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Strange nonchaotic attractors are attractors that are geometrically strange, but have nonpositive Lyapunov
exponents. These attractors occur in regimes of nonzero Lebesgue measure in the parameter space of quasi-
periodically driven dissipative dynamical systems. We investigate a route to strange nonchaotic attractors in
systems with a symmetric invariant subspace. Assuming there is a quasiperiodic torus in the invariant sub-
space, we show that the loss of the transverse stability of the torus can lead to the birth of a strange nonchaotic
attractor. A physical phenomenon accompanying this route to strange nonchaotic attractors is an extreme type
of intermittency. We expect this route to be physically observable, and we present theoretical arguments and
numerical examples with both quasiperiodically driven maps and quasiperiodically driven flows. The transition
to chaos from the strange nonchaotic behavior is also stuidd®63-651X97)10908-4

PACS numbds): 05.45+b

I. INTRODUCTION temg [5-16. For example, it was demonstrated that in
systems driven by two incommensurate frequencies, there

A central problem in the study of deterministic dynamical exist regions of positive Lebesgue measure in the parameter
systems is to identify different types of asymptotic behaviorsspace for which strange nonchaotic attractors ejis8].
of the system and to understand how the behavior changes More recent work demonstrated that typical trajectories on a
a system parameter changes. The asymptotic behaviors cattange nonchaotic attractor actually possess positive
be, for instance, a steady state, a periodic oscillation, a quadizyapunov exponents in finite time intervals, although
periodic motion, and a random or a chaotic motion. Thereasymptotically, the exponent is negatiME2]. These attrac-
has been a lot of work in the past addressing how dynamicdbrs also exhibit unusual spectral and correlation properties
systems develop chaos from periodic or quasiperiodic mof11]. Strange nonchaotic attractors can arise in physically
tions. It is known so far that there are four major routes torelevant situations such as quasiperiodically forced damped
chaotic attractorgd1-5]: (i) the period-doubling cascade pendulums and localization of quantum particles in quasip-
route[2]; (ii) the intermittency transition route8]; (iii) the  eriodic potential{7], and also in biological oscillator®].
crisis route[4]; and (iv) the route to chaos in quasiperiodi- These exotic attractors have been observed in physical ex-
cally driven systemg§5]. perimentg 13,14].

This paper concerns bifurcations to a type of motion in  While the existence of strange nonchaotic attractors was
deterministic systems that is neither regulaeriodic or qua- firmly established, a question that remains interesting is how
siperiodi9 nor chaotic. The motion occurs @trange non- these attractors are created as a system parameter changes
chaotic attractorswhich are attractors that are geometrically through a critical value, i.e., what are the possible routes to
complicated, butasymptotically typical trajectories on the strange nonchaotic attractors? One route was investigated by
attractors exhibit no sensitive dependence on initial condiHeagy and Hammedl10] who discovered that, in quasiperi-
tions [5-16]. Here, the wordstrangerefers to the compli- odically driven maps, the transition from two-frequency qua-
cated geometry of the attractor: a strange attractor is not siperiodicity to strange nonchaotic attractors occurs when a
finite set of points and it is not piecewise differentiable. Theperiod-doubled torus collides with its unstable parent torus.
word chaoticrefers to a sensitive dependence on initial con-Near the collision, the period-doubled torus becomes ex-
ditions: trajectories originating from nearby initial conditions tremely wrinkled and develops into a fractal set at the colli-
diverge exponentially in time. Mathematically, strange non-sion, while the Lyapunov exponent remains negative
chaotic attractors occur in all dissipative dynamical systemshroughout the collision process. Recently, Feudel, Kurths,
that exhibit the period-doubling route to chaos: the attractomnd Pikovsky found that the collision between a stable torus
at the accumulation point of the period-doubling cascade is and an unstable one at a dense set of points leads to a strange
fractal set, but its largest Lyapunov exponent is not positivenonchaotic attractofl5]. A renormalization-group analysis
However, such a strange attractor is not observable in realitwas also devised for the transition to strange nonchaotic at-
because the set of parameter values for the accumulation tfactors in a particular class of quasiperiodically driven maps
the period-doubling cascade has a Lebesgue measure zerd ).
the parameter space. Strange nonchaotic attractors are, how-In this paper, we present a route to strange nonchaotic
ever, observable in dissipative systems driven by seweral attractors in dynamical systems with a symmetric low-
commensuratefrequencies (quasiperiodically driven sys- dimensional invariant subspa&in the phase spacel7].

SinceS is invariant, initial conditions irS result in trajecto-

ries which remain irs forever. We consider the case where
*Electronic address: tolga@math.ukans.edu there is a quasiperiodic torus in,Sas shown schematically
TElectronic address: lai@poincare.math.ukans.edu in Fig. 1. Whether the torus attracts or repels initial condi-
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Subspace T x andy dynamics are bounded. Th¢,-dimensional vector
function f(x) is a map that has a quasiperiodic torus so that
the largest Lyapunov exponent of tRedynamics isA,=0.

The scalar functior(x,p) is thus the quasiperiodic driving

to the transversg subsystem, ang is the bifurcation pa-
rameter. The largest transverse Lyapunov exponent is given

by

Quasiperiodic Torus

L

1
FIG. 1. Schematic representation of the invariant subsfsioe A= lim T > In|F(x, P)DG(Yn)ly —o-ul, (2
which the quasiperiodic torus lies and the transverse subspace Low = n=1

tions in the vicinity of S is determined by the sign of the whereu is a unit vector inRy. The largest Lyapunov expo-
largest Lyapunov exponert: computed for trajectories in nentA, of they subsystem is given by
S with respect to perturbations in the subspdcehich is

transverseto S. WhenA ¢ is negative S attracts trajectories 1t
transversely in the phase space and, the quasiperiodic torus Ay=lim = > In|F(X,,p)DG(Y,) - ul, 3
in S is an attractor of the full phase space. When is Low & n=1

positive, trajectories in the vicinity ob are repelled away

from it, and, consequently, the torus is transversely unstablgnere nowy,, is not set to bed when the Jacobian matrices
and it is hence not an attractor of the full phase space. ASDG(yn)’s are evaluated. Since thedynamics represents the
sume that as a system parameter changes through a CritiQﬂ!lasiperiodic driving to they dynamics, and the largest
valueag, Ay passes through zero from the negative sidey yanunoy exponent im is zero, we see that, is in fact the
This bifurcation is referred to as the “blowout bifurcation” largest nontrivial Lyapunov exponent of the system which
[18]. Our main result is that the blowout bifurcation can leadyetermines whether the system is chaotic or nonchaotic. In
to the birth of a strange nonchaotic attractor. A physical pheqarticylar, ifA,>0 (<0), the system is chaotimonchaotit.
nomenon accompanying this route to strange nonchaotic a?— We now ar{que that a blowout bifurcation can lead to the
tractors is that the dynamical variables in the transverse sulisi in of a strange nonchaotic attractor. lptbe the bifurca-
spaceT exhibit an extreme type of temporally intermittent 4, point, i.e., as the parameter passes through,, the

bursting behavior: on-off intermittencjl9,20. Thus,_as & transverse Lyapunov exponeht passes through zero from
by-product, our work also demonstrates that on-off intermit-y, negative side. Thus, far<p, (A;<0), the quasiperi-

tency can occur in quasiperiodically driven dynamical SyS-g4ic torus in the invariant subspage=0 is transversely

tems, whereas to our knowledge, these intermittencies haWgapie so that typical trajectories are eventually attracted
been reported _only for systems that are _drlven either raNgansversely towardg=0 and asymptote to the quasiperiodic
dom_ly or chaotically. A short account of this work has been,. s there. Fop=p. (At=0), the quasiperiodic torus in
published recently21]. y=0 is transversely unstable and, hence, typical trajectories

The rest of the paper is organized as follows. In Sec. llgre chaotic locally neay=0. There are now some time in-
we study the blowout bifurcation route to strange nonchaotigg 45 during which a trajectory in the vicinity &=0 can

attractors in discrete dynamical systems. In particular, Weyg renelied from it. In this case, if there are no other attrac-
study a class of quasiperiodically driven maps for which the s in the phase space, the trajectory comes back to the
bifurcation can be understood fairly completely. We also in'neighborhood ofy=0 in an intermittent fashion. Since the
vestigate on-off intermittency after the birth of the Stra”getrajectory is bounded in botk andy, the asymptotic attrac-
nonchaotic attractor and the transit@on to chaos. In Sec. Mior in the full phase spackx.y) exhibits a complicated geo-
we demonstrate that all results obtained from the map can Bgeyic shape due to the local chaoticity in the vicinity of the
observed na quas_|per|od|cally d_rlven phy5|ca_l SySt_eminvariant subspace. However, if the nontrivial Lyapunov ex-
mathematlca_llly described by a continuous flow. D'SCUSS'Onf)onentAy is negative, which indeed occurs if the magnitude
are present in Sec. V. of the eigenvalues of the Jacobian matrib&s(y,)’'s evalu-
ated along the trajectory is less than one, then the attractor,
Il. QUASIPERIODICALLY DRIVEN MAPS though geometrically complex, is not chaotic because both
Lyapunov exponents\, and A, are not positive. Conse-
quently, a strange nonchaotic attractor is born. In the sequel,
We consider the following general class of we present a model that is partially analyzable, together with
N-dimensional maps, numerical results, to confirm the blowout bifurcation route to
strange nonchaotic attractors.

A. Blowout bifurcation to strange nonchaotic attractors

Xn+1=f(Xq),

()
Yos1=F (X1, P)G(Yn), B. A two-dimensional map
We study the following two-dimensional version of Eqg.
where xe R™ (N,=>1), yeRM (N,>1), and N,+N, (1),
=N. The vector functiorG(y) satisfiesG(0)=0 so thaty=0
defines the invariant subspa@g]. We assume that both the Xn+1= (Xn+27w)mod 2),

4
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1
Yn+1=5— (& cOX,+b)sin(2myy),

wherea andb are parameters, ande(0,1) is an irrational
number so that th& dynamics is the circle map that gener-
ates a quasiperiodic torus with uniform invariant density
p(x)=1/(27) in xe[0,27] (two-frequency quasiperiodic-
ity). The one-dimensional invariant subspaceyis0. The
transverse Lyapunov exponent is

n "0 /2 32 r
Ar=lim = > Inla cos¢; +b| X
n—o n j:]-
1 [(om (b)
Inja cosx+b|dx. (5) 0.0 ' : : :

“ 27 Jo

We obtain,

(6) \

In|b|—In2[1+{1—(a/b)?}], if a<b
T | In|b| +Ina/(2b), if a>b.

log, [S/max(S,)]
{

We have, for examplea,=2 for the casea>b>0, where

v .. I
A+<0 for a<a, and A;>0 for a>a.. The nontrivial o S o

y-Lyapunov exponent is KM
Ay=A7+ )\y%Aﬁ_J In|cog 27y)|p(y)dy, (7) FIG. 2. For map(4), (a) the strange nonchaotic attractor aat
=2.1. The Lyapunov spectrum i4,=0 and A,~—0.104. The

. . . . transverse exponent /s;~0.049 which causes the attractor to have
wherep(y) is the invariant density of for a>a.. Note that 5 syrange geometryb) Power spectrum of the time seriég,} at
for a<a. we havey=0 (asymptotically and, hencery, a=21,

=0. In this caseA = A+<0 so that the asymptotic attractor _
is the quasiperiodic torus in the invariant liye=0. Fora  tors [6—8,5,10,12 Figures 2a) and 2b) thus suggest that
>a., we have A;=0. From Eq. (7), we see that |mme(_j|ately after the blowout b|fu_rcat|on, the quaS|p_er|0(_j|c
In|cos(2my)|<0 and, hence),<0. Thus, it is possible to torus iny=0 becomes a_repeller in t_he trans_verse direction
have At=0 but A,<0. Since, (i) the y dynamics is a_nd a ;trange nonchaotic attractor is born in the full two-
bounded, andii) the y map apparently does not have other dimensional phase space.
stable attractors foxe[0,27], although a typical trajectory
can no longer stay in the vicinity of=0 for a=a., it must
come to the neighborhood gf=0 intermittently. Thus, geo- To lend more credence to our assertion that the attractor
metrically, the trajectory traces out a complicated structure iffor a=a. is strange nonchaotic, we perform a singular con-
the phase space. But since,<0, the map possesses no tinuous spectrum analysis that was first proposed in the in-
positive Lyapunov exponent. Consequently, we expect th&estigation of models of quasiperiodic lattices and quasiperi-
attractor to be strange but not chaotic fora,. The key odically forced quantum systenf23]. In general, power
observation is thus that the positiveness df renders spectra of dissipative dynamical systems can be either dis-
strange the asymptotic attractor, but the negativeness of thete, or continuous, or a combination of both. Discrete spec-
nontrivial Lyapunov exponent warrants that the attractor bdra are usually generated by regular motions such as periodic
nonchaotic. or quasiperiodic motions, whereas continuous spectra corre-
We now present numerical results to test the nature of thépond to irregular motions such as chaotic or random mo-
attractor after the blowout bifurcation. Figuréa2shows a tions. A singular-continuous spectrum is a mixture of both
trajectory of 10 000 points on such an attractor recorded aftedliscrete and continuous spectf2d]. This spectrum is par-
10° preiterations forw=(\5—1)/2 (the inverse golden ticularly relevant to our study because strange nonchaotic
mean, a=2.1>a, andb=1. The transverse Lyapunov ex- Pehavior exhibits a mixture of properties of regular and ir-
ponent isA1~0.049. The attractor is geometrically strange,"égular behaviors, as pointed out by Pikovsky and Feudel
but it is nonchaotic because at this set of parameter valueg?l]_ [see also Fig. @)]. To characterize a singular-
the Lyapunov spectrum i$\,=0 and A,~—0.104. The continuous spectrum, we define, fr.om a time sefig$ of a _
power spectrum for a time seri¢g,} of M =26 points us- ~ trajectory on a strange nonchaotic attractor, the following
ing a standard fast fourier transform algorithm is shown inPartial Fourier sum,
Fig. 2(b). Although the power spectrum is broadband, it ap- T
pears to contain a discrete set of “spikes,” which are typical X(Q,T)= E X812, ®)
features of the power spectrum of strange nonchaotic attrac- n=1

C. Singular-continuous spectrum analysis
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FIG. 3. For map(4), (a) singular-continuous spectrum analysis log,, T

of the time serieqy,}. Shown isY(Q,T) vs T on a logarithmic
scale. We have)Y(Q,T)|>~T*® (b) The fractal path in the com-

FIG. 4. For map(4), (a) on-off intermittency iny,, ata=2.01.
plex plane (R¥,ImY). p4), (@ y iny,

The transverse Lyapunov exponentAs=0.005. (b) Probability

) ] o o distribution of the laminar phases. Shown is |gd) vs
where(} is proportional to the irrational driving frequeney o9, P(T).

in Eq. (4. WhenT is regarded as timgX(,T)|? grows

with time T as[24], parently exhibits a fractal self-similar structure. These results

strongly suggest that the attractor in Figi@?2is indeed

2 _Tao .
IX(Q,T)[*~T ®  strange nonchaotic.
wherea is the scaling exponent. Sind&Q,T) is a complex _ _ ) o
variable, one can regard the real and imaginary parts of D. On-off intermittency in quasiperiodically
X(Q,T) as two independent axes—the time evolution of driven systems

X(€2,T) can thus be represented by an orbit, or a “walker” A feature associated with the birth of the strange noncha-
in the complex plangRgX(€2,T)],Im[X(€2,T)]). When the otic attractor is the occurrence of on-off intermittency
motion is regular so that the power spectrum is discrete, wg19,20 in y for a=a, (A1=0). This is shown in Fig. &),
expect the average distance of the walker from the origin tquhere y,, versus the timen is plotted for a=2.01 (A
increase linearly asT increases. In this case, we have ~0.005 andAy~—0.0lj). We see that there are time inter-
|X(€2,T)|2~T?, or @=2. If the motion is random or chaotic, vals during whichy,, stays neay=0 (the “off” state), but
the behavior of the orbit in the complex plane is similar tothere are also intermittent burstsyf (the “on” state) away
that of a random walker so that the average distance of thRom the off state. This is a typical consequence of the blow-
walker from the origin increases likeT as T increases. out bifurcation[18], the origin of which can be understood
Thus, in this case, we hay&X(Q,T)[?~T, or a=1. The by considering the fluctuations of finite time transverse
spectrum associated with trajectories on strange nonchaotigzapunov exponent. Imagine we choose an ensemble of ini-
attractors falls somewhere in between these two categories.tiil conditions inx, computeA  for each initial condition at
was demonstratefd 1] that for strange nonchaotic attractors, a finite time, and then construct a histogram of these expo-
the quantityX(€2,T) generally has the following features: nents. Since the asymptotic; is only slightly positive, there
(1) 1<a<2 and(2) the path (REX],Im[X]) in the complex s a spread of the histogram into the negative side, indicating
plane is fractal. that a trajectory can spend long stretches of time yead
Figure 3a) shows, for Q=w/4, logY(Q,T)|? versus in finite times. But sinceA; is positive, the trajectory is
log,oT, whereY(£2,T) is the partial Fourier sum from the repelled away fromy=0 intermittently. Thus on-off inter-
time series {y,}: Y(Q,T)=3]_,y.€?™? The path mittency occurs.
(REY],Im[Y]) in the complex plane is shown in Fig(l8. We stress that the on-off intermittent time series in Fig.
We have|Y(Q,T)|>~T® and, the path (R¥],Im[Y]) ap- 4(a) is in fact produced by a quasiperiodic driving to the
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FIG. 6. For map(4), A1, A
Ay:AT_l)\yl.

FIG. 5. For map(4), log,, 7(a) vs logg(a), wherer(a) is the y» and\, vs parameten, where
average lifetime of the transient on-off intermittent behaviordor
<a,. We haver(a)~|a—a,| L.

t d [ h t that t CfffeaSes from g2 To answer this question, notice thal,
ransverse dynamics, whereas systems that generate on-Qlly .\ where),<0. Thus,A, becomes positive when
intermittency reported so far in the literatuf@9,2q are TRy y<U. Ay p

, X . ; A> . As a incr incr monotonically near
driven either randomly or chaotically. This can be under-_T [Ay|. As a increasesAy increases monotonically nea

stood by examining large time scales. In such scales, a qugf' but Ay exhibits fluctuations. This is shown in Fig. 6,
siperiodic driving can be regarded roughly as a random or &/NeréAr, Ay, and\, versusa are plotted for 600 values of
chaotic driving. Figure @) shows the probability distribu- @ in [1.5,4.8. For each value o&, A, and\, are computed
tion P(T) of the laminar phases plotted on a logarithmic  With 10° iterations and X 10° preiterations. Despite the
scale, whereT is the time interval for whichy,<e=10"° large number of iterations used in the computatibp,and

and 16 such time intervals have been computed to construchenceA, exhibit fluctuations. Wher ; and|\ | have com-
P(T). Roughly, P(T) decays algebraically for small (T parable magnituded,, can change from negative to positive
=1000), a feature typical of the conventional on-off inter- and vice versa. Consequently, there exist a limited number of
mittent time series produced by random or chaotic drivingparameter intervals for strange nonchaotic attractoys (
[20]. For largeT (T=1000), we find thaP(T) decays ex- <0) which are interspersed with parameter intervals for cha-
ponentially. However, only a distinct set ®f values is ob-  otic attractors {,>0). This behavior has actually been ob-
served and, hence, the plot in Figh# exhibits large fluc- served in physical systems such as the quasiperiodically
tuations. For the 1D laminar phases examined with a forced penduluni8] and the continuous time model in Sec.
thresholde=10"°, there are only about 80 distinct ones, |iI. Figure 6 suggests that the existence of two competing
indicating that most “off” time intervals have the same exponents such a& (local) and Ay (globa) is responsible
length. In principle, there can be an infinite number of dis-for the alternation of strange nonchaotic and chaotic behav-

tinct laminar phases, but our numerical computation indi-iors when the system parameter increases away from the bi-
cates thaP(T) tends to concentrate on a limited set of val- i rcation point. Whera is increased further through some
ues of the laminar phases due to quasiperiodic driving. ThiS iical value, saya,, where fora>ay, Ay is sufficiently

is qualitatively different from the conventional on-off inter- large thatA+<|\,| does not occur, the system possesses a
T y ’

mittancy produced by random or chaotic driving where all ositive Lvapunov exponent.. and. consequently. strange
possible values of can be observed and statistical fluctua-P -yap P ¥ ' €q Y, 9
nonchaotic attractors are no longer possible.

tions in the plot of InP(T) versus InT are considerably

smaller[20].
I1l. QUASIPERIODICALLY DRIVEN FLOWS

E. Transient on-off intermittent behavior preceding We now demonstrate that all results in Sec. Il for discrete
the bifurcation maps also occur in more realistic physical systems modeled
Before the birth of strange nonchaotic attractor, a typicaby continuous flows. In particular, we consider the following
trajectory exhibits transient on-off intermittent behavior be-class ofN-dimensional flow:
fore finally approachinggy=0. For a given parameter value

a, the average transient lifetimedepends on the parameter X

difference|a—a.|. Figure 5 shows log 7 versus logga a=F(X,Z,p),

—a,| for 10 °<|a—a,/<10"1, where for each value of (10

a, 50 trajectories are used to compute the average tra-

jectory is regarded as haviryg=0 if it stays within 10 1% of dz _ ©

y=0 for 10 000 successive iterations. Clearly, we have dt '

~la—a¢| ! from Fig. 5. This can be understood by noting

that 7~ 1/A1, and fora neara., we haveAr~|a—a|. where x is N, dimensional,z is N, dimensional,N,+ N,
=N, w=(w,,0,, ... ""Nz) is a frequency vector, amlis a

F. Transition to chaotic attractors bifurcation parameter. The functidh satisfiesF(0,z,p) =0

We address the following questiohow does a strange so thatx=0 defines the invariant subspage The frequen-
nonchaotic attractor become a chaotic attractor as a in-cies (wq,w-, . .. '“’Nz) are incommensurate so that the
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z-dynamics gives a quasiperiodic torus. The largest trans-

verse and nontrivial Lyapunov exponents of the systems are
given by
Ar=lim E In M (11
Tt [ex(0)]
and
A=l 1| |6X(1)] 17
- o (12
X
respectively, where the infinitesimal vectoix(t) and
6X(t) are evolved according to (b)
1.0
dox(t)/dt=(dF/dx)|=g- X,
( ) ( )|x 0 (13) os
dsX(t)/dt=(dF/dx)- 6X, )
for random initial vectors(0) and 6X(0) [18]. To be con- > 00 ’
crete, we consider a physical example, mathematically de-
scribed by the following version of Eq10), —0.5
dx -1.04 : | . ‘ :
a v 0 1000 2000 3000 4000 5000
n
d_y: — Ky — 7X3+(,8+f15in21+ f,sinz,)sin(27x), (14) FIG. 7. For the_ flow Eq(14), (a) a trajectory of 50 000 points
dt on the stroboscopic section at4.1 (see text for other parametgrs
Apparently, the attractor is geometrically stran@®. On-off inter-
dz; dz, mittency in the time serieg(t) obtained from(a).
dr o “v dr 2

. . ) . . ... the positiveness of the transverse Lyapunov exporent
where the mva_nant subspaggis two-dimensional and it is gives rise to the strangeness of the attractor, and the nega-
given by (,y)=(0.0), »; andw, are two incommensurate ;. .nocc of the largest nontrivial Lyapunov expon&rguar-
frequencies so that there is a two-frequency quasiperiodic , . S
: L antees attractor’s being nonchaotic. Figufle) Zhows on-off
torus in S generated by the dynamics i and z,. The . : . : ; .
largest Lyapunov exponent for trajectories restricted to th nterrmttency after the bifurcation, where the tlme Senes
torus is zero. In Eq(14), « (dissipation, y, B, f,, andf, are yn} is plotted fork=4.1. We see that there are time inter-
parameters. EquatiofLd) is a slightly modified version of Vals wheny, stays neay=0 (the off statg, but there are
the experimental model used by Zhou, Moss, and Bulsard!SO intermittent bursts gf, (the on stateaway from the off
which is relevant to the radio-frequency-driven superconState. This is similar to Fig. (). Again, here on-off inter-
ducting quantum interference devif®4]. In our numerical ~Mittency is produced by a quasiperiodic driving.
experiments, we arbitrarily chooseas the bifurcation pa-  We have also performed the singular-continuous spectrum
rameter and fix other parameters g£2.0, B=—1.1, w;  analysis to check the nature of the attractor in Fi¢a).7
—2.25, andw; /w,= 3(5+1) (the golden mean f,=3.5  Figures §a) and 8b) show, forQ = (\/5+1)/8, respectively,
andf,=5.0. We observe that a blowout bifurcation occurs atlog; o X(2,T)|? versus log, T and the path (R&ImX) com-
Kke~4.17, whereA >0 (<0) for k<k. (> k). puted from the time serigls,} on the surface of section in
Figure 1@ shows the X,y) projection of a trajectory of Fig. 7(a). We havea~1.2 and, the path (R€ImX) appar-
50 000 iterationgafter 10 000 preiterationon the strobo- ently exhibits a fractal self-similar structure. These results
scopic surface of section defined k¥ (t,)=2n= (n thus lend strong credence to our conclusion that the attractor
=1,2,...) fork=4.1 (A+~0.019). The largest nontrivial in Fig. 7(a) is indeed strange nonchaotic.
Lyapunov exponent of the systemAs=—0.134. Thus, there The nontrivial Lyapunov exponent exhibits variation
is no positive Lyapunov exponent for this parameter settingsimilar to Fig. 6 in mag4) after the blowout bifurcation, as
The geometric shape of the attractor, however, appearshown in Fig. 9, wheré\1, A and\ =A — At versusk are
strange, as can be seen from Figa)7 The mechanism for plotted for 2000 values ot in [3.2,4.§. For each value ok,
the strangeness of the attractor is similar to that in f#ap A+, A, and A are computed with 50 000 iterations and
[Fig. 2@)]. In particular, a typical trajectory on the torus in 10 000 preiterations on the surface of section. Wherand
S is transversely unstable fot<x. (At=0). We verify  |\| have comparable magnitude$,can change from nega-
numerically that there are apparently no other attractors itive to positive and vice versa. Consequently, there exist in-
the phase space far< . [25]. Thus, as« decreases through terspersed parameter intervals for chaotic attractars0)
the critical valuex,, a strange nonchaotic attractor is born: and for strange nonchaotic attractdrs<0). We have ob-
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FIG. 9. For the flow Eq(14), A1, Ay, and\, vs the parameter
Kk (dissipation.

nonchaotic attractorf5—16]. An important question then is
how these exotic attractors arise in dynamical systems. The
main contribution of this paper is the investigation of one
route to strange nonchaotic attractors for systems with a
symmetric invariant subspace. We present arguments and
numerical verifications to show that a strange nonchaotic at-
tractor can be created when a quasiperiodic torus embedded
in the invariant subspace becomes transversely unstable. The
Re X numerical examples utilized to illustrate our findings consist
of both discrete maps and continuous flows, the latter repre-
FIG. 8. For the flow Eq(14), (&) singular-continuous spectrum sents more realistic physical systems. Since symmetry is
analysis of the time serief,}: log;o X(Q,T)|? vs log, T. We  quite common in dynamical systems, we expect this route to
have|X(Q,T)[?*~T"2 (b) The corresponding path (R¢mX). strange nonchaotic attractors to be observable.

An interesting finding is that the two distinct dynamical
served that wher is decreased further through some critical phenomena, strange nonchaotic behavior and on-off intermit-
value, At is sufficiently large so that t<|\| does not oc- tency, commonly thought of as arising in very different con-
cur, the system possesses a positive Lyapunov expokent texts in the study of nonlinear systems, can actually be
and, consequently, strange nonchaotic attractors are mnmosely related. The link is the blowout bifurcation that de-
longer possible and the asymptotic attractor is chaotic. Simistabilizes, transversely, the quasiperiodic torus in the invari-
lar to the case of mapd), the average time of the transient ant subspace. Our study thus demonstrates that blowout bi-
on-off intermittent behavior preceding the blowout bifurca- furcation can occur even if the driving is not chaotic or
tion follows the scaling lawr~ |k — x| 2. random but quasiperiodic. As a consequence, on-off inter-
mittency can arise in quasiperiodically driven dynamical sys-
tems. Since both strange nonchaotic attracf@®14] and
on-off intermittency]{27] have been experimentally observed

In the study of nonlinear dynamical systems, the notionin physical systems, we believe that the findings reported in
strangenesss often associated with a chaotic process. Chathis paper can be tested in laboratory experiments.
otic attractors and chaotic saddles typically possess a fractal
structure which is geometrically strange. There are also pro- ACKNOWLEDGMENTS
cesses that are chaotic but not strange. For example, in
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an infinite number of period doublingg]. In the intermittency like behavior in an intermittent fashidi3]. In the crisis route

route (i), as a parameter passes through a critical value, a  (iii), a chaotic attractor is suddenly created to replace a nonat-
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