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An array of phase-coupled oscillators may exhibit multiple coexisting chaotic and nonchaotic attrac-
tors. The system of coupled circle maps is such an example. We demonstrate that it is common for this
type of system to exhibit an extreme type of final state sensitivity in both parameter and phase space.
Numerical computations reveal that there exist substantial regions of the parameter space where arbi-
trarily small perturbations in parameters or initial conditions can alter the asymptotic attractor of the
system completely. Consequently, asymptotic attractors of the system cannot be predicted reliably for

specific parameter values and initial conditions.

PACS number(s): 05.45.+b

I. INTRODUCTION

Phase-coupled oscillators, oscillators interacting with
each other through their phases of oscillation, arise in a
variety of biological and physical systems [1-10]. The
importance of phase interaction for biological systems
was recognized by Winfree [3]. Phase dynamics in cardi-
ac pacemaker cells were subsequently studied by Jalife
and Antzelevitch [4]. Systems of coupled oscillators were
used by Kopell [5] to understand biological phenomena
such as locomotion by fish. A simple class of phase-
coupled oscillators, the integrate-and-fire model, was
used by Mirollo, Strogatz, and Brailove to study the
synchronization phenomenon of certain biological species
[6]. Studies also revealed that chaos can occur in these
coupled biological oscillators. For instance, chaos was
found by Tsuda, Koener, and Shimizu in a phase-coupled
physiological neural network model [7]. Glass and Zeng
studied a system of two phase-coupled simple cardiac
cells and found a variety of complex dynamical phenome-
na including chaos [8]. In physical situations, systems of
phase-coupled oscillators were used by Wiesenfeld and
Hadley [9] to model series arrays of Josephson junctions
[10]. A detailed numerical study of the dynamics of a
family of globally phase-coupled maps was carried out by
Kaneko [11].

This paper concerns a study of a family of phase-
coupled maps—globally coupled circle maps. The sys-
tem is written as follows:

x, +1(D)=x,(i)+asin[x,(i)]+o
8 N
+— 3 sin[x,(;j)] mod(2m),
N =,

i=12,...,N, (1)

where n denotes the discrete time, i is an index denoting
the discrete spatial sites, and N is the number of coupled
maps. In Eq. (1), @ and o are parameters of the circle
map, & is a parameter specifying the coupling strength
among oscillators, and x,(i) is the state variable
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representing the phase of the oscillator at position / and
time n. Notice that the global coupling term is character-
ized by summation of terms sin(phase), which is common
in situations of phase interaction [11]. This is different
from the more extensive studied coupled map lattices
(e.g., coupled logistic map lattice [12] and coupled Hénon
map lattice [13,14]) in the literature, where the coupling
terms are usually represented by a simple algebraic sum
of some or all state variables. When the coupling van-
ishes, Eq. (1) reduces to that of N independent circle
maps, and it is known that the circle map may exhibit
complicated dynamical phenomena such as quasiperiodic
and chaotic motions. The “Arnold tongue” phenomenon
was discovered in the parameter space of the circle map
[15]. The system of coupled circle maps, Eq. (1), was
proposed by Wiesenfeld and Hadley [9] as a simple model
for understanding the phenomenon of attractor crowding
in an array of coupled Josephson junctions which is,
more precisely, described by a set of coupled ordinary
differential equations [10]. Kaneko subsequently per-
formed detailed studies of a similar class of systems and
found the existence of different dynamical phases includ-
ing coherent, ordered, partially ordered, and turbulent
phases [11]. These pioneering studies have revealed that
Eq. (1) can exhibit very rich dynamical phenomena.

In this paper, we study Eq. (1) from the viewpoint of
predicting the asymptotic attractors at specific parameter
values and initial conditions using computers. Our inves-
tigation was motivated by a recent finding of an extreme
type of sensitive dependence of asymptotic attractors on
both parameters and initial conditions in the system of
coupled Hénon maps [14]. In certain parameter regimes
of the system where there are multiple coexisting asymp-
totic attractors of different natures (e.g., chaotic, quasi-
periodic, or periodic), which attractor the system asymp-
totes to depends extremely sensitively on the choice of
both parameters and initial conditions. Perturbations in
parameter and/or initial condition, no matter how small,
have a finite probability of completely altering the
system’s asymptotic attractor. Similar behavior was also
observed qualitatively on a system of diffusively coupled
ordinary differential equations (the Duffing oscillator)
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[14], whose dynamics, however, are more similar to that
of a lattice of globally coupled [16] two-dimensional maps
when the Poincaré surface of section is examined [17]. In
view of the high relevance of phase-coupled oscillator
systems in biology and physics, it is important to examine
whether phase-coupled oscillator systems such as Eq. (1)
would exhibit similar extreme sensitive dependence in pa-
rameter and phase space. The main result of this paper is
that there exist substantial regions of finite area in param-
eter space in which there are multiple distinct attractors
(chaotic or nonchaotic), and the extreme sensitive depen-
dence so described above occurs. This indicates that ex-
treme sensitive dependence of asymptotic attractors
occurs not only in systems where the coupling is de-
scribed by algebraic sum of state variables [14], but also
occurs in systems where individual elements interact with
each other through their phases, mathematically
represented by the coupling term in Eq. (1). The results
of this paper, together with previous ones [14], suggest
that extreme sensitivity of the final state may be a com-
mon dynamical phenomenon in systems consisting of spa-
tially coupled nonlinear oscillators.

This paper is organized as follows. In Sec. II, we
demonstrate that Eq. (1) exhibits extreme sensitive depen-
dence of asymptotic attractors on parameters. In Sec.
I1I, phase-space final state sensitivity is studied. Discus-
sions are presented in Sec. IV.

II. EXTREME PARAMETER SPACE SENSITIVITY

The general diagnostic tool to determine the nature of
asymptotic attractors is the maximum Lyapunov ex-
ponent. For a system of N coupled circle maps, there are
N Lyapunov exponents. Let A; be the maximum of these
N exponents. For a given parameter and an initial condi-
tion, if A;>0 ( <0), the asymptotic attractor is chaotic
(periodic), while A;=0 indicates quasiperiodic attractor.
In numerical experiments, we compute A (n) until
[A(n +1)—A(n)| <1078, where n is the discrete time, or
when the total number of iterations reaches 50000. The
length of the initial transient is chosen to be 10000. Such
a computational setting is in general sufficient to detect
different asymptotic attractors, i.e., to distinguish chaotic
from quasiperiodic and periodic attractors.

We first consider the case where a =4 and w=2, a pa-
rameter setting for which the single circle map has a
chaotic attractor [18]. The maximum Lyapunov ex-
ponent A; is computed as the coupling & is increased from
zero. Figure 1(a) plots, for N =20, A, versus §, where
1000 values of & are chosen uniformly in a range
0=38=3. The set of initial conditions is chosen randomly
and then fixed as § is varied. In general, when & is small
[ <0.5 in Fig. 1(a)], the dynamics of maps at different
spatial sites are chaotic (A, >0) and almost independent
of each other. Interesting dynamics occur when the cou-
pling is larger than 0.5 in Fig. 1(a). There are regimes of
coupling values in which A, fluctuates wildly with magni-
tude much greater than that of numerical fluctuations
which are almost invisible in Fig. 1(a) (note the smooth-
ness of the curve near §=0). These wild fluctuations of
A, persists as smaller scales of § variations are examined,
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FIG. 1. For the system of globally coupled circle maps Eq.
(1), the maximum Lyapunov exponent vs the coupling strength
8 for N=20,a =4,and 0=2. (a)0=6=3,(b) 1.1=6=1.4.

as shown in Fig. 1(b), where a blowup of part of Fig. 1(a)
for 1.1<86=<1.4 is plotted. Figures 1(a) and 1(b) thus
suggest that in certain regimes of &, the attractor to
which the system asymptotes depends extremely sensi-
tively on 6.

Sensitive dependence of asymptotic attractors on pa-
rameters can be quantified by the so-called uncertainty
exponent a which was introduced by Grebogi et al. to
characterize fractal basin boundaries arising in dynamical
systems that possess multiple attractors [19]. The ex-
ponent « is defined as follows. Randomly choose a pa-
rameter value § in a parameter interval that contains pa-
rameter subintervals in which A, fluctuates between dis-
tinct values. Define 8'=038+¢€, where € is a small pertur-
bation. Determine whether the asymptotic dynamics of
the system using these two parameters are qualitatively
different (e.g., chaotic versus periodic). Parameters lead-
ing to distinct asymptotic attractors upon small perturba-
tion are called uncertain parameter values. For given
perturbation €, a fraction of uncertain parameter values
f(€) can be computed by randomly choosing many &
values and determining if & is uncertain. For fractal sets,
f (€) typically scales with € as f(€)~¢€“ where a is the
uncertainty exponent [19]. Since € represents the pre-
cision with which the parameter 6 is specified in numeri-
cal computations, a determines the probability that the
computed asymptotic behavior inaccurately reflects the
true dynamics of the system. If a> 1, reducing € can im-
prove the probability of correct computation of the final
state. If a=1, improvement in € results in an equal im-
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provement in the probability of correct computation of
the final state. If a <1, reduction of € will result in only a
small reduction of f(e€). In particular, in the extreme
case where a=~0, improvement in the precision € with
which § is specified even over many orders of magnitude
may result in only an incremental improvement in ability
to predict the asymptotic state correctly. The uncertain-
ty exponent is equivalent to another exponent introduced
by Farmer [20] to characterize sensitive parameter
dependence. For the globally coupled Hénon map lattice,
it was found that a=~0 [14], which indicates an extreme
sensitive dependence of asymptotic attractors on parame-
ters.

To determine the degree of sensitivity to parameters in
Eq. (1), we have computed the uncertainty exponent.
Figure 2 plots, for N =20, f(€) versus € in the base-10
logarithmic scale, where the parameter 8 was randomly
chosen in [0,3] and f(€) was computed by accumulating
the number of uncertain parameter values to 200. Here,
a & value is uncertain if 8 yields A, >0 (chaotic attractor)
and &' gives A; =0 (nonchaotic attractor), or vice versa.
The slope of the plot in Fig. 2, which is approximately
the uncertainty exponent «, is estimated to be
0.00053+0.003 38 at a 95% confidence level. Thus, o
cannot be distinguished from O in this case. Computa-
tions with several other values of N yield similar results.

A near-zero uncertainty exponent has a significant
consequence regarding our ability to predict, even quali-
tatively, the type of asymptotic attractors for specific pa-
rameter values. Assume that a takes its upper bound
value of approximately 0.004 in Fig. 2. Assume that the
value of & can be specified to within 107 '%; then there is a
probability of f(e)~10%04~16)~0 86 that the final
asymptotic state computed using 8 is incorrect. Improv-
ing the precision with which & is specified offers little im-
provement in the probability of computing the final state
of the system correctly. For example, suppose computer
precision is improved by 16 decades to 10732, Then the
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FIG. 2. Plot of log,of(€) vs logc€, where € is a small pertur-
bation in the parameter 8. Other parameter settings are the
same as in Fig. 1. The parameter space uncertainty exponent is
a=0.00053+0.003 38, a value that cannot be distinguished
from zero.
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probability of incorrectly computing the asymptotic state
is still ~10%%4~32=0. 74, This means that vast im-
provement in the computer precision yields almost no im-
provement in our ability to predict the asymptotic attrac-
tor. Such a near-zero uncertainty exponent thus indi-
cates that the system of coupled circle maps Eq. (1) ex-
hibits an extreme sensitive dependence of asymptotic at-
tractors on parameters.

A near-zero uncertainty exponent is in fact a manifes-
tation of riddled parameter space [14,21]. A parameter
space is riddled if near every parameter value that leads
to chaos, there are parameter values arbitrarily nearby
that lead to nonchaotic attractors. To see the riddling of
parameter space in Eq. (1), we have examined, for N =20,
a two-dimensional parameter region defined by 0<a <6
and 0=8=<3. In this region, a 200X 200 uniform grid of
parameter pairs is chosen and A, is computed for each
parameter pair. Figures 3(a)-3(c) show the parameter

FIG. 3. In the two-dimensional parameter region 0<a <6
and 0 =<8 < 3, parameter pairs that lead to (a) chaotic, (b) quasi-
periodic, and (c) periodic attractors. Other parameter settings
are the same as in Fig. 1.
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pairs that lead to chaotic, quasiperiodic, and periodic at-
tractors, respectively. Chaotic, quasiperiodic, and
periodic attractors are determined by the numerical cri-
teria A;> 107>, |/ <1075, and A; < —1073, respective-
ly. In the computation, the set of initial conditions is
chosen randomly and then fixed for all 40 000 parameter
pairs. Most regions in this two-dimensional parameter
space consist of “open sets” of finite area where the
asymptotic attractors are chaotic, quasiperiodic, or
periodic. In particular, when the coupling 8=0, the
asymptotic attractor is nonchaotic for a <1, and no
quasiperiodic attractors exist for a > 1. These are known
properties of the circle map [15]. Note, however, there
are also regions where parameter pairs that lead to chaot-
ic and nonchaotic attractors are mixed (near a =3.5 and
8=1.5). To better visualize these mixed parameter re-
gions, Figs. 4(a)—4(c) show blowups of Figs. 3(a)-3(c), re-

(@)

FIG. 4. Blowups of Figs. 3(a)-3(c) for 3<a <4and 1<8=<2.
The parameter space contains riddled regions where for a pa-
rameter pair that leads to chaotic attractors, there are parame-
ter pairs arbitrarily nearby that lead to nonchaotic attractors.

2905

spectively, in the smaller region 3<a <4 and 1<8§=<2.
In Fig. 4(a), there are chaotic parameter regions with
riddled “holes” corresponding to parameter pairs that
lead to nonchaotic attractors. Further blowups of part of
Fig. 4(a) exhibit similar riddled structures for chaotic and
nonchaotic parameter pairs. Thus the parameter space of
the system of coupled circle maps Eq. (1) is riddled [14].

III. EXTREME SENSITIVITY IN PHASE SPACE

The extreme sensitive parameter dependence seen
above can be related to a similar type of extreme sensi-
tivity of asymptotic attractors on initial conditions in
phase space [22,14]. Intuitively, this can be understood
by realizing that perturbations in parameter space are
equivalent to perturbations in phase space if equations of
the system have smooth dependence on both state vari-
ables and parameters. Hence, a near-zero uncertainty ex-
ponent in the parameter space implies a near-zero uncer-
tainty exponent in phase space. To investigate phase-
space sensitivity at fixed parameter values for Eq. (1), we
choose a two-dimensional plane among the N phase-space
variables and systematically examine the type of attrac-
tors resulting from many initial conditions chosen on this
plane by computing A, for each initial condition.

Figures 5(a)-5(d) show histograms of A, values result-
ing from 4096 initial conditions chosen from a uniform
64X64 grid in the region 0=<x(8), x(9)=<2m, where
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FIG. 5. Histograms of 4096 values of A, computed from a
64X 64 grid of initial conditions chosen from 0<x(8) <2 and
0=<x(9)<2w. Parameter settings are N =20, a =4, 0=2, and
6=1.288. Histograms are computed at time steps (a)
n=5X10*% (b) n=10% (c) n=2.5X10°, and (d) n=5X%X10°.
Thee are four distinct chaotic attractors and two distinct
periodic attractors.
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FIG. 6. Basins of the four chaotic attractors in Fig. 5 (black
dots) computed using a grid of 200X 200 initial conditions on
the x(8)-x(9) plane. Blank regions are the basin of the two
periodic attractors in Fig. 5.

N =20, a =4, ®=2, and 6=1.288, and the values of x (j)
(j=1,...,N, j¥8,9) are chosen randomly and then
fixed. These histograms are obtained at time steps
n=5X10* (a), 10° (b), 2.5X 10° (c), and 5X 10° (d), with
10000 preiterates. There are four peaks with A, >0 and
two peak with A; <0, indicating the existence of four dis-
tinct chaotic attractors and two distinct periodic attrac-
tors. As time progresses, the peaks with A,>0 sharpen,
as in Figs. 5(a)-5(d). The total number of initial condi-
tions leading to A, in any of these four positive peaks is
unchanged, indicating that these peaks correspond to
chaotic attractors rather than superlong chaotic tran-
sients [23]. Figure 6 shows the basin of these four chaotic
attractors (black dots) in the x (8)-x(9) plane, where the
blank regions are the basin of the two periodic attractors
with A; <0. Clearly, basins of chaotic and periodic at-
tractors appear to be extremely intermingled, similar to
the riddled parameter regions shown in Fig. 4(a). For ini-
tial conditions that lead to chaotic attractors, there are
initial conditions arbitrarily nearby that lead to the
periodic attractors. Figure 7 shows log,.f(e) versus

0.1 |
a = 0.00047 + 0.00282 |
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FIG. 7. Plot of log;of(€) vs logoe, where € is the small per-
turbation chosen from an arbitrary line in the x (8)-x (9) plane.
Parameter settings are the same as in Fig. 5. The phase-space
uncertainty exponent is @ =0.00047+0.002 82, a value that can-
not be distinguished from zero.
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log o€, where € is a small perturbation in initial condi-
tions and f(€) is the fraction of uncertain initial condi-
tion at perturbation €. The initial conditions are drawn
on an arbitrary line in the x (8)-x(9) plane. The phase-
space uncertainty exponent is estimated to be
a=0.00047%0.002 82, a value which cannot be dis-
tinguished from zero, similar to the uncertainty exponent
computed in parameter space. Hence, Eq. (1) also exhib-
its an extreme sensitive dependence of asymptotic attrac-
tors in the phase space.

IV. DISCUSSIONS

Phase-coupled oscillators are spatiotemporal dynami-
cal systems that arise commonly in biological and physi-
cal situations where individual oscillators ‘“‘communi-
cate” with each other through their phases. These sys-
tems have been studied extensively in the literature, and
it is known that they can exhibit.complicated dynamics
including quasiperiodic and chaotic motions [1-10]
which are common for dissipative dynamical systems.
Phase dynamics, such as those described by the circle-
type maps, may also exhibit distinct phenomena, such as
the “Arnold” tongue [15] and “‘attractor crowding” [9],
which have not been seen in other dissipative systems
such as the logistic map and coupled logistic map lattices
[12]. The results presented in this paper for the model of
a well-studied phase-coupled oscillator [9,11], the system
of globally coupled circle maps, indicate that phase-
coupled oscillators may exhibit an extreme type of sensi-
tive dependence of asymptotic attractors on initial condi-
tions and parameters. Such a dependence is character-
ized by near-zero uncertainty exponents in both parame-
ter space and phase space, and it is similar to that found
in systems of globally coupled Hénon maps [14]. A
consequence of such an extreme sensitive dependency is
that even the type of asymptotic attractors (chaotic or
nonchaotic) of the system cannot be predicted reliably by
using computers with finite precision arithmetic. Statisti-
cal properties of the asymptotic attractor, such as the
Lyapunov exponents and fractal dimensions, are conse-
quently unpredictable in parameter regimes where this
type of dependence occurs.

The precise origin of the extreme unpredictability of
the asymptotic attractors for phase-coupled oscillators
described in this paper is still not clear at present. A pos-
sible mechanism may be due to the occurrence of ex-
tremely long chaotic transients in Eq. (1). Such transients
were discovered in coupled map lattices [23]. Sagdeev,
Usikov, and Zaslavasky [24] also discovered these types
of long transients in dissipative dynamical systems that
are slightly perturbed away from some Hamiltonian sys-
tems. In these systems, trajectories usually behave chaot-
ically for an extremely long time before settling into a
regular (nonchaotic) attractor. The long chaotic tran-
sients were also called “‘quasiperiodic” attractors [24,25].
When these transients occur, the effect of numerical
roundoff error may become severe over a long period of
time. The time within which a trajectory settles into the
final nonchaotic attractor depends sensitively on the
choice of the initial condition from which the trajectory
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is originated. While this may explain the extreme sensi-
tive dependence of asymptotic attractors in Eq. (1), it
remains unclear whether there are superlong chaotic
transients [23] for Eq. (1). Histograms of the largest
Lyapunov exponents computed from many initial condi-
tions over 500 000 iterations show no sign of the decay of
the peak located at A;>0, which would occur if the
chaotic sets at A, >0 were transients. In fact, the peaks
become more localized in the A, axis as time progresses,
as shown in Fig. 5. Therefore, if these chaotic sets were
transients, their lifetime must be much greater than
500000 iterations. This is, nonetheless, difficult to verify
due to the intensive numerical computations involved.
Another mechanism could be similar to that responsi-
ble for the occurrence of riddled basins in certain low-
dimensional chaotic systems [21]. For such systems, ex-
treme sensitive dependence of asymptotic attractors on
initial conditions characterized by the near-zero uncer-
tainty exponent occurs. Conditions under which riddled
basins occur include the existence of a symmetric invari-
ant manifold on which there is a chaotic attractor, the ex-
istence of another attractor in the phase space, and the
existence of a natural measure zero set on the invariant
manifold for which infinitesimal perturbations from the
invariant manifold grow exponentially (points in this
measure zero set are said to have positive transverse
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Lyapunov exponents) [21]. As a consequence, for any ini-
tial condition in the basin of the chaotic attractor on the
invariant manifold, there are points arbitrarily close to it
that are in the basin of the other attractor in the phase
space. Riddled basins in low-dimensional systems have
been fairly well understood, both qualitatively and quan-
titatively [21]. The system examined in this paper is high
dimensional, yet it possesses a high degree of symmetry.
Thus, a mechanism similar to that in low-dimensional
systems with riddled basins may be responsible for the ex-
treme sensitive dependence described in this paper.
However, at present it remains difficult to search for con-
ditions discussed in Ref. [21] under which riddled basins
occur, particularly the existence of a symmetric manifold,
for the phase-coupled oscillators Eq. (1) due to its high
dimensionality.
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