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The natural measure of a chaotic set in a phase-space region can be related to the dynamical properties of all
unstable periodic orbits embedded in part of the chaotic set contained in that region. This result has been
rigorously shown to be valid for hyperbolic chaotic systems. Chaotic sets encountered in most physical
situations, however, are typically nonhyperbolic. The purpose of this paper is to test the goodness of the
unstable periodic-orbit characterization of the natural measure for nonhyperbolic chaotic systems. We first
directly compare the natural measure from a typical trajectory on the chaotic set with that evaluated from
unstable periodic orbits embedded in the set. As an indirect check, we then compute the difference between the
long-time average values of physical quantities evaluated with respect to a typical trajectory and those com-
puted from unstable periodic orbits. Results with thenete map for which periodic orbits can be enumerated
lend credence to the conjecture that the unstable periodic-orbit theory of the natural measure is applicable to
nonhyperbolic chaotic system$$1063-651X97)02012-4

PACS numbdss): 05.45+b

I. INTRODUCTION by a typical trajectory on the chaotic set is generally highly
singular. Take a chaotic attractor, for example. A trajectory
An important problem in the study of chaotic systems isoriginated from a random initial condition in the basin of
to compute long-term statistics such as averages of physicaftraction visits different parts of the attractor with drastically
quantities, Lyapunov exponents, dimensions, and other irdifferent probabilities._ Call rggions with hig.h. .probabilities
variants of the probability density or the measure. The inter-hot” spots and regions with low probabilities “cold”
est in the statistics lies in the fact that trajectories of deterSPOtS. Such hot and cold spots in the attractor can in general
ministic chaotic systems are apparently random and ergodi@.e interwoven on arbitrarily fine scale_s. In this sense, chaotic
These statistical quantities, however, physically meaning- attractors are said to possess a multifractal structure. Due to
ful only when the measure being considered is the one gerlih's singular behavior, one utilizes the concept of natural

eated by  bpicl sjectory i phase space, Tis messure RS2 1 characterie chaolc aaclal o vian e
called the natural measufé] and it is invariant under the ' g

evolution of the dynamics. Therefore, it is of aramountOf cells and examines the frequency with which a typical
y ' ' P trajectory visits these cells in the limit that both the length of

phy:‘]lcal |mportarr]10e to bel able to u_nderstanci ;’m%to be ab fe trajectory goes to infinity and the size of the grid goes to
to characterize the natural meas|@¢in terms of fundamen- o151 Except for an initial condition set of Lebesgue mea-

tal dynamical quantities. There is nothing more fundamenta;re 7erq in the basin of attraction, these frequencies in the

thap to express tr_]e natural measure in terms of the periodiis are the natural measure. Specifically,flety, T, €;) be

orbits embedded in a chaotic attractor. _ the amount of time that a trajectory from a random initial
A key contribution along these lines was made in R8F.  conditionx, in the basin of attraction spends in thé cov-

in which Grebogi, Ott, and Yorke obtained an expression f0fering cellC; of edge lengthe; in a timeT. The probability

the invariant natural measure in terms of the magnitude ofneasure of the attractor in the c€] is

the eigenvalues of the unstable periodic orbits embedded in

the chaotic attractor. They prové8] the correctness of their ) o (%0, T,€)
expression, but only for the special case of an hyperbolic pi= lim lim T (1)
dynamics[4]. The validity of their results for physical situ- G20 T

ations, which are typically nonhyperbolic, remained, how- . .

ever, only a conjecture. The purpose of this paper is to prol "€ measure is calledatural if it is the same for all ran-

vide evidence for the applicability of the results of R} to domly chosen initial conditions, that is, for all initial condi-

nonhyperbolic chaotic systems and hence to validate thef{Ons in the basin of attraction except for a set of Lebesgue

conjecture. measure zero. The spectrum of an infinite number of fractal
To begin, we review some fundamental properties of fimensions quantifies the behavior of the natural measure

chaotic system. Due to ergodicity, trajectories on a chaoti 6J. ) )

set exhibit a sensitive dependence on initial conditions. AS & physical example, we consider a forced damped pen-

Moreover, the long-time probability distribution generateddulum

— =y, 2
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tractor exhibit a similar behavior. These results suggest a
highly singular probability distribution on the chaotic attrac-
tor.

It is known that a chaotic attractor has embedded within
itself an infinite number of unstable periodic orbits. These
periodic orbits areatypical in the sense that they form a
Lebesgue measure zero set. With probability one, randomly
chosen initial conditions do not yield trajectories that exist
on unstable periodic orbits. Invariant measures produced by
unstable periodic orbits are thus atypical and there are an
infinite number of such atypical invariant measures embed-
ded in a chaotic attractor. The hot and cold spots are a re-
flection of these atypical measures. The natural measure, on
the other hand, is typical in the sense that it is generated by
a trajectory originated from any one of the randomly chosen
initial conditions in the basin of attraction. A typical trajec-
tory visits a fixed neighborhood of any one of the periodic
orbits from time to time. Thus chaos can be considered as
being organized with respect to the unstable periodic orbits
x10~ (0) . . , , . [7]. An interesting question is then how the natural measure
is related to the infinite number of atypical invariant mea-
8 1 sures embedded in the attractor.

In 1988, Grebogi, Ott, and Yorke addressed this funda-
mental question in Ref.3], in which they derived, for the
6l 1 special case of hyperbolic chaotic systed$, a formula

relating the natural measure of the chaotic set in the phase
I 1 space to the expanding eigenvalues of all the periodic orbits
embedded in the set. Specifically, consideNadimensional

at ]
map M(x). Let x;, be the ith fixed point of the
3r 1 p-times-iterated map, i.eMP(x;,) =X, . Thus eackx;, is on
ot | a periodic orbit whose period is eithpror a factor ofp. The
natural measure of a chaotic attractor in a phase-space region
1t 1 Sis given by
0 1 2
X

_ _ _ 3 — i -
8 ? ! #S ;Lnl xipz;'s L1(Xip,p)’ ©

p(xy=-2)

FIG. 1. For the forced damped pendulum sysi@n (a) a tra- whereL(x;,,p) is the magnitude of the expanding eigen-
jectory of 1.5<10° points on the chaotic attractor on the strobo- value of the Jacobian matrBMP(x,,) and the summation is
scopic surface of section angh) the distribution of the natural taken over all fixed points df1P(x) pin S. The derivation of
measure in a one-dimensional array of 1000 rectangular cells in thg,iq to-m1a was done under the assumption that the phase
X direction aty=2. The size of each cell is21000<0.06. Nu- gpace can be divided into cells via a Markov partition, a
merlc_ally, the total measure contained in the a_lttractor is normallzeCondition that is generally satisfied in hyperbolic chaotic sys-
to unity. Apparently, the natural measure is singular. tems. Explicit verification of this formula was done for sev-

g eral analyzable hyperbolic maf3]. Equation(3) is theoreti-
y . . cally significant and interesting because it provides a
EZ_O'O@_SWJFZ'S sirt. fungamgntal link between the ngtural measure F;;md various
atypical invariant measures embedded in a chaotic attractor.
i _ ) In this paper we present evidence for the validity of Eq.
Figure 1@ shows, on the stroboscopic surface of section 3 for nonhyperbolic chaotic sets. We take two approaches:
defined at discrete time=2mn, n=1,.., a trajectory of jy 3 girect checkto compare the natural measure computed
1.5x10° po[nts on the chaotic attractor, where the abs.mssaﬁom a typical trajectory with that computed from unstable
and the ordinate are the anglét,) and the_angular velocity periodic orbits according to Eq3), and (i) an indirect
y(tn)=dx/dt|; of the pendulum, respectively. Figurébl  check to compare the average physical quantities computed
shows the one-dimensional probability distribution on thefrom a typical trajectory with those computed from the peri-
attractor aty=—2. To obtain Fig. 1b), we define a one- odic orbits. Results with the H@n map for which periodic
dimensional array of 1000 rectangular cells in ¥h@irection  orbits can be enumerated lend credence to the conjecture that
aty=—2. The size of each cell is72/1000< 0.06. We then the unstable periodic-orbit theory of the natural measure is
compute, from a trajectory of 1Qpoints on the surface of applicable to nonhyperbolic chaotic systems. A short account
section (after a sufficiently long initial transieptthe fre-  of this work has been discussed recen8y.
quencies of visit of the trajectory to each cell. In fact, prob-  The rest of the paper is organized as follows. In Sec. Il we
ability distributions on any line intersecting the chaotic at-describe the rigorous derivation of E¢B) for hyperbolic
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(a) pointx, in C;, say, afterp iterations, as shown in Fig(&.
Let ab be the horizontal line segment through ending at
the two unstable-manifold segments arid’ be the vertical
cell Ci line segment througl, ending at the two stable-manifold
S segments, as shown in Fig(l2. Sinceab is parallel to the
stable-manifold segments and singg maps tox, after p
X iterations, the image ob under thep-times-iterated map
MP(x) is a shorter horizontal line segmeatb’ straddling
Xp - Similarly, thepth preimage ot'd’ is a shorter vertical
X line segmentd straddlingx,. Now construct two rectangles
L4 efgh and e'f’g’h’ with side lengths &b,cd) and
(a’b’,c’d’), respectively, as shown in Fig(l8. We see
s that the rectangle fgh maps to the rectangle’f'g'h’ un-
der MP(x). Since both rectangles have a common overlap-
ping region and since the dynamics is contracting in the hori-
zontal direction and expanding in the vertical direction, there
(b) must be at least one point in the overlapping region whose
location is not influenced by the action of tiph-iterated
map MP(x). That is, there must be an unstable fixed point
Xip Of MP(x) in the overlapping region in ce(;.
To estimate the contribution to the natural measure from
the fixed pointx;, , we assume that'd’ has a lengtke. Thus
we havee/L 1(x;,) for the length ofcd, whereL,(X;p) is the
unstable(expanding eigenvalue of the fixed poing, . Since
the natural measure is uniform along the unstable direction,
we see that associated with the unstable fixed pojnt the
fraction of trajectories that returns @ in p iterations is

[€/L1(Xip) /€= 1L 1(Xp).

Taking into consideration all the unstable fixed points con-
tained inC; and taking the limitp—, we obtain Eq(3).

The above argument applies to situations where a good
partition of the phase space exists such that the shorter line
segment@’b’ andcd in Fig. 2(b) are completely contained
in the cellC;. For hyperbolic systems, such a patrtition ex-

) ists, which is the Markov partitiof@]. Therefore, Eq(3) is
chaotic systemg3]. In Sec. Ill we lay out our approaches to jyqrously valid for hyperbolic dynamical systerf]. The
verify Eq. (3) for nonhyperbolic chaotic systems. In Sec. IV 5rqument becomes problematic for nonhyperbolic systems.
we test Eq(3) for nonhyperbolic chaotic attractors. In Sec. a grig of cells in which each celC, looks like the cell in

V we provide evidence for the validity of E¢g) for nonhy- Fig. 2 cannot be constructed because of the set of an infinite
perbolic chaotic saddles. In Sec. VI we present a discussiony, mber of tangency points between the stable and unstable
manifolds[4]. Due to this difficulty, it is not clear whether a

FIG. 2. (a) Initial conditionx, in the cellC; and the poink, that
returns toC; after p iterations.(b) Rectangleefgh maps to rect-
anglee’f’'g’h’ after p iterations. There must then be a fixed point
Xip Of the p-times-iterated map i, .

IIl. UNSTABLE PERIODIC-ORBIT THEORY rigorous argument can be constructed for nonhyperbolic cha-
OF THE NATURAL MEASURE otic sets in a similar way. Therefore, the applicability of Eq.
FOR HYPERBOLIC CHAOTIC SYSTEMS (3) to nonhyperbolic chaotic systems remains only a conjec-
ture.

To obtain Eq.(3) [3], we first cover the chaotic set with a
grid of partitioning cells, each being confined by segments of
the stable and unstable manifolds. If the cells are small com-
pared to the size of the phase-space region in which the We study two-dimensional invertible maps, which in prin-
chaotic set lies, each cell can be regarded as being rectangtiple can be obtained from a system of three-dimensional
lar, as shown in Fig. @), where the horizontal and vertical ordinary differential equations through a Poincateface of
sides are segments of the stable and unstable manifolds, reection. A possible way to test the applicability of E8). to
spectively. Denote this cell bZ;. Now imagine that we nonhyperbolic chaotic systems is by systematic and exten-
choose a large number of initial conditions according to thesive numerical computation. Specifically, we perform the
natural measure. The natural measure contained in th€cell following two tests.
is the fraction of trajectories that return @ in the limit (i) Direct check.We cover the chaotic set with a fine grid
where the number of iterations—o. Let Xy be an initial  of cells and compute the natural measurein each non-
condition in the cellC;, as shown in Fig. @). Due to recur- empty cellC; according to Eq(1). We then compute the
rence or ergodicity, the trajectory from, returns to some measureu;(p) that is due toall the fixed points of the

Ill. NUMERICAL METHODS
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p-times-iterated map contained in each &llaccording to a=14
Eqg. (3). Let
" 1
Au(p)= \/i_El[Mp)—ui]Z/N, (@ ]
- 0.8

whereN is the number of cell€; with nonzero natural mea-
sure. We find thatA u(p) decreases exponentially as the
period p increases,

Aup(p)~exp —ap), (5)

wherea>0 is the scaling exponent. Equati@®) indicates
that the natural measure computed from the periodic orbits
approaches exponentially the one computed from a typical
trajectory, thereby validating E@3). v 2
(ii) Indirect check.We compare the average values of
physical quantities with respect to the natural measure evalu- FIG. 3. Distribution of the natural measure on thenide attrac-
ated from typical trajectories and those evaluated from théor, where a grid of 128128 cells is used to cover the region
unstable periodic orbits. Consider a smooth scalar functiofi—2<X=—2, —2<y=2) in which the attractor lies and a trajec-
F(x,y) that represents some physical quantity of interest. Letory of length 16 from a random initial condition is used to com-
(F) be the average value 6f(x,y) evaluated with respect to pute the natural measure contained in each cell.
the natural measure given by Ed) and let{F)(p) be the For fiite but large period p, the quantity

same function evaluated from the approximation of the natu: N(p) ) g e
ral measure in terms of all fixed points of the Zi-1[1/L1(Xip,p)] is close to unity, but it is not exactly

p-times-iterated map as given by E@). For a typical tra- €dual to unity. Thus we use the following rescaled value for
jectory {X,,yn}>_, on the chaotic se{F) can be computed #i(P) in EQ. (7):

using the time average and ergodicity of the chaotic set .
1/L1(XJp ,p) .
\ 1 (P =fp—————, j=1,...N(p). (10
1
(F)= f Fooy)du=lim = X F(X,,yn),  (6) 2, Wy(ip.p)
N— oo n=1 -
whereag F)(p) is computed via IV. NONHYPERBOLIC CHAOTIC ATTRACTORS
N(p) In order to be able to test the applicability of E) to

p

1 2 F(x; y--)} (7) nonhyperbolic chaotic systems, it is necessary to choose a

picy VP model for whichall unstable periodic orbits of up to reason-
ably high periods can be computed numerically. We choose

where ;i ,y;i) (i=1,...p) are thejth fixed points of the the Heon map[10]

p-times-iterated map anbl(p) is the total number of the 5

fixed points of thep-times-iterated map, which scales with Xn+1=a=Xg+bYn,  Yni1=Xp. (13)

as

<F>(|0)=JZ1 1i(p)

We studya=1.4 andb=0.3, a parameter setting for which
N(p)~ e (8) the map apparently possesses a chaotic attractor. The attrac-
' tor is apparently nonhyperbolic because a rigorous computa-
The scaling exponertt is the topological entropy of the tion of ;he stable and.un.syable manifo[dd] points towa_rds
the existence of an infinite number of tangency points of

chaotic set. We find again that for both nonhyperbolic cha h ol h . h he distri
otic attractors and nonhyperbolic chaotic saddles the differ€S€ manifolds on the attractor. Figure 3 shows the distribu-

_ : tion of the natural measure on the attractor, where a grid of
enceAF(p)=|(F —(F)| decreases exponentially as the '
periodp(iglregsgs(:p) (F)l P y 128x128 cells is used to cover the regigr 2<x<-2,

—2=<y=<?2) in which the attractor lies and a trajectory of
AF(p)~exp(— ap) (9) length 10 from a random initial condition is used to com-

' pute the natural measure contained in each cell. The quantity
thereby furnishing further credance to the conjecture that Ec?.‘i in Eq. (4) in each nonempty cell; is approximately the
(3) applies to nonhyperbolic chaotic systems as well. raction of time that the trajectory visits the cell. The distri-

From Eq.(3), we see that iS is a phase-space region that bution Of,,ui is apparently singular.

contains the entire chaotic set, we have The Henon map is one of the very few model systems for
which there is a numerical algorithm to compute, in prin-

N(p) 1 ciple, all unstable periodic orbits of arbitrarily high periods

w(S)= lim E 1 [12]. We have computed all the periodic orbits up to period

b =1 Li(Xip,p) 30. Figure 4a) shows the locations of all 4498 periodic or-
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FIG. 4. (a) Locations of all 4498 periodic orbits of period 25
embedded in the H®n attractor(b) N(p), the number of periodic
orbits of periodp, versusp for 9<p<230 on a logarithmic scale.

The slope of the fitted straight line is approximately the topological

entropyh of the attractor, which i$iy=0.416+0.003.

bits of period 25. The plot resembles that of the attracto
itself, indicating that the periodic orbits are apparently dens
on the attractor. Figure(d) showsN(p) versusp for 9<p
<30 on a logarithmic scale, the slope of which is approxi-
mately the topological entroplgr of the attractor. The plot
givesht=0.416+ 0.003.

A. Direct check

When a 12& 128 grid of cells is used to cover the region
—2=<(x,y)=<2 in Fig. 3, we find that there are 909 non-
empty cells that a trajectory of 10terations on the chaotic
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slope =-0.14

InfAu(p)]

0 |
8

12 16 20 24 28 32
p
FIG. 5. For the Haon chaotic attractora) InAu(p) versusp.
We have, approximately u(p)~e~ %%, (b) Total periodp natu-
ral measureuwg(p) computed from Eq(3) using all the periog
orbits. The total measure approaches to unitypdacreases. The

dashed line ina) is In Au(p) versusp, but the quantityu;(p) is
rescaled byug(p).

accurate as the periquincreases. Asymptotically, we have
A u(p)—0, indicating the applicability of EQ.3) to nonhy-
perbolic chaotic sets. It is interesting to note that the some-
what large fluctuations in Fig.(8) is partly due to the fact
that there are fewer periodic orbits of lower peripdsince
their number increases with exponentially, where the ex-
ponential rate is the topological entropy. Figurg)sshows

the periodp natural measure of the entire attraciog(p)
EEiN:(Fi)Mi(p) versus p. It can be seen thajg(p) ap-

Iproaches unity rapidly gs increases. The dashed line in Fig.

(a) is InAu(p) versusp, but the quantityu;(p) is rescaled

y us(p), as in Eq.(10). The rescaled plot has a slope simi-
lar to the unscaled onéhe solid ling, but the fluctuations
are smaller. We find that E5) appears to hold regardless
of the fineness of the grid used to cover the attractor. For
instance, plots almost identical to those in Figa)5are ob-
tained when grids 6464 and 256 256 are used. Thus we
expect Eq.(3) to be valid for any phase-space region con-
taining part of the chaotic set in nonhyperbolic systems.

To understand thexponentialscaling law(5), we utilize

a simple one-dimensional analyzable model: the doubling

attractor visits. We then compute, in each nonempty cell, alfransformatiorx, ;. ;=2x,mod(1). All periodic orbits of pe-

the fixed pointsx;, of the p-times-iterated map and their
associated expanding eigenvaluegx;,,p) to obtain the
quantity u;(p) in Eq. (4). Figure %a) shows Im\u(p) versus
p for 6=<p=<30. We observe the scaling relati¢s), where

riod p of this map have the same eigenvaluk Rivide the
unit interval intoN bins so that the size of each bin és
=1/N. The natural measure contained in each bir Ise-
cause it is uniform in the unit interval. There areP(2

a~0.14 is the scaling exponent. Thus we see that the quant 1)/N fixed points of thepth-fold map in each bin so that

titative characterization of the natural measure of the chaoti

g¢i(p)=[(2P=1)/N]/2P=¢€(1+27P). Thus we have

attractor by unstable periodic orbits becomes exponentiallA u(p)=|ui(p) — €| ~2 P=exp(—pIn2). Notice that the
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In(AF 1)
In(AF 2)

FIG. 6. (a) Average value(F,)(p) of the physical function FIG. 7. (@ Average value(Fy)(p) of the physical function
F1(x,y) =expE+y?) computed from all periodic orbits of period F2(X,y)=cos(@/4)(x+y)+sin(x@/4)(x+y) computed from all pe-
p. As the periodp increases{F;)(p) asymptotically approaches fiodic orbits of periodp. As the periodp increases{F)(p) ap-
(F,), the average value computed from a typical trajectgby. ~ Proaches rapidlyF,). (b) AF,(p)=|(F2)(p)—(F2)| versusp on
AF,(p)=|(F1)(p)—(F1)| versusp on a semilogarithmic scale. 2 semilogarithmic scale. The plot suggests the same scaling relation
The plot suggests the scaling relatit). (9) with a similar scaling exponent to that in Fig(b.

o condition in the region-0.5<(x,y)<0.5. The first 500 it-

scaling exponent for the doubling transformation is In ) , )
g &b g erations are discarded for each trajectory. We ob{&ip)

which is the topological entropy. This is due to the fact that
Poiog itd ~34.135:0.005 and (F,)~0.981+0.001. Figure )

the natural measure is uniform and all periodic-orbit points )
have the same eigenvalue. For more complicated nonhypeP'OWS(F1)(p) versusp. It can be seen thdf1)(p) rapidly

bolic systems, such as the one in our numerical example, tigPhverges to(Fy) as p increases. Figure () shows
natural measure is highly nonuniform and the positive2F1(P)=|(F1)(p)—(Fy)| versusp on a semilogarithmic
Lyapunov exponents of all the periqdorbits are not the scale. The plot can be fit roughly by a'stralght line, |_nd|cat|ng
same but obey some probability distribution with width pro- the scaling relatiort9), where the scaling exponentis the
portional to/p [13]. Thus the scaling exponent in EG) is slope of the fit, which is approximately 0.1_9t 0.07. Fig-
less than the topological entropy. We have also checked th&€S 1@ and b) show the same computation fBp(x.y),
scaling (5) for another hyperboiic map, the Kaplan-Yorke Where now the scaling exponent is approximately.19

map[14], and have found that the exponent is approximately™ 0.08. We note that there are large fluctuations in Fi¢s) 6

the topological entropy. It is thus interesting to note that@nd 1b), resulting in large uncertainties in the estimation of

nonhyperbolicity makes the scaling exponent deviate fronjn€ Slopes. This is because we compute orbits only up to

the topological entropy, but nonetheless the scaling law i©€rod 30. There is in principle no difficulty in computing
still exponential. periodic orbits of higher periods, but the task has become

practically infeasible at present. Despite uncertainties in the
slopes, we see that Eq9) approximately holds for both
F1(x,y) andF,(x,y) with scaling exponents similar to that
For concreteness, we choose the following two smoothn Eq. (5). These results thus suggest that E). holds re-

B. Indirect check

functions(rather arbitrarily for a numerical test: gardless of the details of the physical function, thereby pro-
2. 2 viding additional support for Eq.3) for nonhyperbolic cha-
Fa(x,y) =expx“+y?), otic attractors.
T v
FZ(X,y)=COSZ (x+y)+sin 7 (X+Y). (12) V. NONHYPERBOLIC CHAOTIC SADDLES

We now consider nonhyperbolic chaotic saddles. For the
Henon map atb=0.3, a crisis occurs aa.~1.426, after

To compute(F,) and (F,) we use 16 trajectories, each which the chaotic attractor becomes a nonattracting chaotic
having a length of 500 and resulting from a random initial saddlg/15]. Figure &a) shows a trajectory of 1:610° points
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FIG. 8. (a) Trajectory of 1.5 10° points for the chaotic saddle
ata=1.5 of the Hmon map.(b) Highly singular distribution of the
natural measure on the chaotic saddle. FIG. 9. (a) Locations of all 4566 periodic orbits of period 22

embedded in the chaotic saddle in Figa)8 (b) InN(p) versusp,
the chaotic saddle faa=1.5. The trajectory is computed by from which we obtain the topological entropy of the chaotic
using the PIM-triple methodwhere PIM denotes proper in- Saddle: hr=0.458-0.008.
terior maximum that is particularly designed for finding mated to behy=0.458+0.008
gpntmu_ousl trajecltgneé ont (t:_haon;: szliddlgstwm E[vr\]/o- For nonattracting chaotic saddles, the natural measure
Sgbelgsé?gauz‘s‘i‘ggle]aire%?g’#sarggslsiﬂgte;‘eeam;i”carf lc?':lbout thej th periodic orbit of periog needs to be modified
piry ; et

arbitrarily close to zero, suggesting that the chaotic saddle i 8(-3 /L! X whergrls .the average lifetime of an (.ensemble'o'f

y ; SU9Y 9 ﬂ'ajectorles staying in some phase-space region containing

Eigt: &a)fi?hnonhi/peiboli({l?]. Figutrr? Qbr)] shtpws tdh(i diStLi' the chaotic saddIg3]. But this modification does not affect
ution of the natural measure on the chaolic saddle, Wnereé @,  oqcqjed natural measure defined in Bd). Figures

grid of 128x128 cells is used to cover the region2 10(a) and 1@b) show INAF and IM\F Versusb. re-
s(_x,y)sz in which the chaotic §add|e lies and 1000 trajec'spectively, where the asyer(1F[)))totic valuézéf)) and(FE), are
tories ?n ttr?e satddlel, each having tle_nggf',_lare lfed"to_l_hcomputed by using TOPIM-triple trajectories on the chaotic
compute the natural measure contained In each Cell. g, yq16 each having length 1000 with 1000 preiterations. The

natural measure is apparently highly singular. To verify Eq. lots can be rou ; : : ;
S ; . g ghly fit by straight lines, the slopes of which
(3), we compute the periodic orbits embedded in the chaoti¢,_ a :

saddle for periods up to 28. We did not go to higher periods?re 0.21:x 0.05 and-0.23+0.07 for Figs. 1(8) and 1ab),

due to computer limitation, as the topological entropy of the espectively. Thus we see that the periodic-orbit character-
X . ' ) ization of the natural measure seems to hold for nonhyper-

chaotic saddle is larger than that of the chaotic attractor olic chaotic saddles as well

a=1.4. Figure %a) shows the locations of all 4566 periodic '

orbits of period 22. A comparison between Fig$a)9and

8(a) suggests that these periodic orbits appear to be dense on

the chaotic saddle. Figurgl® shows IiN(p) versusp, from In summary, we have presented evidence for the validity

which the topological entropy of the chaotic saddle is esti-of the theory that relates the natural measure to unstable

p

VI. DISCUSSION
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@ riodic orbits embedded in the set. The periodic-orbit theory
is conceptually appealing and is potentially useful for further
theoretical or even practical developmefis,19.

In order to characterize the natural measure by unstable
periodic orbits, it is necessary to compute the locations of all
periodic orbits up to reasonably high periods, which is in
general a difficult taslkeven for discrete mapslowever, we
believe that our results for nonhyperbolic chaotic systems are
general because our numerical example, theddemap, has

In(AF 1]

-2 : ‘ ‘ . been a paradigm in the study of chaotic systems.
5 10 15 20 25 30 We stress in this paper that although the periodic-orbit
(b) ’ theory of the natural measure was confirmed numerically by
0 utilizing exclusively discrete maps, we expect the theory to

be valid for continuous chaotic systems as well. Our confi-
dence relies on the well-known fact that the dynamics of a
continuous flow can be faithfully represented by that of a
discrete map on a Poincasarface of sectiorf20]. It has
then become possible for E@) to be tested because certain
discrete mapgnot many of them, thoughallow for the com-
putation ofall periodic orbits up to some reasonably high
; periods. As such, our numerical results can be regarded as an
-8 ' ‘ T indirect check for the periodic-orbit characterization of the
P natural measure for continuous dynamical systems. It would
certainly be interesting to be able to check the applicability
FIG. 10. (a) InAF4(p) and (b) INAF,(p) versusp for the chaotic  of our theory for continuous systems directly, but this de-
saddle in Fig. &). Both plots suggest the scaling relatic. mands a direct computation afl unstable periodic orbits up
to high periods for continuous flows. While certain periodic

periodic orbits for nonhyperbolic chaotic attractors and cha-Orbits can be comouted for continuous flows such as the
otic saddles. Our conclusion is that such a theory, whil P

previously shown to be valid for hyperbolic systefis, is “Lorenz systenj21], at present we are not aware of any nu-

apparently correct for nonhyperbolic chaotic systems too.merlcal procedure that allows for systematiccomputation

Unstable periodic orbits play a pivotal role in determining of all periodic orbits from a continuous system.

the dynamics on chaotic sets. These orbits are the fundamen-

tal building blocks of chaotic sets since they support the ACKNOWLEDGMENTS
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