cascad
route @2#; ~ii ! the intermittency transition route@3#; ~iii ! the
crisis route@4#; and ~iv! the route to chaos in quasiperiod
cally driven systems@5#.

This paper concerns bifurcations to a type of motion
deterministic systems that is neither regular~periodic or qua-
siperiodic! nor chaotic. The motion occurs onstrange non-
chaotic attractors, which are attractors that are geometrica
complicated, butasymptotically, typical trajectories on the
attractors exhibit no sensitive dependence on initial con
tions @5–16#. Here, the wordstrangerefers to the compli-
cated geometry of the attractor: a strange attractor is n
finite set of points and it is not piecewise differentiable. T
word chaoticrefers to a sensitive dependence on initial co
ditions: trajectories originating from nearby initial condition
diverge exponentially in time. Mathematically, strange no
chaotic attractors occur in all dissipative dynamical syste
that exhibit the period-doubling route to chaos: the attrac
at the accumulation point of the period-doubling cascade
fractal set, but its largest Lyapunov exponent is not posit
However, such a strange attractor is not observable in re
because the set of parameter values for the accumulatio
the period-doubling cascade has a Lebesgue measure ze
the parameter space. Strange nonchaotic attractors are,
ever, observable in dissipative systems driven by severain-
commensuratefrequencies ~quasiperiodically driven sys
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tems! @5–16#. For example, it was demonstrated that
systems driven by two incommensurate frequencies, th
exist regions of positive Lebesgue measure in the param
space for which strange nonchaotic attractors exist@5,8#.
More recent work demonstrated that typical trajectories o
strange nonchaotic attractor actually possess pos
Lyapunov exponents in finite time intervals, althoug
asymptotically, the exponent is negative@12#. These attrac-
tors also exhibit unusual spectral and correlation proper
@11#. Strange nonchaotic attractors can arise in physic
relevant situations such as quasiperiodically forced dam
pendulums and localization of quantum particles in quas
eriodic potentials@7#, and also in biological oscillators@9#.
These exotic attractors have been observed in physical
periments@13,14#.

While the existence of strange nonchaotic attractors w
firmly established, a question that remains interesting is h
these attractors are created as a system parameter ch
through a critical value, i.e., what are the possible routes
strange nonchaotic attractors? One route was investigate
Heagy and Hammel@10# who discovered that, in quasiper
odically driven maps, the transition from two-frequency qu
siperiodicity to strange nonchaotic attractors occurs whe
period-doubled torus collides with its unstable parent tor
Near the collision, the period-doubled torus becomes
tremely wrinkled and develops into a fractal set at the co
sion, while the Lyapunov exponent remains negat
throughout the collision process. Recently, Feudel, Kurt
and Pikovsky found that the collision between a stable to
and an unstable one at a dense set of points leads to a st
nonchaotic attractor@15#. A renormalization-group analysi
was also devised for the transition to strange nonchaotic
tractors in a particular class of quasiperiodically driven ma
@16#.

In this paper, we present a route to strange noncha
attractors in dynamical systems with a symmetric lo
dimensional invariant subspaceS in the phase space@17#.
SinceS is invariant, initial conditions inS result in trajecto-
ries which remain inS forever. We consider the case whe
there is a quasiperiodic torus in S, as shown schematically
in Fig. 1. Whether the torus attracts or repels initial con
1623 © 1997 The American Physical Society
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1624 56TOLGA YALÇINKAYA AND YING-CHENG LAI
tions in the vicinity of S is determined by the sign of th
largest Lyapunov exponentLT computed for trajectories in
S with respect to perturbations in the subspaceT which is
transverseto S. WhenLT is negative,S attracts trajectories
transversely in the phase space and, the quasiperiodic
in S is an attractor of the full phase space. WhenLT is
positive, trajectories in the vicinity ofS are repelled away
from it, and, consequently, the torus is transversely unsta
and it is hence not an attractor of the full phase space.
sume that as a system parameter changes through a cr
value ac , LT passes through zero from the negative si
This bifurcation is referred to as the ‘‘blowout bifurcation
@18#. Our main result is that the blowout bifurcation can le
to the birth of a strange nonchaotic attractor. A physical p
nomenon accompanying this route to strange nonchaotic
tractors is that the dynamical variables in the transverse
spaceT exhibit an extreme type of temporally intermitte
bursting behavior: on-off intermittency@19,20#. Thus, as a
by-product, our work also demonstrates that on-off interm
tency can occur in quasiperiodically driven dynamical s
tems, whereas to our knowledge, these intermittencies h
been reported only for systems that are driven either r
domly or chaotically. A short account of this work has be
published recently@21#.

The rest of the paper is organized as follows. In Sec.
we study the blowout bifurcation route to strange noncha
attractors in discrete dynamical systems. In particular,
study a class of quasiperiodically driven maps for which
bifurcation can be understood fairly completely. We also
vestigate on-off intermittency after the birth of the stran
nonchaotic attractor and the transition to chaos. In Sec.
we demonstrate that all results obtained from the map ca
observed in a quasiperiodically driven physical syste
mathematically described by a continuous flow. Discussi
are present in Sec. IV.

II. QUASIPERIODICALLY DRIVEN MAPS

A. Blowout bifurcation to strange nonchaotic attractors

We consider the following general class
N-dimensional maps,

xn115f~xn!,
~1!

yn115F~xn ,p!G~yn!,

where xPRNx (Nx>1), yPRNy (Ny>1), and Nx1Ny
5N. The vector functionG~y! satisfiesG~0!50 so thaty50
defines the invariant subspace@22#. We assume that both th

FIG. 1. Schematic representation of the invariant subspaceS in
which the quasiperiodic torus lies and the transverse subspaceT.
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x and y dynamics are bounded. TheNx-dimensional vector
function f~x! is a map that has a quasiperiodic torus so t
the largest Lyapunov exponent of thex dynamics isLx50.
The scalar functionF(x,p) is thus the quasiperiodic driving
to the transversey subsystem, andp is the bifurcation pa-
rameter. The largest transverse Lyapunov exponent is g
by

LT5 lim
L→`

1

L (
n51

L

lnuF~xn ,p!DG~yn!uyn50•uu, ~2!

whereu is a unit vector inRNy. The largest Lyapunov expo
nentLy of the y subsystem is given by

Ly5 lim
L→`

1

L (
n51

L

lnuF~xn ,p!DG~yn!•uu, ~3!

where nowyn is not set to be0 when the Jacobian matrice
DG(yn)’s are evaluated. Since thex dynamics represents th
quasiperiodic driving to they dynamics, and the larges
Lyapunov exponent inx is zero, we see thatLy is in fact the
largest nontrivial Lyapunov exponent of the system wh
determines whether the system is chaotic or nonchaotic
particular, ifLy.0 ~<0!, the system is chaotic~nonchaotic!.

We now argue that a blowout bifurcation can lead to t
birth of a strange nonchaotic attractor. Letpc be the bifurca-
tion point, i.e., as the parameterp passes throughpc , the
transverse Lyapunov exponentLT passes through zero from
the negative side. Thus, forp,pc (LT,0), the quasiperi-
odic torus in the invariant subspacey50 is transversely
stable so that typical trajectories are eventually attrac
transversely towardsy50 and asymptote to the quasiperiod
torus there. Forp*pc (LT*0), the quasiperiodic torus in
y50 is transversely unstable and, hence, typical trajecto
are chaotic locally neary50. There are now some time in
tervals during which a trajectory in the vicinity ofy50 can
be repelled from it. In this case, if there are no other attr
tors in the phase space, the trajectory comes back to
neighborhood ofy50 in an intermittent fashion. Since th
trajectory is bounded in bothx andy, the asymptotic attrac-
tor in the full phase space~x,y! exhibits a complicated geo
metric shape due to the local chaoticity in the vicinity of t
invariant subspace. However, if the nontrivial Lyapunov e
ponentLy is negative, which indeed occurs if the magnitu
of the eigenvalues of the Jacobian matricesDG(yn)’s evalu-
ated along the trajectory is less than one, then the attra
though geometrically complex, is not chaotic because b
Lyapunov exponentsLx and Ly are not positive. Conse
quently, a strange nonchaotic attractor is born. In the seq
we present a model that is partially analyzable, together w
numerical results, to confirm the blowout bifurcation route
strange nonchaotic attractors.

B. A two-dimensional map

We study the following two-dimensional version of E
~1!,

xn115~xn12pv!mod~2p!,
~4!
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56 1625BIFURCATION TO STRANGE NONCHAOTIC ATTRACTORS
yn115
1

2p
~a cosxn1b!sin~2pyn!,

wherea andb are parameters, andvP~0,1! is an irrational
number so that thex dynamics is the circle map that gene
ates a quasiperiodic torus with uniform invariant dens
r(x)51/(2p) in xP@0,2p# ~two-frequency quasiperiodic
ity!. The one-dimensional invariant subspace isy50. The
transverse Lyapunov exponent is

LT5 lim
n→`

1

n (
j 51

n

lnua cosxj1bu

5
1

2p E
0

2p

lnua cosx1budx. ~5!

We obtain,

LT5H lnubu2 ln2/@11$12~a/b!2%#, if a<b

lnubu1 lna/~2b!, if a.b.
~6!

We have, for example,ac52 for the casea.b.0, where
LT<0 for a<ac and LT.0 for a.ac . The nontrivial
y-Lyapunov exponent is

Ly5LT1ly'LT1E lnucos~2py!ur~y!dy, ~7!

wherer(y) is the invariant density ofy for a.ac . Note that
for a,ac we havey50 ~asymptotically! and, hence,ly
50. In this case,Ly5LT,0 so that the asymptotic attracto
is the quasiperiodic torus in the invariant liney50. For a
.ac , we have LT*0. From Eq. ~7!, we see that
lnucos(2py)u,0 and, hence,ly,0. Thus, it is possible to
have LT*0 but Ly,0. Since, ~i! the y dynamics is
bounded, and~ii ! the y map apparently does not have oth
stable attractors forxP@0,2p#, although a typical trajectory
can no longer stay in the vicinity ofy50 for a*ac , it must
come to the neighborhood ofy50 intermittently. Thus, geo-
metrically, the trajectory traces out a complicated structur
the phase space. But sinceLy,0, the map possesses n
positive Lyapunov exponent. Consequently, we expect
attractor to be strange but not chaotic fora*ac . The key
observation is thus that the positiveness ofLT renders
strange the asymptotic attractor, but the negativeness o
nontrivial Lyapunov exponent warrants that the attractor
nonchaotic.

We now present numerical results to test the nature of
attractor after the blowout bifurcation. Figure 2~a! shows a
trajectory of 10 000 points on such an attractor recorded a
106 preiterations for v5(A521)/2 ~the inverse golden
mean!, a52.1.ac and b51. The transverse Lyapunov ex
ponent isLT'0.049. The attractor is geometrically strang
but it is nonchaotic because at this set of parameter val
the Lyapunov spectrum isLx50 and Ly'20.104. The
power spectrum for a time series$yn% of M5216 points us-
ing a standard fast fourier transform algorithm is shown
Fig. 2~b!. Although the power spectrum is broadband, it a
pears to contain a discrete set of ‘‘spikes,’’ which are typi
features of the power spectrum of strange nonchaotic att
in
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tors @6–8,5,10,12#. Figures 2~a! and 2~b! thus suggest tha
immediately after the blowout bifurcation, the quasiperiod
torus in y50 becomes a repeller in the transverse direct
and a strange nonchaotic attractor is born in the full tw
dimensional phase space.

C. Singular-continuous spectrum analysis

To lend more credence to our assertion that the attra
for a*ac is strange nonchaotic, we perform a singular co
tinuous spectrum analysis that was first proposed in the
vestigation of models of quasiperiodic lattices and quasip
odically forced quantum systems@23#. In general, power
spectra of dissipative dynamical systems can be either
crete, or continuous, or a combination of both. Discrete sp
tra are usually generated by regular motions such as peri
or quasiperiodic motions, whereas continuous spectra co
spond to irregular motions such as chaotic or random m
tions. A singular-continuous spectrum is a mixture of bo
discrete and continuous spectra@24#. This spectrum is par-
ticularly relevant to our study because strange noncha
behavior exhibits a mixture of properties of regular and
regular behaviors, as pointed out by Pikovsky and Feu
@11# @see also Fig. 2~b!#. To characterize a singular
continuous spectrum, we define, from a time series$xn% of a
trajectory on a strange nonchaotic attractor, the follow
partial Fourier sum,

X~V,T!5 (
n51

T

xnei2pnV, ~8!

FIG. 2. For map~4!, ~a! the strange nonchaotic attractor ata
52.1. The Lyapunov spectrum isLx50 and Ly'20.104. The
transverse exponent isLT'0.049 which causes the attractor to ha
a strange geometry.~b! Power spectrum of the time series$yn% at
a52.1.
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1626 56TOLGA YALÇINKAYA AND YING-CHENG LAI
whereV is proportional to the irrational driving frequencyv
in Eq. ~4!. When T is regarded as time,uX(V,T)u2 grows
with time T as @24#,

uX~V,T!u2;Ta ~9!

wherea is the scaling exponent. SinceX(V,T) is a complex
variable, one can regard the real and imaginary parts
X(V,T) as two independent axes–the time evolution
X(V,T) can thus be represented by an orbit, or a ‘‘walke
in the complex plane„Re@X(V,T)#,Im@X(V,T)#…. When the
motion is regular so that the power spectrum is discrete,
expect the average distance of the walker from the origin
increase linearly asT increases. In this case, we ha
uX(V,T)u2;T2, or a52. If the motion is random or chaotic
the behavior of the orbit in the complex plane is similar
that of a random walker so that the average distance of
walker from the origin increases likeAT as T increases.
Thus, in this case, we haveuX(V,T)u2;T, or a51. The
spectrum associated with trajectories on strange noncha
attractors falls somewhere in between these two categorie
was demonstrated@11# that for strange nonchaotic attractor
the quantityX(V,T) generally has the following features
~1! 1,a,2 and~2! the path (Re@X#,Im@X#) in the complex
plane is fractal.

Figure 3~a! shows, for V5v/4, log10uY(V,T)u2 versus
log10T, whereY(V,T) is the partial Fourier sum from th
time series $yn%: Y(V,T)5(n51

T ynei2pnV. The path
(Re@Y#,Im@Y#) in the complex plane is shown in Fig. 3~b!.
We haveuY(V,T)u2;T1.5 and, the path (Re@Y#,Im@Y#) ap-

FIG. 3. For map~4!, ~a! singular-continuous spectrum analys
of the time series$yn%. Shown isY(V,T) vs T on a logarithmic
scale. We have,uY(V,T)u2;T1.5. ~b! The fractal path in the com
plex plane (ReY,ImY).
of
f
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e
o

e

tic
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parently exhibits a fractal self-similar structure. These res
strongly suggest that the attractor in Fig. 2~a! is indeed
strange nonchaotic.

D. On-off intermittency in quasiperiodically
driven systems

A feature associated with the birth of the strange nonc
otic attractor is the occurrence of on-off intermitten
@19,20# in y for a*ac (LT*0). This is shown in Fig. 4~a!,
where yn versus the timen is plotted for a52.01 ~LT
'0.005 andLy'20.011!. We see that there are time inte
vals during whichyn stays neary50 ~the ‘‘off’’ state!, but
there are also intermittent bursts ofyn ~the ‘‘on’’ state! away
from the off state. This is a typical consequence of the blo
out bifurcation@18#, the origin of which can be understoo
by considering the fluctuations of finite time transver
Lyapunov exponent. Imagine we choose an ensemble of
tial conditions inx, computeLT for each initial condition at
a finite time, and then construct a histogram of these ex
nents. Since the asymptoticLT is only slightly positive, there
is a spread of the histogram into the negative side, indica
that a trajectory can spend long stretches of time neary50
in finite times. But sinceLT is positive, the trajectory is
repelled away fromy50 intermittently. Thus on-off inter-
mittency occurs.

We stress that the on-off intermittent time series in F
4~a! is in fact produced by a quasiperiodic driving to th

FIG. 4. For map~4!, ~a! on-off intermittency inyn at a52.01.
The transverse Lyapunov exponent isLT'0.005. ~b! Probability
distribution of the laminar phases. Shown is log10(T) vs
log10 P(T).
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56 1627BIFURCATION TO STRANGE NONCHAOTIC ATTRACTORS
transverse dynamics, whereas systems that generate o
intermittency reported so far in the literature@19,20# are
driven either randomly or chaotically. This can be und
stood by examining large time scales. In such scales, a
siperiodic driving can be regarded roughly as a random o
chaotic driving. Figure 4~b! shows the probability distribu
tion P(T) of the laminar phasesT plotted on a logarithmic
scale, whereT is the time interval for whichyn<e51025

and 108 such time intervals have been computed to const
P(T). Roughly, P(T) decays algebraically for smallT (T
*1000), a feature typical of the conventional on-off inte
mittent time series produced by random or chaotic driv
@20#. For largeT (T*1000), we find thatP(T) decays ex-
ponentially. However, only a distinct set ofT values is ob-
served and, hence, the plot in Fig. 4~b! exhibits large fluc-
tuations. For the 108 laminar phases examined with
thresholde51025, there are only about 80 distinct one
indicating that most ‘‘off’’ time intervals have the sam
length. In principle, there can be an infinite number of d
tinct laminar phases, but our numerical computation in
cates thatP(T) tends to concentrate on a limited set of va
ues of the laminar phases due to quasiperiodic driving. T
is qualitatively different from the conventional on-off inte
mittancy produced by random or chaotic driving where
possible values ofT can be observed and statistical fluctu
tions in the plot of lnP(T) versus lnT are considerably
smaller@20#.

E. Transient on-off intermittent behavior preceding
the bifurcation

Before the birth of strange nonchaotic attractor, a typi
trajectory exhibits transient on-off intermittent behavior b
fore finally approachingy50. For a given parameter valu
a, the average transient lifetimet depends on the paramet
difference ua2acu. Figure 5 shows log10 t versus log10ua
2acu for 1025<ua2acu<1021, where for each value o
a, 50 trajectories are used to compute the averaget. A tra-
jectory is regarded as havingy50 if it stays within 102100 of
y50 for 10 000 successive iterations. Clearly, we havet
;ua2acu21 from Fig. 5. This can be understood by notin
that t;1/LT , and fora nearac , we haveLT;ua2acu.

F. Transition to chaotic attractors

We address the following question:how does a strange
nonchaotic attractor become a chaotic attractor as a

FIG. 5. For map~4!, log10 t(a) vs log10(a), wheret(a) is the
average lifetime of the transient on-off intermittent behavior fora
,ac . We havet(a);ua2acu21.
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creases from ac? To answer this question, notice thatLy

5LT1ly , wherely,0. Thus,Ly becomes positive when
LT.ulyu. As a increases,LT increases monotonically nea
ac , but ly exhibits fluctuations. This is shown in Fig. 6
whereLT , Ly , andly versusa are plotted for 600 values o
a in @1.5,4.5#. For each value ofa, Ly andly are computed
with 106 iterations and 23105 preiterations. Despite the
large number of iterations used in the computation,ly and
henceLy exhibit fluctuations. WhenLT andulyu have com-
parable magnitudes,Ly can change from negative to positiv
and vice versa. Consequently, there exist a limited numbe
parameter intervals for strange nonchaotic attractorsLy
<0) which are interspersed with parameter intervals for c
otic attractors (Ly.0). This behavior has actually been o
served in physical systems such as the quasiperiodic
forced pendulum@8# and the continuous time model in Se
III. Figure 6 suggests that the existence of two compet
exponents such asLT ~local! andly ~global! is responsible
for the alternation of strange nonchaotic and chaotic beh
iors when the system parameter increases away from the
furcation point. Whena is increased further through som
critical value, sayag , where fora.ag , LT is sufficiently
large thatLT,ulyu does not occur, the system possesse
positive Lyapunov exponentLy and, consequently, strang
nonchaotic attractors are no longer possible.

III. QUASIPERIODICALLY DRIVEN FLOWS

We now demonstrate that all results in Sec. II for discr
maps also occur in more realistic physical systems mode
by continuous flows. In particular, we consider the followin
class ofN-dimensional flow:

dx

dt
5F~x,z,p!,

~10!

dz

dt
5v,

where x is Nx dimensional,z is Nz dimensional,Nx1Nz
5N, v[(v1 ,v2 , . . . ,vNz

) is a frequency vector, andp is a

bifurcation parameter. The functionF satisfiesF(0,z,p)50
so thatx50 defines the invariant subspaceS. The frequen-
cies (v1 ,v2 , . . . ,vNz

) are incommensurate so that th

FIG. 6. For map~4!, LT , Ly , andly vs parametera, where
Ly5LT2ulyu.
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z-dynamics gives a quasiperiodic torus. The largest tra
verse and nontrivial Lyapunov exponents of the systems
given by

LT5 lim
l→`

1

t
ln

udx~ t !u
udx~0!u

~11!

and

L5 lim
l→`

1

t
ln

udX~ t !u
udX~0!u

, ~12!

respectively, where the infinitesimal vectorsdx(t) and
dX(t) are evolved according to

ddx~ t !/dt5~]F/]x!ux50•dx,
~13!

ddX~ t !/dt5~]F/]x!•dX,

for random initial vectorsdx~0! anddX~0! @18#. To be con-
crete, we consider a physical example, mathematically
scribed by the following version of Eq.~10!,

dx

dt
5y,

dy

dt
52ky2gx31~b1 f 1sinz11 f 2sinz2!sin~2px!, ~14!

dz1

dt
5v1 ,

dz2

dt
5v2

where the invariant subspaceS is two-dimensional and it is
given by (x,y)5(0,0), v1 andv2 are two incommensurat
frequencies so that there is a two-frequency quasiperio
torus in S generated by the dynamics inz1 and z2 . The
largest Lyapunov exponent for trajectories restricted to
torus is zero. In Eq.~14!, k ~dissipation!, g, b, f 1 , andf 2 are
parameters. Equation~14! is a slightly modified version of
the experimental model used by Zhou, Moss, and Buls
which is relevant to the radio-frequency-driven superc
ducting quantum interference device@14#. In our numerical
experiments, we arbitrarily choosek as the bifurcation pa-
rameter and fix other parameters atg52.0, b521.1, v1

52.25, andv1 /v25 1
2 (A511) ~the golden mean!, f 153.5

and f 255.0. We observe that a blowout bifurcation occurs
kc'4.17, whereLT.0 ~,0! for k,kc (.kc).

Figure 7~a! shows the (x,y) projection of a trajectory of
50 000 iterations~after 10 000 preiterations! on the strobo-
scopic surface of section defined byz1(tn)52np (n
51,2, . . . ) for k54.1 (LT'0.019). The largest nontrivia
Lyapunov exponent of the system isL'20.134. Thus, there
is no positive Lyapunov exponent for this parameter setti
The geometric shape of the attractor, however, app
strange, as can be seen from Fig. 7~a!. The mechanism for
the strangeness of the attractor is similar to that in map~4!
@Fig. 2~a!#. In particular, a typical trajectory on the torus
S is transversely unstable fork&kc (LT*0). We verify
numerically that there are apparently no other attractors
the phase space fork&kc @25#. Thus, ask decreases throug
the critical valuekc , a strange nonchaotic attractor is bor
s-
re
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:

the positiveness of the transverse Lyapunov exponentLT

gives rise to the strangeness of the attractor, and the n
tiveness of the largest nontrivial Lyapunov exponentL guar-
antees attractor’s being nonchaotic. Figure 7~b! shows on-off
intermittency after the bifurcation, where the time ser
$yn% is plotted fork54.1. We see that there are time inte
vals whenyn stays neary50 ~the off state!, but there are
also intermittent bursts ofyn ~the on state! away from the off
state. This is similar to Fig. 4~a!. Again, here on-off inter-
mittency is produced by a quasiperiodic driving.

We have also performed the singular-continuous spect
analysis to check the nature of the attractor in Fig. 7~a!.
Figures 8~a! and 8~b! show, forV5(A511)/8, respectively,
log10uX(V,T)u2 versus log10 T and the path (ReX,ImX) com-
puted from the time series$xn% on the surface of section in
Fig. 7~a!. We havea'1.2 and, the path (ReX,ImX) appar-
ently exhibits a fractal self-similar structure. These resu
thus lend strong credence to our conclusion that the attra
in Fig. 7~a! is indeed strange nonchaotic.

The nontrivial Lyapunov exponent exhibits variatio
similar to Fig. 6 in map~4! after the blowout bifurcation, as
shown in Fig. 9, whereLT , L andl5L2LT versusk are
plotted for 2000 values ofk in @3.2,4.8#. For each value ofk,
LT , L, and l are computed with 50 000 iterations an
10 000 preiterations on the surface of section. WhenLT and
ulu have comparable magnitudes,L can change from nega
tive to positive and vice versa. Consequently, there exist
terspersed parameter intervals for chaotic attractors~L.0!
and for strange nonchaotic attractors~L,0!. We have ob-

FIG. 7. For the flow Eq.~14!, ~a! a trajectory of 50 000 points
on the stroboscopic section atk54.1 ~see text for other parameters!.
Apparently, the attractor is geometrically strange.~b! On-off inter-
mittency in the time seriesy(t) obtained from~a!.
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served that whenk is decreased further through some critic
value,LT is sufficiently large so thatLT,ulu does not oc-
cur, the system possesses a positive Lyapunov exponeL
and, consequently, strange nonchaotic attractors are
longer possible and the asymptotic attractor is chaotic. S
lar to the case of map~4!, the average time of the transie
on-off intermittent behavior preceding the blowout bifurc
tion follows the scaling lawt;uk2kcu21.

IV. DISCUSSIONS

In the study of nonlinear dynamical systems, the not
strangenessis often associated with a chaotic process. C
otic attractors and chaotic saddles typically possess a fra
structure which is geometrically strange. There are also p
cesses that are chaotic but not strange. For example
Hamiltonian systems, the motion after disappearance o
Kolmogorov-Arnold-Moser tori is chaotic, but a typical tra
jectory wanders in a two-dimensional region that is not g
metrically strange~chaotic sea! @26#. Strange nonchaotic at
tractors were found to be observable first in 1984@6#. Since
then, there is a continuous interest in the subject of stra

FIG. 8. For the flow Eq.~14!, ~a! singular-continuous spectrum
analysis of the time series$xn%: log10uX(V,T)u2 vs log10 T. We
haveuX(V,T)u2;T1.2. ~b! The corresponding path (ReX,ImX).
a
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l
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nonchaotic attractors@5–16#. An important question then is
how these exotic attractors arise in dynamical systems.
main contribution of this paper is the investigation of o
route to strange nonchaotic attractors for systems wit
symmetric invariant subspace. We present arguments
numerical verifications to show that a strange nonchaotic
tractor can be created when a quasiperiodic torus embed
in the invariant subspace becomes transversely unstable.
numerical examples utilized to illustrate our findings cons
of both discrete maps and continuous flows, the latter rep
sents more realistic physical systems. Since symmetr
quite common in dynamical systems, we expect this route
strange nonchaotic attractors to be observable.

An interesting finding is that the two distinct dynamic
phenomena, strange nonchaotic behavior and on-off inter
tency, commonly thought of as arising in very different co
texts in the study of nonlinear systems, can actually
closely related. The link is the blowout bifurcation that d
stabilizes, transversely, the quasiperiodic torus in the inv
ant subspace. Our study thus demonstrates that blowou
furcation can occur even if the driving is not chaotic
random but quasiperiodic. As a consequence, on-off in
mittency can arise in quasiperiodically driven dynamical s
tems. Since both strange nonchaotic attractors@13,14# and
on-off intermittency@27# have been experimentally observe
in physical systems, we believe that the findings reported
this paper can be tested in laboratory experiments.
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FIG. 9. For the flow Eq.~14!, LT , Ly , andly vs the parameter
k ~dissipation!.
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@1# In the period-doubling route~i!, a chaotic attractor appears in
parameter region immediately following the accumulation
an infinite number of period doublings@2#. In the intermittency
route ~ii !, as a parameter passes through a critical value
f

a

simple periodic orbit is replaced by a chaotic attractor in su
a way that the chaotic behavior is interspersed with a perio
like behavior in an intermittent fashion@3#. In the crisis route
~iii !, a chaotic attractor is suddenly created to replace a no
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tracting chaotic saddle as the parameter passes through
crisis value@4#. In systems such as the two-frequency quas
eriodically forced systems, chaos can arise through the foll
ing route ~iv!: ~three-frequency quasiperiodicity!→~strange
nonchaotic behavior!→~chaos! @5#.
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