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Scaling behavior of transition to chaos in quasiperiodically driven dynamical systems
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A route to chaos in quasiperiodically driven dynamical systems is investigated whereby the Lyapunov
exponent passes through zero linearly near the transition. A dynamical consequence is that, after the transition,
the collective behavior of an ensemble of trajectories on the chaotic attractor exhibits an extreme type of
intermittency. The scaling behavior of various measurable quantities near the transition is examined.
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Transitions to chaos, the scenarios by which chaotic atmittency on the chaotic side of the transition. During the
tractors arise with variation of a system parameter, are axpansion time intervals, the trajectories burst out by sepa-
fundamental problem in the study of nonlinear dynamicalrating from each other, but during the contraction time inter-
systems. So far there are four known major routes to chaotigals the trajectories merge together. Therefore, if one looks
attractors:(i) the period-doubling cascade roytg; (ii) the  at the snapshot of slices of the attradtbB] of this ensemble
intermittency transition rout¢2]; (iii) the crisis route[3]; of trajectories at different times, one finds that the size of the
and (iv) the route to chaos in quasiperiodically driven Sys_slice_ of the chgotic attractor varies wildly in Fime in an in-
tems[4]. In the period-doubling routé), a chaotic attractor termittent fashion. We find that the average size of the snap-
appears in a parameter region immediately following the acshot of a slice of the attractor scalisearly with a param-
cumulation of an infinite number of period doublingg. In ~ €ter above but near the transition. In addition, we find that
the intermittency routdii), as a parameter passes through athe average interval between bursts also scales linearly with
critical value, a simple periodic orbit is replaced by a chaoticthe parameter above the transition. _ _
attractor in such a way that the chaotic behavior is inter- TO illustrate our findings, we present results with quasip-
spersed with a periodiclike behavior in an intermittent fash-eriodic systems driven by two incommensurate frequencies.
ion. In the crisis routii), a chaotic attractor is suddenly We consider the following quasiperiodically forced damped
created to replace a nonattracting chaotic saddle as the paendulum(7]:
rameter passes through the crisis val8g In systems such 420 do
as the two-frequency quasiperiodically forced systems, chaos Coa
can arise throqugh tgeqfoIIO\F/)ving rou(dz): (three-);requency ae T gy Tsing=K+V[cogm) +codwzt)], - (1)
guasiperiodicity—(strange nonchaotic behavjes(chaos
[4]. In the past, scaling behaviors of routés—(iii) have wheredis the angle of the pendulum with the vertical axis,
been investigatedl1,2,5. Moreover, the dynamical picture is the dissipation rateK is a constanty is the forcing am-
for the route to chaos for quasiperiodically driven systemsplitude, andw; and w, are the two incommensurate frequen-
(iv) is rather cleaf4,6—13, but the scaling behavior of such cies. Introducing two new variables— vt and ¢=6+ /2,

a transition remained unknown. Eqg. (1) becomes

In this paper we examine the scaling with parameter of L0 do
various measurable quantities near the transition to chaos in _
quasiperiodically driven systems. We argue both numerically — p dt® T cosp=K+V[cogmst) +codwt)],
through a physical model and analytically through an analyz-
able model, which captures the essential dynamics, that fovherep=»? is a new parameter, and;, and w, have been
quasiperiodically driven dynamical systems the largest nonrescaled accordinglyty,— w,v and w,—w,v. In terms of the
trivial Lyapunov exponent passes through zknearly with  dynamical variablesp, v=d¢/dt, andz= w,t, we have
the parameter near the transition to chaos. Furthermore, near

the transition, the tangent vector along a typical trajectory d¢

experiences both time intervals of expansion and time inter- at v

vals of contraction. On the nonchaotic side, the Lyapunov

exponent is slightly negative and, hence, contraction domi- dov oy

nates over expansion. On the chaotic side where the —=piK+V cos{— z| +cox +cos¢>—v], (2
Lyapunov exponent is slightly positive, expansion dominates dt @2

over contraction. A striking consequence of this is that the

collective behavior of an ensemble of trajectories observed at d_z —w

different instants of time exhibits an extreme type of inter- dt 2
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FIG. 1. For Eq.(2), the largest nontrivial Lyapunov exponeft
versus the parametgr (damping ratgfor 0.969<p<0.972. Other )
parameter values aM=0.55,K=0.8, w,=1, andw; is chosen to 3

be the inverse golden mean.

It has been argued that E@) exhibits rich dynamical phe-
nomena[7,8]. In particular, for different parameters in the
K-V plane, one finds two- and three-frequency quasiperiodic
attractors, strange nonchaotic attrac{at$], and chaotic at-
tractors. Chaotic attractors can develop from two-frequency
quasiperiodic attractors. It is interesting to note that in the
strong damping limitp—<, Eqg. (2) reduces to a first-order
equation which is isomorphic to the Schinger equation
with quasiperiodic potential®].

To gain intuition, we present numerical experiments with 0 5000 1x10* 1.5x10* 2x10*

Eq. (2) for K=0.8, V=0.55, w;=(y/5—1)/2 (the inverse _ _ t _ _
golden meah w,=1.0, and choose as the control param- FIG. 2. (a) A single trajectory of 20 000 points on the chaotic

attractor ajp=0.9702(A=~0.002. (b) S(t), the size of the snapshot
of slices of the attractor computed using 128 trajectories, versus
timet for p=0.9702.

eter. For large values gf (p>1.0), the damping is strong so
that the motion is typically periodic or quasiperiodit,8].
As p decreases, sapp<p.~1.0, both strange nonchaotic
and chaotic attractors exist. Figure 1 shows the largest norshot of slices of the attractor are qualitatively different for
trivial Lyapunov exponent\ [one Lyapunov exponent is al- p= p; (A=<0) andp=<p, (A=0). In particular, forp=p. on
ways zero for Eq(2)] for pe[0.969,0.972]. The transition the nonchaotic side, the trajectories resulting from these ini-
occurs ap=p.~0.9707 where\>0 for p<p. andA<Ofor tial conditions eventually converge to a single trajectory. At
p>p.. The attractors fop<p. are therefore chaotic. To any instant of timdafter sufficiently long transient timgthe
visualize the attractors, we plot the variablgsndv on the  snapshot of a slice of the attractor of these trajectories con-
stroboscopic surface of section defined ly=n(27), sists of only one point in the phase space. As time
n=0,1,... . Figure &) shows a single long trajectory on the progresses, the single point for all trajectories moves in the
chaotic attractor forp=0.9702<p, (A~0.002. Examina- phase space, tracing out aftrajectory_ which lies on the strange
tion of the attractors fop= p, indicates that they are strange Nonchaotic attractor. The time required for the ensemble of
nonchaotiq{14]. One feature about the transition is that thetrajectories to converge to a single trajectory scales as
Lyapunov exponent\ passes through zero linearly, apart 7~ 11A|~11p—p|. The interesting behavior, however, oc-
from fluctuations caused by finite length of trajectories usedurs on the chaotic side wheu=p, with A being slightly

in numerical computation. The mechanism behind such ositive. In this case, th? snapshot of slices of th‘? aftractor
smooth transition can be understood by examining the rela‘%‘_re no longer single points even after long transient time.

, . ; . here are time intervals during which the snapshot of slices
tive vvgghts of the p.hase—space regions where the trajectorgf the attractor consist of points spread over the entire cha-
experiences expansion and contracfitb].

To explore the properties of the chaotic attractor forotlc attractor. There are also time intervals during which the

b we seek to study the time evolution of a snapshot O]‘snapshot of slices of the attractor appear to consist of points
g“zg; ’of the attractc[r13]yS ocifically. we choose a I?irticu- concentrated on extremely small regions in the phase space.
larlv relevant ensemblé o? nitial c)gnditions on th; b] The size of the snapshot of slices of the attractor therefore

Ia?/\e and let them evolve in time. These initial con;:iitions changes drastically with time in an intermittent fashion. To
P e 'quantify this situation, we define the time-dependent size of
are chosen to have the saz({®)=0 (they start to evolve at :

. . : the snapshot of a slice of the attractor,
the same time A snapshot of slices of the attractor, i.e., the 1N
distribution of the trajectories resulting from these initial _ 2 2
o . . . t)=| < (1) — t +vi(t)—(v(t
conditions in the phase space at fixed subsequent instants o§( ) N izl A= (SO +viO =)
time, are examined. We find that the properties of the snap- 3
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(a) time used in the computation. As the transient time increases,
0.3 the averaged size decreases towards zero. This has been veri-
fied for severap values on the nonchaotic side. Figur)3
shows the fraction of timeB, for which S(t) is larger than
€ versusp, wheree=10"%. It can be seen thdt, increases
roughly linearly but saturates in the same range of Hg). 3
This indicates that the main factor contributing to the in-
crease in(S(t)) for p<p. (the chaotic sideis a gradual
filling of the “gaps” corresponding to the time intervals in
which S(t) is close to zero.

The fundamental reason for the on-off intermittent behav-
ior in the size of the snapshot of slices of the attractor can be
understood by noting that there are finite-time fluctuations in
the Lyapunov exponemk. When A is slightly positive, tra-
jectories actually experience finite-time periods whens
(b) negative. Imagine that one chooses a large number of initial
conditions in the phase space and compu&) for trajec-
tories resulting from these initial conditions over a tiffie
The histogram of all thes&(T) is usually a distribution with
finite width around the asymptotic value afwhich is only
slightly positive. Thus there is a spread of the histogram into
the negative side, indicating that there are trajectories expe-
riencing contraction in finite times. This leads to the ob-
served on-off intermittent behavior: trajectories spend
stretches of time expandind@eading to nonzero-size snap-
shot of slices of the attractpryet there are also long
stretches of time during which the trajectories experience

! contraction, resulting in extremely small-size snapshot of
0.969 0.97 p 0.971 0.972 slices of the attractor.
To understand the scaling relation Hg), we note that

FIG. 3. (a) The average size of the snapshot of slices of thenear Fhe trans_ition on the ChaOti.C side, a typical_ trajeCtory
attractor versus the paramefefor 0.969<p=0.972.(b) The frac-  CXPeriences slightly more expansion than contraction when it

tion of timesF .(p) at which the size of the snapshot of a slice of wanders on the gttractor under.the quasiperiodic f‘?m
the attractor is larger thaafor 0.969<p=0.972, wheree=10"°. Thus we are motivated to consider here the following simple

expansion-contraction model:

whereN is the number of points on the snapshot of slices of

the attractor, {¢(t)),{(v(t))] defines the geometric center of 2y, mod1) if £(6,)=0
these points at a given timép(t))=(1N)= N, ¢,(t) and Yne1= 12 it f(6.1<0
(v(t))=(1N)Z N jv,(t). Figure Zb) shows S(t) versust Yn it 1(6n)<0.
for p=0.9702, wherd is the integer time measured on the
surface of section corresponding to the real tirt@n/ w,), In the model, f(68,)=p+cos@, and 6,,,=60,+27w,

and the snapshot of slices of the attractor are computed fromvhere w is an irrational number irf0,1), andp is a param-
128 initial conditions uniformly chosen along the diagonaleter. The dynamics of models a quasiperiodic forcing. In
line of the rectangle defined b(0)e[0,27] and v(0)e contrast to the pendulum example, mo@®lexhibits a tran-
[—1,1]. It can be seen that the size of the snapshot of slicesition from two-frequency quasiperiodicity to chaos. For

of the attractors exhibits an extreme type of intermittent belarge, 6 is uniformly distributed in0,27]. Equation(5) is a
havior, the so-called “on-off” intermittency16]. There are  modified version of the expansion-contraction model studied
time intervals during which the snapshot of slices of thefor random maps in Ref18]. Consider the case whepez 0.
attractor are concentrated on regions with extremely smallhe probability for y to expand and to contract
size (<107 [17]. The time averaged size of the snapshotare P{y, . ;=2y,}=[27—2 cos Y(p)]/2m~(m+2p)/(27)

0.2 1

<S(t)>

0.1~
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0.6
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0.2

®)

of slices of the attractoon the chaotic sideear the transi- =1/2+p/m, and P{y,,.1=Y./2}~1/2—p/m, respectively.
tion, defined as(S(t))=lim_..(1/T)f{S(t)dt, obeys the The Lyapunov exponent of thedynamics is therefore given
following scaling relation: by M\(p)=(1/2+p/m)In2+(1/2— p/7)In(1/2)=(2 In2/7)p.
Thus\(p) passes through zero linearly pgasses through
(S(t))~A~|p—pcls (4) zero, an analogous situation to Fig. 1. To compute the aver-

age size of the snapshot of slices of the attractor, we take an
as shown in Fig. &), whereT=20 000(2r/w,) with tran-  ensemble of initial conditions uniformly distributed [i0,1]
sient time 100@7/w,) has been used in the computation. atn=0. For subsequent times, the trajectories are uniformly
Figure 3a) also shows that fop= p. on the nonchaotic side, distributed in the interval [&,], where S, can take a se-
the averaged size of the snapshot of a slice of the attractor guence of value$1,1/2,1/2,...,1/2}, wherek<n. ThusS,
quite small, yet nonzero. This is due to the finite transienis the size of the snapshot of slices of the attraétgrto a
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constant proportional factprThe evolution ofS,,is S, ;=1

if @,S,>1 andS, ;1= a,S, if @,S,<1, wherea,=2 [with
probability (1/2+p/#)] or 1/2 [with probability (1/2-p/
m)]. ForS,<1, lettingh,,=—InS,,, we obtain a random walk
in h,: o Y
=—Ina,+h,. Let P(h,n) be the probability distribution
function for h at timen. For p=0, the average drift of the
random walk isv=—(In a,)=—A=<0. ThusP(h,n) approxi-
mately obeys the diffusion equation

*P
oh?’

JP
an

JP
+ _—
Y n

where  D=(In2—\)4(1/2+ p/ 7) +(In1/2—\)*(1/2— p/ )
~(In2)? is the diffusion coefficient. When=0, the diffusion
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merical experiments with Eq5) verify the linear scaling
behavior of(S,).

We remark that quasiperiodically driven dynamical sys-
tems are relevant to many physical and biological situations.
The route to chaos in quasiperiodically driven systems is
fundamentally different from other major routes to chaos
such as the period doubling, the intermittency, and the crisis
routes. The linear scaling at the onset of the on-off intermit-
tent behavior of snapshot of slices of the attractor is a distinct
physical fingerprint of the onset of chaos in quasi-
periodically-driven systems.
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