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Scaling laws for symmetry breaking by blowout bifurcation in chaotic systems

Ying-Cheng Lai*

Departments of Physics and Astronomy and of Mathematics, The University of Kansas, Lawrence, Kansas 66045
~Received 12 November 1996; revised manuscript received 13 March 1997!

Recent works have demonstrated that a blowout bifurcation can lead to symmetry breaking in chaotic
systems with a simple kind of symmetry. That is, as a system parameter changes, when a chaotic attractor lying
in some invariant subspace becomes unstable with respect to perturbations transverse to the invariant subspace,
a symmetry-broken attractor can be born. As the parameter varies further, a symmetry-increasing bifurcation
can occur, after which the attractor possesses the system symmetry. The purpose of this paper is to present
numerical experiments and heuristic arguments for the scaling laws associated with this type of symmetry-
breaking and symmetry-increasing bifurcations. Specifically, we investigate~1! the scaling of the average
transient time preceding the blowout bifurcation and~2! the scaling of the average switching time after the
symmetry-increasing bifurcation. We also study the effect of noise. It is found that small-amplitude noise can
restore the symmetry in the attractor after the blowout bifurcation and that the average time for trajectories to
switch between the symmetry-broken components of the attractor scales algebraically with the noise amplitude.
@S1063-651X~97!11807-4#
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I. INTRODUCTION

In nonlinear dynamics, symmetry-related phenome
have been an interesting subject of study@1,2#. For a dy-
namical system, if the governing equations are invariant
der a symmetric operation to some state variables, we
that the system possesses the corresponding symm
Given that the system has a certain symmetry, an interes
question is whether the system symmetry can be seen in
asymptotic state~e.g., attractor! of the system. Depending o
the choice of parameters, the system symmetry may or
not exist in the asymptotic attractor. If not, we say that sy
metry is broken for the asymptotic attractor. In general, sy
metry exists in the attractor for some parameter regimes,
p,pc . Disappearance of the symmetry occurs whenp in-
creases through the critical valuepc . This is referred to as
the symmetry-breaking bifurcation. As the parame
changes further, the attractor can gain partial or full symm
try of the system through the so-called symmetry-increas
bifurcation @2,3#. In the past, the question of symmetry a
chaos has been extensively studied@1–3#. The phenomenon
of increasing symmetry is also believed to be relevant
physical phenomena such as the time-averaged patterns
in spatio-temporal dynamical systems@4#.

As a simple example to illustrate the symmetry-break
and symmetry-increasing bifurcations, consider the o
dimensional odd-logistic mapx→ax2x3 @2#. This map is
invariant under the symmetric operationx→2x ~reflecting
symmetry!. When a,1, the fixed pointx50 is the stable
attractor. This attractor possesses the reflecting symm
trivially. For a.1, depending on the initial condition, th
attractor lies either inx.0 ~if x0.0! or in x,0 ~if
x0,0!. Thus a symmetry-breaking bifurcation occurs atac
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51. The attractor recovers the system symmetry whenp
.ps53)/2, at which thex.0 attractor merges with its
symmetric component, thex,0 attractor. Henceps is the
symmetry-increasing bifurcation point@2#.

In this paper, we consider chaotic systems with a symm
ric low-dimensional invariant subspace. Denote the invari
subspace byS. SinceS is invariant, initial conditions inS
result in trajectories which remain inS forever. We restrict
our investigation to the situation where there is a chao
attractor inS. In this case, whether the chaotic attractor
tracts or repels initial conditions in the vicinity ofS is deter-
mined by the sign of the largest Lyapunov exponentL'

computed for trajectories inS with respect to perturbations in
the subspaceT that istransverseto S. WhenL' is negative,
S attracts trajectories transversely in the phase space an
chaotic attractor inS is also an attractor of the whole phas
space. WhenL' is positive, trajectories in the vicinity ofS
are repelled away from it, and, consequently, the cha
attractor is transversely unstable and it is hence not an at
tor of the whole phase space. The bifurcation from t
former to the latter behaviors has been investigated@5–7#,
and it is called the ‘‘blowout’’ bifurcation@5#. It is also
known @5–7# that whenL' is slightly positive, dynamical
variables in the transverse subspaceT can exhibit an extreme
type of temporarily intermittent bursting behavior: on-o
intermittency@8–10#.

Recent works have indicated that a blowout bifurcati
can lead to symmetry breaking@11–14#. The purpose of this
paper is to study the scaling laws of this type of symmet
breaking bifurcation and the influence of noise. Specifica
we find that preceding the blowout bifurcation, there is
transient on-off intermittent behavior. The average transi
time scales algebraically with the system parameter and
verges at the blowout bifurcation point. As the system p
rameter changes further, a symmetry-increasing bifurca
can occur, after which an orbit switches between the or
nally symmetry-broken attractors. We find that the avera
switching time also scales algebraically with parameter a

i-
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1408 56YING-CHENG LAI
diverges at the symmetry-increasing bifurcation point. A
practical issue, the effect of small-amplitude random no
on symmetry-broken attractors is investigated. It is fou
that noise can restore the system symmetry in the attra
through the mechanism of intermittent switching. The av
age switching time, or the average transient time for traj
tories to stay in the symmetry-broken attractor, scales a
braically with the noise amplitude. Our approach to addr
these scaling laws is to perform numerical experiments
then to provide heuristic arguments for the scaling laws w
a two-dimensional noninvertible map, but similar results
also observed for continuous flows and higher-dimensio
coupled map lattices.

The paper is organized as follows. In Sec. II, we pres
an illustrative example, a two-dimensional map, for whi
partial analytic understanding of the symmetry-breaking a
symmetry-increasing bifurcations can be obtained, and
present scaling results. Section III is devoted to the stud
effect of noise and the corresponding scaling law. Disc
sions are presented in Sec. IV.

II. SCALING RESULTS

We study the following general class ofN-dimensional
dynamical systems:

xn115f~xn!,

yn115F~xn ,p!G~yn!, ~1!

where xPS(RNS), yPT (RNT), NS>1, NT>1, NS1NT
5N, andp is the bifurcation parameter. The functionG~y!
possesses certain symmetry, e.g.,G(2y)52G(y), so that
G(0)50. The symmetric invariant subspace is then defin
by y50. We assume that both thex and y dynamics are
bounded. The vector functionf~x! is a map that has a chaot
attractor. Trajectories restricted to the invariant subspace
ymptote to this attractor because trajectories starting fr
y050 have yn50 for all subsequent iterations. The scal
function F(x,p) can be regarded as a ‘‘driving’’ from thex
dynamics in the invariant subspace to the symmetricy sub-
space which is transverse to the invariant subspace. The
est transverse Lyapunov exponentL' is given by

L'5 lim
L→`

1

L (
n51

L

lnZ]yn11

]yn
U

yn50

•uZ
5 lim

L→`

1

L (
n51

L

lnuF~xn ,p!DG~0!•uu, ~2!

where

DG~0![
]G~yn!

]yn
U

yn50

is the Jacobian matrix of the functionG(yn) evaluated at
yn50. As p changes through the blowout bifurcation poi
pc , L' crosses zero from the negative side. Note that
largest Lyapunov exponent of they subsystem is given by
a
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Ly5 lim
L→`

1

L (
n51

L

lnuF~xn ,p!DG~yn!•uu, ~3!

where now ]G(yn)/]yn is the Jacobian matrix evaluate
along a typical trajectory (xn ,yn). Thus, for p,pc , we
haveLy5L' becauseyn→0 asymptotically. ButLyÞL' if
p.pc .

As our representative example, we consider the follow
version of Eq.~1!:

xn115rxn~12xn!,

yn115
1

2p
pxnsin~2pyn!, ~4!

where both the invariant subspacex and the symmetric sub
spacey are one dimensional,x is restricted to the unit inter-
val @0,1#, r is the parameter in the logistic map, andp is the
bifurcation parameter. We restrict our study to the ca
wherep.0. They equation is invariant under the reflectin
symmetric operationy→2y. Sincex is bounded,y is also
bounded. We chooser so that the logistic map generates
chaotic attractor in thex subspace. The transverse Lyapun
exponent is

L'5 lim
n→`

1

n (
j 51

n

ln~axj !5E
0

1

lnupxur~x!dx, ~5!

wherer(x) is the natural invariant density ofx for the logis-
tic map. Thus we have

pc5expF2E
0

1

lnuxur~x!dxG , ~6!

whereL'>0 for p>pc andL',0 for p,pc .
To illustrate our results, we user 53.8 for numerical ex-

periments. We find pc'1.725 666. For p,pc , the
asymptotic attractor isy50, which is trivially invariant un-
der y→2y. For p*pc , numerical computation reveals tha
the resultant attractor no longer possesses the mirror sym
try about y50: For an initial condition with y0.0
(,0), the resulting trajectory hasyn.0 (,0) for subse-
quent iterations@14#. Thus, for the asymptotic attractor in th
phase space, the reflecting symmetry in they equation is
broken immediately after the transverse Lyapunov expon
L' becomes positive. They variable after the symmetry
breaking bifurcation exhibits on-off intermittent behavi
@14#.

Although symmetry breaking and on-off intermittenc
have been presented briefly in Ref.@14#, the analyses below
regarding the parameter range in which the symmetry bre
ing occurs and the characteristics of the Lyapunov expon
have not been published in details. To assess this range
note that in Eq.~4!, if yn exceeds 0.5,yn11 immediately
becomes negative, indicating that the trajectory on
positive-y chaotic component can be reinjected into the ba
of the coexisting negative-y chaotic component. Since th
positive-y and negative-y chaotic components are com
pletely symmetric with respect to each other, in this case
system symmetry is recovered for the attractor. Letps be the
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56 1409SCALING LAWS FOR SYMMETRY BREAKING BY . . .
symmetry-increasing bifurcation point, which we can co
pute by requiring that the maximum value ofuynu be 0.5. We
obtain

1

2p
psxmax50.5, ~7!

which givesps5p/xmax. For the logistic map inx, we have
xmax5r/4. For r 53.8, we obtainps54p/3.8'3.306 939 6.
Symmetry breaking occurs forpc,p,ps . Numerically, we
observe that they Lyapunov exponentLy becomes positive
at p5py'3.245. Thus the asymptotic attractor of the syst
possesses one positive Lyapunov exponent~the x Lyapunov
exponentLx! for p<py . The attractor becomes hyperch
otic with two positive Lyapunov exponents forp.py . An
interesting observation is thatLy remains negative forpc
,p,ps except whenp is very close tops . The reason why
Ly is negative immediately after the symmetry-breaking
furcation can be understood by noting that

Ly'L'1E lnucos~2pyn!ur~y!dy, ~8!

where r(y) is the probability distribution ofy after the
symmetry-breaking bifurcation. Since lnucos(2pyn)u<0 and
*r(y)dy51, the integral in Eq.~8! is negative so thatLy
,L' . Thus, if L'*0, Ly can remain negative forp*pc .
We emphasize that Eq.~8! only holds forp*pc because, in
this case, the transverse Lyapunov exponentL' is only
slightly positive and they dynamics exhibits on-off intermit-
tency. Forp*pc , it is known that the on-off intermitten
behavior iny exhibits universal scaling behaviors regardle
of the details of thex dynamics in the invariant subspac
@10#. This implies that the natural invariant density iny is
roughly independent ofr(x) for p*pc , and so we have, in
this case,r(x,y)'r(x)r(y).

We now discuss the scaling laws. Immediately before
blowout bifurcation, the asymptotic value ofL' is slightly
negative. The histogram of values ofL' computed at finite
times has a spread into the positive side. A typical traject
can experience stretches of time being actually repelled a
from the invariant subspace, although the trajectory eve
ally asymptotes to it. Thus the trajectory exhibits transi
on-off intermittent behavior before finally approaching t
invariant subspace. For a given parameter valuep&pc , the
average transient lifetimetb(p) depends on the paramet
difference (pc2p): tb(p) decreases asp decreases from
pc @note thattb(pc)5`#. We ask: What is the scaling re
lation betweentb(p) and (pc2p)? Figure 1 shows, for the
model system, Eq.~4!, at r 53.8, the plot of log10 tb(p)
versus log10(pc2p) for 22.5, log10(pc2p),0. In Fig. 1,
for each value ofp, 1000 trajectories are used to compu
the average transient lifetimetb(p). A trajectory is regarded
as having reachedy50 if it stays within 102100 of y50 for
10 000 iterations. The data can be fitted by a straight
with a slope approximately21. Thus we have evidence o
the following algebraic scaling relation betweentb(p) and
(pc2p):

tb~p!;~pc2p!21. ~9!
-

-
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y
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This scaling can be understood by noting thattb(p)L'(p)
' ln(1/e0), wheree0 is a small initial distance of the trajec
tory from y50, and so we havetb(p);1/L' . For p near
pc , we haveL'(p);(p2pc). The scaling law~9! thus fol-
lows. Since the behavior ofL' near the blowout bifurcation
point is typically linear@5,7#, we expect the scaling relation
Eq. ~9!, to be general.

After the symmetry-increasing bifurcation, the asympto
attractor recovers the system symmetry because traject
now visit the symmetric components both above and be
the invariant subspace. This occurs when trajectories in
attracting component are reinjected into its symmetric co
ponent so that the basins of the symmetric components
connected. Immediately after the symmetry-increasing bif
cation, a typical trajectory usually stays in one compon
for long time before entering the channels through which
basins are connected and being reinjected into the other c
ponent. The trajectory can then stay there for some t
before coming back to the first component. Thus we exp
an intermittent switching behavior to occur@15#. In this case,
yn occurs on both sides ofy50. Wheneveruynu exceedsȳ
50.5, it jumps from one side ofy50 to the other. Let
ts(p) be the average time that a typical trajectory stays
one component. Asp increases fromps , we expectts(p) to
decrease because reinjection of trajectories occurs more
ten whenp is larger. We ask: What is the scaling relatio
betweents(p) and (p2ps)? Figure 2 showsts(p) versus
(p2ps) on a logarithmic scale for 1026,(p2ps),1021,
where, for eachp, 10 000 events of switching are accum
lated to compute the average switching time for a traject
resulting from a random initial condition. The data can
well fitted by a straight line with a slope of about21. Thus
we have the algebraic scaling relation

ts~p!;~p2ps!
2g, ~10!

FIG. 1. For Eq.~4! at the parameter settingr 53.8 andp&pc

~before the symmetry-breaking bifurcation!, the average lifetime of
the transient on-off intermittent behaviortb(p) versus (pc2p) on a
logarithmic scale. We see thattb(p);(pc2p)21. Because the be-
havior of the transverse Lyapunov exponent in the vicinity of t
blowout bifurcation is typically linear, we expect this algebra
scaling relation to be general.
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1410 56YING-CHENG LAI
where the scaling exponentg has the value of21 for the
model system, Eq.~4!. The scaling can be derived by con
sidering the probabilityP(puyn> ȳ) that a trajectory hasyn
>0.5 at p. For p<ps , we haveP(puyn> ȳ)50 because
trajectories are confined withinȳ. Let ymax(p) be the maxi-
mum value ofyn . For p*ps , we have

ymax~p!5pxmax/~2p!5~ps1Dp!xmax/~2p!

5 ȳ1Dpxmax/~2p!,

where Dp[p2ps . We see that ymax(p)2ȳ;Dp. Let
r(y,p) be the natural invariant density ofy: we obtain

P~puyn> ȳ!5E
ȳ

ymax~p!

r~y,p!dy;@ymax~p!2 ȳ#;Dp.

~11!

Sincets(p);1/P(puyn> ȳ), Eq. ~11! immediately gives the
scaling relation, Eq.~10!, with the scaling exponent21.
From the above derivation, we see that the scaling expo
is determined by the explicit form of they dynamics. In
particular, it is determined by the relation ofymax(p) as a
function of p. Thus the scaling exponent21 is specific to
our model system, Eq.~4!. Nevertheless, we expect the sca
ing relation, Eq.~10!, to be more general, with the scalin
exponent determined by the behavior ofymax(p) in the vicin-
ity of ȳ.

III. EFFECT OF NOISE

When noise is present, a trajectory can no longer sta
the symmetry-broken attractor forever. After the blowout
furcation, although the transverse Lyapunov exponen
positive, there is a set of measure zero points embedde
the chaotic attractor in the invariant subspace, the elem
of which are transversely attractive. Thus, when the tra

FIG. 2. For Eq.~4! at the parameter settingr 53.8 andp*ps

~after the symmetry-increasing bifurcation!, the average intermitten
switching timets(p) versus (p2ps) on a logarithmic scale. We
have ts(p);(p2ps)

2g, whereg51 is the scaling exponent. In
general, we expect this algebraic scaling relation to hold but
scaling exponent depends on the details of the system.
nt

in
-
is
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ts
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tory comes close to the invariant subspace, noise can ‘‘kic
the trajectory through the invariant subspace. The trajec
can then stay in the other symmetric component for a fin
amount of time and is then ‘‘kicked’’ back by noise. A
such, an intermittent behavior occurs in which the traject
switches between the symmetric components, thereby re
ing the system symmetry in the resulting attractor. Figur
shows a trajectory of 105 points on the attractor for
p51.75 in Eq.~4! when an additive noise termesn is added
to the y equation in Eq.~4!, where e51025 and sn is a
random number obeying the Gaussian probability distri
tion with zero mean and unit variance. Adding noise terms
both thex andy equations in Eq.~4! or changing the noise
distribution to, say, uniform distribution does not affect t
result. For the initial condition that yields the attractor in F
3, the trajectory first spends 79 068 iterations in they.0
component and then switches to they,0 component and,
hence, the attractor now possesses the system symmetr

The average switching timet~e! between the symmetric
components depends on the noise amplitudee. As e in-
creases, we expectt~e! to decrease because it becom
‘‘easier’’ for a trajectory to be kicked through the invaria
subspace by larger noise. We find thatt~e! scales withe
algebraically. Figure 4~a! shows log10t(e) versus log10e for
1026<e<1022, where the parameter setting is the same
in Fig. 3. To obtain the figure, we randomly choose 10
initial conditions with 0,x0,1 and 0,y0,0.5. The stay-
ing time of each trajectory in they.0 attractor is then com-
puted. The average switching time is taken to be the aver
staying time of these 1000 trajectories iny.0. The plot can
be fit with a straight line, indicating the scaling law

t~e!;e2h, ~12!

whereh.0 is the algebraic scaling exponent. In Fig. 4~a!,
the scaling exponent ish'1.13. Since the additive noise i

e

FIG. 3. Forp51.75, a trajectory of 105 points resulting from a
random initial condition in the upper half planey.0 under the
influence of noise 1025sn , wheresn is a Gaussian random variabl
of zero mean and unit variance. The trajectory spends 79 068 it
tions in y.0 and is then kicked into the lower half planey,0 by
noise. Due to noise, the final attractor possesses the system sy
try.
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56 1411SCALING LAWS FOR SYMMETRY BREAKING BY . . .
Gaussian in the computation of Fig. 4~a!, it is unclear
whether the switching is due to the measure-zero set of tr
versely attractive points in the invariant subspace or due
some particularly large kick produced by the Gaussian
tribution. To resolve this issue, we have redone Fig. 4~a!
using noise termegn , wheregn is a random number uni
formly distributed in @21,1#. The result is shown in Fig
4~b!, where the algebraic scaling law, Eq.~12!, still holds
with an almost identical scaling exponent. Thus it is safe
conclude that the algebraic scaling law, Eq.~12!, is due to
the dynamics of the system, regardless of the form of
noise. This scaling can be understood by noting that for no
amplitudee, when a trajectory falls within distancee of y
50, it can be kicked throughy50. Thus the average switch
ing time due to noise is roughly the average transient t

FIG. 4. The average noise-induced switching timet~e! versus
the noise amplitudee on a logarithmic scale forp51.75. ~a! Gauss-
ian noise and~b! uniform noiseegn , wheregn is a random number
uniformly distributed in@21,1#. The algebraic scaling law, Eq
~12!, holds regardless of the details of the noise distribution.
s-
to
-

o

e
e

e

before a typical trajectory falls withine of y50. Previous
work has argued that this transient time scales algebraic
with e @16#.

As the parameterp increases further from the blowou
bifurcation point so that the transverse Lyapunov expon
becomes larger, it becomes more difficult for the trajecto
to come close to the invariant subspacey50, thereby weak-
ening the influence of noise on the symmetry-broken attr
tor. Figure 5~a! shows a trajectory of 105 points originated
from a random initial condition in the upper half planey
.0 for p51.78 (L''0.031) with additive Gaussian nois
of amplitude e51023.5. The trajectory stays iny.0 for
74 190 iterations. It is then kicked by noise into the low
half planey,0 and stays there for the remaining 25 8
iterations of the 105 iterations shown. There appears to be
gap region neary50 in which it is difficult for trajectories to
fall. This leads to a longer switching time at the same no
level. Comparing with Fig. 3 wherep51.75, we see that in

FIG. 5. For p51.78: ~a! A trajectory of 105 points resulting
from a random initial condition in the upper half planey.0 under
the influence of Gaussian noise of amplitude 1023.5. The trajectory
spends 74 190 iterations iny.0 and is then kicked into the lowe
half planey,0 by noise.~b! The average switching timet~e! ver-
sus the noise amplitudee on a logarithmic scale.
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1412 56YING-CHENG LAI
order to have a switching time about 70 000 iterations,
noise amplitude needs to increase by a factor of 101.5 when
p51.78. Figure 5~b! shows log10t(e) versus log10e for p
51.78, where 1000 random trajectories are used to com
the average noise-induced switching timet~e!. It can be seen
that the algebraic scaling law, Eq.~12!, still holds approxi-
mately, but at the same noise level,t~e! is roughly two or-
ders of magnitude larger than that of Fig. 4~a!. Note that the
range ofe in Fig. 5~b! is rather small. The reason is that th
average switching time has already reached approxima
33106 iterations whene*1024. For a smaller noise ampli
tude, the switching time for certain initial conditions b
comes prohibitively long for theaverageswitching time to
be computed. Despite this numerical difficulty, the algebr
scaling law, Eq.~12!, appears to hold for Fig. 5~b!.

IV. DISCUSSIONS

In conclusion, we have presented the scaling laws
symmetry-breaking bifurcation in chaotic dynamical syste
with an invariant subspace. Although we illustrate our resu
mainly by using the model of Eq.~4!, the heuristic argu-
ments for the scaling laws do not depend on specific fea
of the model. Similar bifurcations have been observed fo
large variety of chaotic dynamics in the invariant subspa
for flows, and for coupled map lattices.

In general, chaotic attractors with broken symmetry a
result of the blowout bifurcation can have distinct dynami
characteristics. Immediately after the bifurcation, attract
appear to be ‘‘stuck on’’ to the invariant subspace. In t
case, a typical trajectory on the attractor can get arbitra
close to the invariant subspace. As the parameter varies
ther away from the bifurcation, it is possible for th
symmetry-broken attractor to be ‘‘lifted off’’ from the invari
ant subspace. These ‘‘stuck-on’’ and ‘‘lifted-off’’ attractor
were first discovered by Ashwin@11#. Specifically, in Ref.
@11#, Ashwin studied the two-dimensional map

xn115g~xn!1exnyn ,

yn115lyne2xn
2
2yn

2
1 1

2 yn~12e2yn
2
!, ~13!

whereg(xn) is a chaotic map, ande and l are parameters
The invariant subspace is given byy50 in which there is a
chaotic attractor. Ashwin studied the case whereg(x) is the
cubic mapg(x)5 3

2)x(x221). This map has a unique cha
otic attractorA05@21,1# with basinxP(21.1768,1.1768)
@17#. For e50, a blowout bifurcation occurs atl51.430
after which the chaotic attractorA0 becomes a chaotic sadd
in the two-dimensional phase space@6,11,13#. At the blow-
out bifurcation, a symmetry-broken attractorA is born which
r

e

te

ly

c

r
s
s

re
a
e,

a
l
s
s
ly
r-

lies in the two-dimensional phase space (x,y). Ashwin
proved that for 1.430,l,1.850, the symmetry-broken a
tractor A must containA0 lying in the invariant subspace
Thus, in this parameter range, a typical trajectory on
attractor can come arbitrarily close to the invariant subspa
and consequently, the attractorA must be ‘‘stuck on’’ to the
invariant subspace. Ashwin also showed that forl.1.850,
the symmetry-broken attractorA no longer containsA0 and
the attractorA thus ‘‘lifts off’’ the invariant subspace. Simi-
lar behaviors were also observed in other examples@11#.

The phenomenon of symmetry breaking by blowout bifu
cation described in this paper is potentially relevant to ap
cations such as synchronization in chaotic systems@18#. The
ability for chaotic systems to synchronize with each oth
provides a possible approach to transmit information via
chaotic carrier@18,19#. It is known that when an appropri
ately chosen state variable of a chaotic system is use
drive a subsystem, the subsystem synchronizes with its
lica if its Lyapunov exponents are negative@18#. For the
class of symmetric dynamical system studied in this pa
@Eq. ~1!#, the dynamical variablesx in the invariant subspace
can be regarded as the driving to the dynamics in the tra
verse subspace. Thus synchronism occurs when the la
Lyapunov exponent of the subsystemy is negative. In this
case, the subsystemy synchronizes with its replicay8 in the
sense thatuy2y8u→0 ast→` if both y andy8 are driven by
the samex. This can indeed be achieved because, as we h
seen in our example of Eq.~4!, after the symmetry-breaking
bifurcation, although the largest transverse Lyapunov ex
nentL' becomes positive, the Lyapunov exponents of thy
subsystem can still be negative. In this case, sinceL'.0,
the chaotic attractor in the invariant subspacey50 is a re-
peller in they subspace and, hence, they dynamics is locally
chaotic neary50. The y variables of a typical trajectory
would therefore exhibit complicated and nontrivial behavi
But sinceLy,0, they variables of trajectories starting from
different initial conditions will be synchronized asymptot
cally. In the numerical example presented in this paper, th
exist wide parameter regimes (p.pc) for which Ly,0 can
be realized. High-dimensional chaotic synchronism is p
ticularly appealing in communication applications for co
siderations of security@20#. The scenario of symmetry break
ing by blowout bifurcation studied in this paper may provi
a way to design high-dimensional synchronous chaotic s
tems@21#.
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