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Scaling laws for symmetry breaking by blowout bifurcation in chaotic systems
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Recent works have demonstrated that a blowout bifurcation can lead to symmetry breaking in chaotic
systems with a simple kind of symmetry. That is, as a system parameter changes, when a chaotic attractor lying
in some invariant subspace becomes unstable with respect to perturbations transverse to the invariant subspace,
a symmetry-broken attractor can be born. As the parameter varies further, a symmetry-increasing bifurcation
can occur, after which the attractor possesses the system symmetry. The purpose of this paper is to present
numerical experiments and heuristic arguments for the scaling laws associated with this type of symmetry-
breaking and symmetry-increasing bifurcations. Specifically, we investigatéhe scaling of the average
transient time preceding the blowout bifurcation g2l the scaling of the average switching time after the
symmetry-increasing bifurcation. We also study the effect of noise. It is found that small-amplitude noise can
restore the symmetry in the attractor after the blowout bifurcation and that the average time for trajectories to
switch between the symmetry-broken components of the attractor scales algebraically with the noise amplitude.
[S1063-651%97)11807-4

PACS numbe(s): 05.45+b

I. INTRODUCTION =1. The attractor recovers the system symmetry wpen
>ps=3v3/2, at which thex>0 attractor merges with its
In nonlinear dynamics, symmetry-related phenomenaymmetric component, the<0 attractor. Hencep, is the
have been an interesting subject of stydy2]. For a dy- symmetry-increasing bifurcation poifi].
namical system, if the governing equations are invariant un- In this paper, we consider chaotic systems with a symmet-
der a symmetric operation to some state variables, we sayc low-dimensional invariant subspace. Denote the invariant
that the system possesses the corresponding symmetsubspace bys. SinceS is invariant, initial conditions inS
Given that the system has a certain symmetry, an interestingsult in trajectories which remain i forever. We restrict
question is whether the system symmetry can be seen in thgur investigation to the situation where there is a chaotic
asymptotic statée.g., attractorof the system. Depending on attractor inS. In this case, whether the chaotic attractor at-
the choice of parameters, the system symmetry may or mayacts or repels initial conditions in the vicinity &is deter-
not exist in the asymptotic attractor. If not, we say that sym-mined by the sign of the largest Lyapunov expondnt
metry is broken for the asymptotic attractor. In general, symcomputed for trajectories i with respect to perturbations in
metry exists in the attractor for some parameter regimes, sayhe subspacé that istransverseo S. WhenA | is negative,
p<p.. Disappearance of the symmetry occurs wipemn- S attracts trajectories transversely in the phase space and the
creases through the critical valypg. This is referred to as chaotic attractor irS is also an attractor of the whole phase
the symmetry-breaking bifurcation. As the parameterspace. When\, is positive, trajectories in the vicinity o
changes further, the attractor can gain partial or full symmeare repelled away from it, and, consequently, the chaotic
try of the system through the so-called symmetry-increasingttractor is transversely unstable and it is hence not an attrac-
bifurcation[2,3]. In the past, the question of symmetry andtor of the whole phase space. The bifurcation from the
chaos has been extensively studiée-3]. The phenomenon former to the latter behaviors has been investigdted?],
of increasing symmetry is also believed to be relevant taand it is called the “blowout” bifurcation[5]. It is also
physical phenomena such as the time-averaged patterns segibwn [5—7] that whenA | is slightly positive, dynamical
in spatio-temporal dynamical syster. variables in the transverse subspacean exhibit an extreme
As a simple example to illustrate the symmetry-breakingtype of temporarily intermittent bursting behavior: on-off
and symmetry-increasing bifurcations, consider the oneintermittency[8—10.
dimensional odd-logistic map—ax—x3 [2]. This map is Recent works have indicated that a blowout bifurcation
invariant under the symmetric operatiar- —x (reflecting  can lead to symmetry breakirig1—14. The purpose of this
symmetry. Whena<1, the fixed pointx=0 is the stable paper is to study the scaling laws of this type of symmetry-
attractor. This attractor possesses the reflecting symmetiyreaking bifurcation and the influence of noise. Specifically,
trivially. For a>1, depending on the initial condition, the we find that preceding the blowout bifurcation, there is a
attractor lies either inx>0 (if xy>0) or in x<0 (if transient on-off intermittent behavior. The average transient
Xp<0). Thus a symmetry-breaking bifurcation occursaat time scales algebraically with the system parameter and di-
verges at the blowout bifurcation point. As the system pa-
rameter changes further, a symmetry-increasing bifurcation
*Also at Kansas Institute for Theoretical and Computational Sci-can occur, after which an orbit switches between the origi-
ence, The University of Kansas. Electronic address:nally symmetry-broken attractors. We find that the average
lai@poincare.math.ukans.edu switching time also scales algebraically with parameter and
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diverges at the symmetry-increasing bifurcation point. As a 1 L
practical issue, the effect of small-amplitude random noise Ay=lim — E In|F(Xn,p)DG(Yn) - U, ©)]
on symmetry-broken attractors is investigated. It is found Lo = N=1

that noise can restore the system symmetry in the attractor . . .

through the mechanism of intermittent switching. The aver\Whereé nowJdG(y,)/dy, is the Jacobian matrix evaluated

age switching time, or the average transient time for trajec2/0Ng @ typical trajectory X,,yn). Thus, for p<pc, we

tories to stay in the symmetry-broken attractor, scales algd?@veA,=A, because/,—0 asymptotically. ButA,# A, if

braically with the noise amplitude. Our approach to addres®~ Pc- ) ) )

these scaling laws is to perform numerical experiments and AS Our representative example, we consider the following

then to provide heuristic arguments for the scaling laws withversion of Eq.(1):

a two-dimensional noninvertible map, but similar results are

also observed for continuous flows and higher-dimensional

coupled map lattices. 1
The paper is organized as follows. In Sec. Il, we present Yoie1=o— PX,SiN(27Y,), (4)

an illustrative example, a two-dimensional map, for which 2m

partial analytic understanding of the symmetry-breaking and i i )

symmetry-increasing bifurcations can be obtained, and w¥/here both the invariant subspacand the symmetric sub-

present scaling results. Section IIl is devoted to the study ofPacey are one dimensionak is restricted to the unit inter-

effect of noise and the corresponding scaling law. DiscusY@l [0,1], T is the parameter in the logistic map, apds the
sions are presented in Sec. V. bifurcation parameter. We restrict our study to the case

wherep>0. They equation is invariant under the reflecting
symmetric operatiory— —Yy. Sincex is boundedy is also
bounded. We choose so that the logistic map generates a

We study the following general class df-dimensional chaotic att'ractor in th& subspace. The transverse Lyapunov
dynamical systems: exponent is

Xnt1=Xp(1—Xp),

Il. SCALING RESULTS

_ 10 1
Xn+1= (%n), A, =lim - > In(axj)=f In|px|p(x)dx, (5)
n =1 0

Yn+1=F (X0, P)G(Yn), 1)
wherep(x) is the natural invariant density affor the logis-
where xe (RNs), yeT (RVT), Ng=1, Nt=1, Ng+N; tic map. Thus we have
=N, andp is the bifurcation parameter. The functi@ly)
possesses certain syrr!mgtry, _e@(,— y)= —G(_y), SO that_ pc=exr{ - J’l Inlxlp (0 dx
G(0)=0. The symmetric invariant subspace is then defined 0
by y=0. We assume that both the andy dynamics are
bounded. The vector functidiix) is a map that has a chaotic whereA =0 for p=p. and A, <0 for p<p..
attractor. Trajectories restricted to the invariant subspace as- To illustrate our results, we uge=3.8 for numerical ex-
ymptote to this attractor because trajectories starting fronperiments. We find p,~1.725 666. For p<p., the
Yo=0 havey,=0 for all subsequent iterations. The scalar asymptotic attractor ig=0, which is trivially invariant un-
function F(x,p) can be regarded as a “driving” from the  dery— —y. For p=p., numerical computation reveals that
dynamics in the invariant subspace to the symmaetrsub-  the resultant attractor no longer possesses the mirror symme-
space which is transverse to the invariant subspace. The largy about y=0: For an initial condition withyy,>0
est transverse Lyapunov exponeént is given by (<0), the resulting trajectory hag,>0 (<0) for subse-
quent iteration$14]. Thus, for the asymptotic attractor in the

: (6)

L

1 Yni1 phase space, the reflecting symmetry in thequation is
A =1im L 2 In 7 broken immediately after the transverse Lyapunov exponent
Lo = 0=t Yo ly,=o A, becomes positive. Thg variable after the symmetry-
1t breaking bifurcation exhibits on-off intermittent behavior
— lim = . [14].
,_IETL r;lln|F(xn,p)DG(O) ul, @ Although symmetry breaking and on-off intermittency

have been presented briefly in REE4], the analyses below
where regarding the parameter range in which the symmetry break-
ing occurs and the characteristics of the Lyapunov exponents
have not been published in details. To assess this range, we
note that in Eq.(4), if y, exceeds 0.5y,,,; immediately
Yn-o becomes negative, indicating that the trajectory on the
positivey chaotic component can be reinjected into the basin
is the Jacobian matrix of the functioB(y,) evaluated at of the coexisting negativg-chaotic component. Since the
y,=0. As p changes through the blowout bifurcation point positivey and negativer chaotic components are com-
pP., A, crosses zero from the negative side. Note that theletely symmetric with respect to each other, in this case the
largest Lyapunov exponent of thesubsystem is given by  system symmetry is recovered for the attractor. pgebe the

IG(Yn)

DG(0)= %
n
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symmetry-increasing bifurcation point, which we can com- 5 -
pute by requiring that the maximum value|gf,| be 0.5. We
obtain

4.5 -
1 slope = -1.01
E PsXmax= 0.5, (7) :‘: 4
e
which givespgs= m/Xax- FOr the logistic map irx, we have o
Xmax=r/4. Forr=23.8, we obtainp;=47/3.8~3.306 939 6. ol 3.5-
Symmetry breaking occurs f@.<p<ps. Numerically, we 2

observe that thg Lyapunov exponenf\, becomes positive
atp=p,~3.245. Thus the asymptotic attractor of the system 3~
possesses one positive Lyapunov exporitre x Lyapunov

exponentA,) for p<p,. The attractor becomes hypercha-

otic with two positive Lyapunov exponents far>p, . An 2.5 \ > \ !
interesting observation is that, remains negative fop, -25 -2 -15 -1 -05 0
<p<ps except wherp is very close tqpg. The reason why -

y : log, (p_-P)

Ay is negative immediately after the symmetry-breaking bi-

furcation can be understood by noting that FIG. 1. For Eq.(4) at the parameter setting=3.8 andp=<p,

(before the symmetry-breaking bifurcatjoithe average lifetime of
~ the transient on-off intermittent behavi versus p.—p) on a
AyNAL " J'In|cos(27ryn)|p(y)dy, ® logarithmic scale. We see tha{;(p)~(pq:{(%))’1. Bec(;cusg)the be-
havior of the transverse Lyapunov exponent in the vicinity of the
where p(y) is the probability distribution ofy after the blowout bifurcation is typically linear, we expect this algebraic
symmetry-breaking bifurcation. Since|¢ns(2ry,)|<0 and scaling relation to be general.
Ip(y)dy=1, the integral in Eq(8) is negative so that\,
<A, . Thus, ifA, =0, A, can remain negative fqg=p,.
We emphasize that E¢8) only holds forp=p. because, in
this case, the transverse Lyapunov expon&nt is only

slightly positive and they dynamics exhibits on-off intermit- . . . .
tency. Forp=p,, it is known that the on-off intermittent lows. Since the behavior of, near the blowout bifurcation

behavior iny exhibits universal scaling behaviors regardlesspOInt is typically linearf5,7], we expect the scaling refation,

of the details of thex dynamics in the invariant subspace EqA(f?)’ E[?] be genertal._ ina bif tion. th ot
[10]. This implies that the natural invariant density yinis er the symmetry=increasing biiurcation, the asymplotic

. . attractor recovers the system symmetry because trajectories
=
ro_ughly mdepenijent 9¥(x) for p=pc, and so we have, in now visit the symmetric components both above and below
this casep(x,y)~p(x)p(y).

We now discuss the scaling laws. Immediately before thé[he invariant subspace. This occurs when trajectories in one

: : , 7 attracting component are reinjected into its symmetric com-
blowout bifurcation, the asymptotic value df, is slightly : )
: : - ponent so that the basins of the symmetric components are
negative. The histogram of values &f computed at finite

. : L . : . connected. Immediately after the symmetry-increasing bifur-
times has a spread into the positive side. A typical trajectoryCation a typical trajectory usually stays in one component

can experience stretches of time being actually repelled awehr long time before entering the channels through which the

from the invariant subspace, although the trajectory eventut-) . . L .
. . o i asins are connected and being reinjected into the other com-
ally asymptotes to it. Thus the trajectory exhibits transient

on-off intermittent behavior before finally approaching thego?ent. Th_e tragjecl'iory ﬁanf_then stay thereTI]or some time
invariant subspace. For a given parameter vgles,, the efore coming back to the first component. Thus we expect

average transient lifetime(p) depends on the parameter an intermittent switching behavior to ocdur5]. In this case,
b ; _ e
difference p.—p): 7,(p) decreases ap decreases from Yn Occurs on both sides gf=0. Wheneverly,| exceedsy

. . =0.5, it jumps from one side of=0 to the other. Let
note that =], We ask: What is the scaling re- : . . .
IFz)aCtiE)n betwegrﬁif(cg) an] d (o,—p)? Figure 1 shows forgthe 7s(p) be the average time that a typical trajectory stays in
C - I

a one component. Ap increases fronps, we expectrg(p) to
model system, Eq(4), at r=3.8, the plot of log Tb(p) decrease because reinjection of trajectories occurs more of-
versus logy(p.—p) for —2.5<log;o(p.—p)<0. In Fig. 1,

) ) ten whenp is larger. We ask: What is the scaling relation
for each value ofp, 1000 trajectories are used to compute P g 9

_ 2 Ei
the average transient lifetimeg(p). A trajectory is regarded ?et_wet;ng;(p:i) |§ngn(51m?§)s'c;gl;§ gQ?WTS(F;) <V1€0r§ f s
as having reacheg=0 if it stays within 10 % of y=0 for P~ Ps g P—Ps ’

. : ) . . where, for eaclp, 10 000 events of switching are accumu-
1Qtﬁoo ||terat|ons. The (tjalta 1ca$hbe f'tteﬁ by a ;(tjralght I'fm:fated to compute the average switching time for a trajectory
with a Slope approximately- 1. Thus we have evidence o resulting from a random initial condition. The data can be
the following algebraic scaling relation betweeg(p) and well fitted by a straight line with a slope of aboutl. Thus
(Pe=p): we have the algebraic scaling relation

m(P)~(pe—p) * 9 7s(P)~(P—Ps) 7, (10)

This scaling can be understood by noting thgtp) A, (p)
~In(1/ey), whereeq is a small initial distance of the trajec-
tory from y=0, and so we havey(p)~1/A, . For p near
p., we haveA | (p)~(p—pc). The scaling law(9) thus fol-
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FIG. 3. Forp=1.75, a trajectory of 10points resulting from a
random initial condition in the upper half plane>0 under the
itchi ) - 4 influence of noise 10°¢,, whereo,, is a Gaussian random variable
switching time 75(p) versus p—ps) on a logarithmic scale. We ¢ ;o mean and unit variance. The trajectory spends 79 068 itera-

have 7y(p)~(p—ps) 7, wherey=1 is the scaling exponent. In ,n<inv~0 and is then kicked into the lower half plage0 by

gen(_aral, we expect this algebraic sca!lng relation to hold but the,;ise pye to noise, the final attractor possesses the system symme-
scaling exponent depends on the details of the system. try

FIG. 2. For Eq.(4) at the parameter setting=3.8 andp=ps
(after the symmetry-increasing bifurcatjpthe average intermittent

where the scaling exponenthas the value of-1 for the 41y comes close to the invariant subspace, noise can “kick”

model system, Eq(4). The scaling can be derived by con- yhe yrajectory through the invariant subspace. The trajectory
sidering the probabilityP(ply,=>y) that a trajectory hag,  .an then stay in the other symmetric component for a finite

=0.5 atp. For p<ps, we haveP(ply,>y)=0 because zmount of time and is then “kicked” back by noise. As
trajectories are confined withip. Let yna{p) be the maxi-  gych, an intermittent behavior occurs in which the trajectory
mum value ofy,. Forp=ps, we have switches between the symmetric components, thereby restor-
_ -~ ing the system symmetry in the resulting attractor. Figure 3
Ymax(P) = PXmad (277) = (Ps+ AP)Xmax! (277) shows a trajectory of O points on the attractor for
=Y+ APXnax! (277), p=1.75 in Eq.(4) when an additive noise tereav,, is added
L to they equation in Eq.(4), wheree=10"° and o, is a
where Ap=p—ps. We see thaty,.{p)—y~Ap. Let random number obeying the Gaussian probability distribu-
p(y,p) be the natural invariant density gf we obtain tion with zero mean and unit variance. Adding noise terms to
. both thex andy equations in Eq(4) or changing the noise
—  [Yma _ v distribution to, say, uniform distribution does not affect the
P(p|yn>y)—J% P(Y:PYAY~[Ymal P) Y]~ AP. result. For the initial condition that yields the attractor in Fig.
(11 3, the trajectory first spends 79 068 iterations in the0
) _ ] ) ) component and then switches to thet0 component and,
Sincery(p) ~1/P(ply,=y), Eq.(11) immediately gives the hence, the attractor now possesses the system symmetry.
scaling relation, Eq(10), with the scaling exponent-1. The average switching time(e) between the symmetric
From the above derivation, we see that the scaling exponerpmponents depends on the noise amplitédeds e in-
is determined by the explicit form of thg dynamics. In  creases, we expect(e) to decrease because it becomes
particular, it is determined by the relation gf,.{p) as a “easier” for a trajectory to be kicked through the invariant
function of p. Thus the scaling exponentl is specific to subspace by larger noise. We find thadit) scales withe
our model system, Ed4). Nevertheless, we expect the scal- algebraically. Figure @) shows logyr(€) versus logge for
ing relation, Eq.(10), to be more general, with the scaling 10-6<e<10"2, where the parameter setting is the same as
exponent determined by the behaviorygf,(p) in the vicin- in Fig. 3. To obtain the figure, we randomly choose 1000
ity of y. initial conditions with 0<x,<1 and 0<y,<0.5. The stay-
ing time of each trajectory in thg>0 attractor is then com-
Ill. EFFECT OF NOISE puted. The average switching time is taken to be the average
staying time of these 1000 trajectoriesyi0. The plot can

When noise is present, a trajectory can no longer stay iy it with a straight line, indicating the scaling law

the symmetry-broken attractor forever. After the blowout bi-
furcation, although the transverse Lyapunov exponent is (e)~e 7, (12)
positive, there is a set of measure zero points embedded in

the chaotic attractor in the invariant subspace, the elementghere >0 is the algebraic scaling exponent. In Figa¢
of which are transversely attractive. Thus, when the trajecthe scaling exponent ig~1.13. Since the additive noise is
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T \ x (b) logm €
-6 -5 -4 -3 -2
{(b) log € FIG. 5. Forp=1.78: (a A trajectory of 10 points resulting

10 from a random initial condition in the upper half plapa-0 under

the influence of Gaussian noise of amplitude 3® The trajectory
spends 74 190 iterations >0 and is then kicked into the lower
half planey<0 by noise.(b) The average switching timge) ver-
sus the noise amplitudeon a logarithmic scale.

FIG. 4. The average noise-induced switching tinfe) versus
the noise amplitude on a logarithmic scale fop=1.75. (a) Gauss-
ian noise andb) uniform noiseey, , wherevy, is a random number
uniformly distributed in[ —1,1]. The algebraic scaling law, Eq.
(12), holds regardless of the details of the noise distribution. before a typical trajectory falls withir of y=0. Previous
work has argued that this transient time scales algebraically
with € [16].

Gaussian in the computation of Fig(af it is unclear As the parametep increases further from the blowout

whether the svynchmg IS (?Iue to t-he measure-zero set of tran%)'ifurcation point so that the transverse Lyapunov exponent
versely attractive points in the invariant subspace or due Qecomes larger, it becomes more difficult for the trajectory
some particularly large _kiqk produced by the Gaussﬁan disf0 come close t() the invariant subspace0, thereby weak-
tribution. To resolve this issue, we have redone Fi@) 4 oning the influence of noise on the symmetry-broken attrac-
using noise termey,, wherey, is a random number uni- o, Figure %a) shows a trajectory of FOpoints originated
formly distributed in[—1,1]. The result is shown in Fig. fom a random initial condition in the upper half plage
4(b), where the algebraic scaling law, EQ.2), still holds - for p=1.78 (A, ~0.031) with additive Gaussian noise
with an almost identical scaling exponent. Thus it is safe toqf amplitude e= 10735, The trajectory stays iry>0 for
conclude that the algebraic scaling law, E#2), is due to 74 190 iterations. It is then kicked by noise into the lower
the dynamics of the system, regardless of the form of theyalf planey<0 and stays there for the remaining 25 810
noise. This scaling can be understood by noting that for noisgerations of the 1®iterations shown. There appears to be a
amplitude e, when a trajectory falls within distanceof y  gap region neay=0 in which it is difficult for trajectories to
=0, it can be kicked througin=0. Thus the average switch- fall. This leads to a longer switching time at the same noise
ing time due to noise is roughly the average transient timdevel. Comparing with Fig. 3 wherp=1.75, we see that in
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order to have a switching time about 70 000 iterations, thdies in the two-dimensional phase spacey). Ashwin
noise amplitude needs to increase by a factor 3°Mhen  proved that for 1.43@\<1.850, the symmetry-broken at-
p=1.78. Figure ®) shows logyr(e) versus logee for p  tractor A must containA, lying in the invariant subspace.
=1.78, where 1000 random trajectories are used to comput€hus, in this parameter range, a typical trajectory on the
the average noise-induced switching tinfe). It can be seen attractor can come arbitrarily close to the invariant subspace,
that the algebraic scaling law, E€12), still holds approxi- and consequently, the attract@rmust be “stuck on” to the
mate'y, but at the same noise |eveq€) is rough'y two or- Invariant Subspace. Ashwin also showed that)fOf1850,
ders of magnitude larger than that of Figay Note that the the symmetry-broken attractér no longer containg\, and
range ofe in Fig. 5(b) is rather small. The reason is that the the attractor thus “lifts off” the invariant subspace. Simi-
average switching time has already reached approximatefr Pehaviors were also observed in other examilds

3% 10° iterations whene=10"*. For a smaller noise ampli- 1€ phenomenon of symmetry breaking by blowout bifur-
tude, the switching time for certain initial conditions be- cation described in this paper s potenual_ly relevant to appli-
comes prohibitively long for theverageswitching time to cations such as lsynchron|zat|on in chao.tlc Sy?'tm The

be computed. Despite this numerical difficulty, the aIgebraicgt’(')l\'/%ggracgiggfblzyztsgrsa?h St)cgnt(iz;losr;:ifimg?mza':icc; c\),tige;
scaling law, Eq(12), appears to hold for Fig.(B). chaotic carrieff18,19. It is known that when an appropri-

ately chosen state variable of a chaotic system is used to
drive a subsystem, the subsystem synchronizes with its rep-

In conclusion, we have presented the scaling laws fofica if its Lyapunov exponents are negatiye8]. For the
symmetry-breaking bifurcation in chaotic dynamical systemselass of symmetric dynamical system studied in this paper
with an invariant subspace. Although we illustrate our resultdEd. (1)], the dynamical variablesin the invariant subspace
mainly by using the model of Eq4), the heuristic argu- can be regarded as the driving to the dynamics in the trans-
ments for the scaling laws do not depend on specific featuréerse subspace. Thus synchronism occurs when the largest
of the model. Similar bifurcations have been observed for &yapunov exponent of the subsystgnis negative. In this
large variety of chaotic dynamics in the invariant subspacegase, the subsysteynsynchronizes with its replicg’ in the
for flows, and for coupled map lattices. sense thay—y’|—0 ast— if bothy andy’ are driven by

In general, chaotic attractors with broken symmetry as dhe same. This can indeed be achieved because, as we have
result of the blowout bifurcation can have distinct dynamicalseen in our example of E¢4), after the symmetry-breaking
characteristics. Immediately after the bifurcation, attractordifurcation, although the largest transverse Lyapunov expo-
appear to be “stuck on” to the invariant subspace. In thisnentA, becomes positive, the Lyapunov exponents ofythe
case, a typical trajectory on the attractor can get arbitrarilygubsystem can still be negative. In this case, sif¢e>0,
close to the invariant subspace. As the parameter varies futhe chaotic attractor in the invariant subspgee0 is a re-
ther away from the bifurcation, it is possible for the pellerin they subspace and, hence, thelynamics is locally
symmetry-broken attractor to be “lifted off” from the invari- chaotic neary=0. The y variables of a typical trajectory
ant subspace. These “stuck-on” and “lifted-off” attractors would therefore exhibit complicated and nontrivial behavior.
were first discovered by Ashwifil1]. Specifically, in Ref. But sinceA <0, they variables of trajectories starting from
[11], Ashwin studied the two-dimensional map different initial conditions will be synchronized asymptoti-
cally. In the numerical example presented in this paper, there
exist wide parameter regimep% p.) for which Ay<0 can
be realized. High-dimensional chaotic synchronism is par-

_ 2?1 2 ticularly appealing in communication applications for con-

Y1 =hyne " nt zy(1—e ), 13 siderations of securith20]. The scenario of symmetry break-
whereg(x,) is a chaotic map, and and\ are parameters. ing by blowou_t bifqrcatiqn studied in this paper may prpvide
The invariant subspace is given =0 in which there is a & Way to design high-dimensional synchronous chaotic sys-
chaotic attractor. Ashwin studied the case whet) is the  €Ms[21].
cubic mapg(x) = 3v3x(x>—1). This map has a unique cha-
otic attractorAy=[ —1,1] with basinxe (—1.1768,1.1768)
[17]. For e=0, a blowout bifurcation occurs at=1.430 This work was supported by AFOSR, Air Force Material
after which the chaotic attractéy, becomes a chaotic saddle Command, USAF, under Grant No. F49620-96-1-0066, by
in the two-dimensional phase spdé11,13. At the blow-  the NSF under Grant No. DMS-962659, and by the Univer-
out bifurcation, a symmetry-broken attrac#viis born which  sity of Kansas.

IV. DISCUSSIONS

Xp+1=0(Xn) + €XnYn,
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