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Chaotic scattering is characterized by the existence of nonattracting chaotic invariant sets in phase
space. There can be several chaotic invariant sets coexisting in phase space when a system parameter
value is below some critical value. As the parameter changes through the critical value, stable and un-
stable foliations of these chaotic invariant sets, which are fractal sets, can become tangent and then cross
each other. The first tangency, which provides the linking between chaotic invariant sets, is a crisis in
chaotic scattering. Above the crisis, there is an infinite number of such tangencies which keep occurring
until the last tangency, above which the stable and unstable foliations cross transversely. As a conse-
quence of this, the fractal dimension of the set of singularities in the scattering function increases in the
parameter range determined by the first and the last tangencies. This leads to a proliferation of singular-
ities in the scattering function and, consequently, to an enhancement of chaotic scattering. The
phenomenon is investigated by using both simple one-dimensional models and a two-dimensional physi-

cal scattering system.

PACS number(s): 05.45.+b, 03.80.+r

I. INTRODUCTION

Chaotic scattering has been found in a variety of physi-
cal systems [1-5]. In such a case, the scattering func-
tion, which represents the dependence of some output
variable characterizing the scattering trajectory after the
scattering on some input variable characterizing the tra-
jectory before the scattering, displays a Cantor set of
singularities. Hence arbitrarily small changes in the in-
put variable can result in large changes in the output
variable. This is the sensitive dependence on initial con-
ditions which gives rise to the term ‘“‘chaotic scattering.”
Dynamically, chaotic scattering is due to the existence of
some nonattracting chaotic invariant sets in phase space
containing an uncountably infinite number of unstable
periodic orbits [1-5].

An active area of recent interest is to investigate the
appearance and evolution of chaotic scattering as some
system parameter changes. Various studies [2—-4] have
revealed two basic routes to chaotic scattering. One is
the abrupt bifurcation route in which a chaotic invariant
set is suddenly formed in the phase space as some param-
eter varies through a critical value [2]. The other is the
period-doubling bifurcation route in which a chaotic in-
variant set is gradually formed from a saddle-center bi-
furcation [3]. Besides these two routes, tranmsition to
chaotic scattering can also arise as a discontinuity in the
grammatical complexity and hence in the topological en-
tropy resulting from the onset of a devil’s staircase [6].
Studies also reveal that after the onset of chaotic scatter-
ing, further qualitative changes in the chaotic invariant
set are possible as the system control parameter changes
[3,4] and those changes may result in qualitative, physi-
cally noticeable changes in the scattering function. One
example is the so-called massive bifurcation [4] in which
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an infinite number of unstable periodic orbits in the
chaotic invariant set is suddenly destroyed and simul-
taneously replaced by another class of infinite number of
unstable periodic orbits.

In this paper, we present a new phenomenon in chaotic
scattering. It is akin to the merging crisis [7] in dissipa-
tive chaotic systems. We henceforth call this
phenomenon crisis in chaotic scattering [8]. Chaotic
scattering occurs on both sides of the crisis. Before the
crisis, there exist two topologically and dynamically iso-
lated chaotic invariant sets in the phase space. As a sys-
tem parameter changes, the closures of the stable and un-
stable manifolds of the two chaotic sets first touch each
other at the crisis. Since both stable and unstable folia-
tions have Cantor structures, as the parameter is varied
further, both foliations pass through each other ex-
periencing an uncountably infinite number of heteroclinic
tangencies in the process. The initial tangency, then, cor-
responds to the crisis and provides the linking between
the two chaotic invariant sets.

There are two major consequences resulting from this
crisis. The first one is that once the crisis has occurred,
an uncountably infinite number of new periodic and
chaotic trajectories are suddenly created. These trajec-
tories live in the union of the two chaotic sets that existed
before the crisis. However, as long as the stable and un-
stable foliations keep creating tangencies as the parame-
ter varies, the number of periodic and chaotic trajectories
keeps increasing. It means that there is an uncountably
infinite number of new possibilities for scattering trajec-
tories. The second major consequence is that the fractal
dimension of the set of singularities in the scattering
function increases after the crisis. We stress that these
consequences are caused by an uncountably infinite num-
ber of tangencies of stable and unstable foliations, which
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occur when both foliations have a fractal structure. Such
Cantor-like stable and unstable foliations are, however,
typical in chaotic scattering systems [1-5].

Our approach will be to investigate a class of simple
one-dimensional systems for which the phenomenology of
crisis in chaotic scattering can be understood fairly com-
pletely. We then study a physical scattering system
which consists of an infinite array of two-dimensional,
nonoverlapping, stationary, and circular potential wells.
By choosing an appropriate, physically realizable form
for the potential, this system exhibits the crisis
phenomenon. The physical mechanism for the crisis in
this scattering system is also investigated.

The organization of the paper is as follows. In Sec. II
we introduce and analyze a class of simple one-
dimensional models. In Sec. III we describe a physical
scattering system and present numerical results. In Sec.
IV we present discussions.

II. ONE-DIMENSIONAL MODELS

We consider the following two-parameter family of
one-dimensional map:

_ —alx+1|+b, x=<0
fox)= alx —1]—b, x>0, M

where x ER and a and b are parameters (b > —1). The
map is invariant under the following symmetrical opera-
tions: x ——x and f,(x)— — f,(x). For small values of
a, the map can exhibit bounded attractors, while for large
a values, almost all initial conditions except a set of mea-
sure zero asymptote to either « or — . Since we are in-
terested in modeling a situation of scattering where parti-
cles eventually escape to oo, we will fix a at a reason-
ably large value and investigate the dynamical behavior
of the map as b is increased from zero. As shown in Fig.
1(a), there are two intervals 4, =[—x,,—x,] and
A_=[x,,x,] determined by the fixed points on the two
branches of the map with positive slope. For initial con-
ditions outside these intervals, the resulting trajectories
asymptote to either o or — o without entering the
two intervals. The values of x, and x, are determined
by the following relations: a(x,—1)—b=x, and
a(l—x,)—b=x,. Wehave

_atb _a—b—2
a—1’ a—1

Xp a (2)
To ensure that almost all initial conditions asymptote to

+ o0, we require that x, > 0, or equivalently
az(b+2). (3)

Depending on the value of b, Eq. (1) exhibits different
dynamical behavior. In particular, when f,(1)>x,,
there are attractors in the intervals 4, and A _. Initial
conditions inside 4, and A4 _ asymptote to the respec-
tive attractors. When f,(1)<x,, i.e., @ >2, almost all in-
itial conditions in 4, and A4 _ escape to « except two
Cantor sets of Lebesgue measure zero. In this case, when
one initial condition asymptotes to + o (— ), a slightly
perturbed one may asymptote to — o (+ o) and hence
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the dynamics are similar to these of chaotic scattering.
When f,(1)> —x,, as shown in Fig. 1(a), the Cantor sets
in A, and A _ are topologically and dynamically isolat-
ed. Trajectories resulting from initial conditions in 4 ,
cannot enter 4 _ and vice versa. Due to the symmetry,
the fractal dimensions of these two Cantor sets are the
same. The dimension is d;=In2/Ina, which can be
seen as follows. Consider the interval 4 ;. At the first
iteration, initial conditions in the interval
G, =(x,+Sf,x,—S,) map outside 4, and approach
either o« or in subsequent iterations, where
S;=2(b+1)/a(a —1). Hence there are two line seg-
ments of length S, that stay in 4, after the first itera-
tion. Two inverse images of G, on each side of G, map
out of 4, in two iterations and hence there are four in-
tervals within 4 , of length S, /a that can stay in 4 , for
two iterations. In general, there are 2" intervals of length
S f/a"“1 that can survive n iterations. Therefore, the
box-counting dimension [9] of the Cantor set is
In2" In2

dp=—lim ——————=>"- @)
S wee In(S;/a""")  Ina

— 0

A crisis occurs when f;(+1)=-—x, or by=(a —2)/a,
after which the two Cantor sets in 4, and A_ are
heteroclinically connected to each other, as shown in Fig.
1(b). This is an heteroclinic tangency analogous to that
of stable and unstable manifolds in two-dimensional
maps. As b increases beyond by, there can be an infinite
number of such tangencies determined by the Nth-fold of
the map fiV(x)=f,(fp( - fp(x)) -+ ), where integer
N >2. The last tangency occurs when f,(+1)=—x, or
b;=a/(a —2), as shown in Fig. 1(c). For b = b, there is
a single Cantor set in the interval 4,=[—x,,x,]. The
dimension of this Cantor set can be computed referring
to Fig. 1(d). Initial conditions in (—x,,x,) maps outside
A, in one iteration. In addition, there are open intervals
G1=(-xb+Sl,—xa—Sl) and G2=(xa+S1,xb-S,)
that maps outside 4, in one iteration, where
S;=2(a +b)/[ala —1)]. After the first iteration, there
are four intervals of length S; that survive in A4, for one
iteration. The preimages of these four intervals consist of
16 subintervals of length S;/a which stay in A4, for 2
iterations. In general, there are 4" intervals of length
S;/a" ! that survive in A4, for n iterations. Thus the di-
mension of the Cantor set is

n
d;=— lim ——lm—_————Z—lQ . (5)
n—w In(S;/a" ") Ina

Note that in order for d, to be less than one, it is required
that a > 4; otherwise d; =1 and there will be attractors in
A,. The condition a >4 is guaranteed by Eq. (2), which
when combined with b;,=a /(a —2) gives the same con-
straint for a.

Equations (4) and (5) thus indicate that the fractal di-
mension of Cantor sets increases from In2/lna to
21n2/1na as b increases from values less than b, to values
greater than b;. The value of d, as we have seen above, is
determined by behavior of f,(x,), where x, ==x1 are the
two critical points of the map. For b, <b <b,, the value
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of d is determined by higher iterates of the critical points
as explained next. Consider, for example, fi2(+1).
When

—x, <fiP(+1)<x, , (6)

there are no new tangencies and hence d remains at con-
stant values. Tangencies occur when f{2(+1)=xx,.
There are two parameter intervals determined by

32(+1)=+x, in which d is a constant. These intervals

are [b/,b}] and [b},b}], where

(@
2 1 L
Before crisis
b<b
f
1 4 L
|
| Sf
i f\ x | P
X o i
frrt | | xav Xp
I |
| |
-1 4 =
-2 -
-2 -1 0 1 2
(c)
2 1 1
Last tangency, b= b,
1 A L
X o
Gt
- L
_2 T
-2 -1 0 1 2
X

2a —2—a? a’-2
1— 1—
bl - 2_02 ’ bf— aZ ’
2 2 ™
b2= a*+2—2a 2 a“—2
! I a?—2a+2

a’—2a

Plots of f§2(x) at these four values of b are shown in
Figs. 2(a)-2(d), respectively. It is clear that tangencies
occur at all these b values. In particular, b and b/ corre-
spond to two “last” tangencies of the map f;2)(x), while
b} and b} correspond to two “first” tangencies. The pla-
teau dimension values within these two intervals, howev-
er, are difficult to compute analytically because there are

(b)
2 1 1
Crisis, b = bf
(First tangency)
1 - —

f(x)
o
——
/

1 A +
-2 T \ T
-2 -1 0 2
X
(d)
3 1 1 1 1
After last tangency
b> bl
2 4 A -
1 4 -
? 0 %o Xa : \ /
= [ = Xy
-1 -
2 ___Y s, <—— i
-3 T T T T
-3 -2 -1 0 1 2 3
X

FIG. 1. The one-dimensional model Eq. (1) (a) before crisis, (b) at the crisis (first tangency), (c) at the last tangency, and (d) after

the last tangency.
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other peaks of fi*(x) function appeared inside the
squares determined by tx, and *+x,, as shown in Figs.
2(a)-2(d).

Similarly, in parameter ranges where d increases, there
are six even smaller intervals determined by
—x, <f$3(+1)<x, in which d remains constant values.
These observations imply that there is an infinite number
of parameter subintervals within which d remains con-
stants. The increment of d occurs at the closure of the
set of parameter values corresponding to tangencies
determined by f{"(+1), n=1,2,..., o. There are an

(@)

2 L 1
tangency

1 4 L
S
= O
N
T

1
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tangency
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X
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infinite number of such tangencies. This leads to the
function d (b) for by <b < b, being a devil’s staircase.

The above argument leading to the assertion that d (b)
is a devil’s staircase function is not rigorous. To verify
this, we have numerically computed the function d (b) for
a =6 and 0.25<b <2.0. For this a value, we have b, =1
and b,=3. For b <b;, d =In2/In6~0.38. For b>b,
d=1n4/1n6=0.78. For by <b<b, there are two inter-
vals determined by Eq. (7) in which d takes values be-
tween In2/In6 and In4/In6. These two intervals are
[13/17,17/18] and [13/12,17/13]. To compute d, we use

(b)

tangency|
~

f(2)(x)

RS
tangency
i
|
|
-2 T —
-2 -1 0 1 2
X
(d)
2 1 1
[ T tangency

f?(x)
o

tangency

FIG. 2. Second iterate of the one-dimensional model Eq. (1) at (a) b =b/, fiP(+1)=—x,; (b) b=b}, fi*(+1)=x,; (©) b=b},
3P(+1)=—x,; and (d) b=b}, f§?(+1)=x,. In both the intervals [b/,b}] and [b?,b}], the fractal dimension of the Cantor set

remains constant.
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the uncertainty algorithm originally proposed to calcu-
late dimension for fractal basin boundaries arising in
dynamical systems that possess multiple attractors [10].
The procedure is as follows. For a given b value, we ran-
domly choose an initial condition x, €[ —2,2]. This ini-
tial condition is then perturbed to yield another initial
condition x,+¢€, where the perturbation € is small. The
asymptotic state of these two initial conditions are then
computed by iterating Eq. (1). In particular, if one initial
condition leads to a trajectory that asymptotes to « and
another to — o, then the initial condition x, is said to be
uncertain. For given perturbation €, the fraction of un-
certain initial conditions F(e€) is obtained by accumulat-
ing 200 (in our computation) uncertain initial conditions.
In general, F(e€) scales with € as F(€)~¢€?, where a is the
uncertainty exponent [10]. The dimensions of the Cantor
set is given by d =1—a, which is equal to the box-
counting dimension for one-dimensional dynamical sys-
tems [11]. Figure 3 shows the computed d(b) curve
which contains values of d for 700 values of b uniformly
chosen in [0.25,2.0]. The dimension values for b <b 5 and
b>b;, as well as the two largest subintervals of b in
which d is constant, agree with our theoretical predic-
tions Egs. (4), (5), and (7). The two plateau dimension
values within the subintervals are approximately 0.56 and
0.68. Plateau dimension values determined by high
iterates of the map are difficult to see due to numerical
resolution.

The feature in which the fractal dimension maintains
constant values for a dense set of parameter intervals in
which no tangency occurs is specific to Eq. (1). When the
form of the map is changed, the dimension can change
even when there is no tangency. In particular, for quad-
ratic maps (slope is zero at critical points), the dimension
can decrease in parameter intervals where there is no
tangency, although there is an overall dimension increase
when the parameter changes from the crisis value to the
last tangency value. To illustrate this, we consider the

1 1 1 1 1 1 1
a=6
d, = 2In2/Ina
0.8 - =
d, = In2/lna

T 0.6 A " -
0.4 "

0.2 T T T T

025 (Q 0/75 lb 1.25 \ 1.5 \!1.75 2

13712 17/13 3/2

2/3 13/17 17/18
(last tangency)

(crisis)

FIG. 3. The fractal dimension of the Cantor set versus the
parameter b in b€&[0.25,2.0], where a =6 is fixed in Eq. (1).
This crisis occurs at b,=2/3 and the last tangency occurs at
b;=2. For b <b;, d=In2/lna. For b>b;, d=2In2/Ina. The
function d (b) for b, < b < b, is apparently a devil’s staircase.
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(a)
2 1 1
1 4 L
% o ]
- L
-1 A -
-2 T l T
-2 -1 0 1 2

(b)

0.2 . -

0.5 1 1.5 2 2.5
b

FIG. 4. (a) A quadratic map Eq. (8). (b) The fractal dimen-
sion versus the parameter b. In contrast to the tent map in Eq.
(1) in which the dimension of the Cantor set exhibits an infinite
number of plateau values for b, <b=<b, when there is no
tangency, the dimension can decrease for the quadratic family
of Eq. (8) in parameter intervals where there is no tangency.

following two-parameter family of quadratic map, as
shown in Fig. 4(a):

—(2a +b)(x +1)*+b, x<0,

8= 04 4 b)x —1)2=b, x>0, ®

where a =6. Figure 4(b) shows the curves d(b) in a pa-
rameter range containing the crisis and the last tangency.
We stress, however, that the dimension does increase
when tangencies occur. This feature is independent of
the particular map.

III. A PHYSICAL SCATTERING SYSTEM

In this section we demonstrate the phenomenon of
crisis in chaotic scattering in an open Hamiltonian sys-
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tem. This system was originally introduced by Troll and
Smilansky [5]. Figure 5 schematically shows the model
system in which a point particle is scattered by an infinite
array of two-dimensional elastic scatterers. These
scatterers are placed in the plane at constant intervals D
along the y axis. Each scatterer is represented by a circu-
lar potential ¥ (r) <0 that becomes negligible for r >R,
where R <D /2 (nonoverlapping condition). The nono-
verlapping condition means that particle trajectories are
straight lines in regions between adjacent potentials. If
V(r)>0 (repulsive), only trivial invariant orbits can be
formed in the potential region and hence the dynamics
are simple and not interesting. The effect of each indivi-
dual scatterer on a scattering trajectory can be character-
ized by the elastic deflection angle 6(/), which is a func-
tion of the angular momentum /, as shown in Fig. 5. Sim-
ple classical mechanics gives

= [® dr
oh=m—Vv2I )
f'z rVE—V(r)—1%/2r*
where E is the particle energy. The mass of the particle
is assumed to be unit, and 7, is the radius at the turning
point of scattering trajectories determined by the follow-
ing equation:

9)

2
E—V(r,)—l—2=0. (10
2r

t

Note that 6(/) <0 for / >0. Since the system is invariant
under time reversal, we have O(—I[)=—0(I)mod(2m).
Due to the finite range of each scatterer, 6(/)=0 for
I>1_..=uR, where u is the particle velocity in the re-
gion where the potential is negligible. For a particle
moving towards a scatterer with angular momentum !
and velocity u, its new velocity u’ after scattering has the
same magnitude as u, but has a different direction. Let 8

FIG. 5. The Troll-Smilansky scattering system in which par-
ticles interact with an infinite array of two-dimensional, nono-
verlapping, and circular potential wells. The dynamical vari-
ables are angle 8 and angular momentum /.

and ' be the angles measured counterclockwisely that u
and u’ make with respect to the —y axis, respectively.
Then from Fig. 5 we have

B'=B+o() . (an

After this deflection, the particle may either collide with
the scatterer above (if u,=—cosB' >0) or enter the
scatterer below (if u, <0). In either case, scattering is
determined by the value of angular momentum /’ relative
to the new scatterer. Simple geometrical argument from
Fig. 5 leads to the following expression for /’:

I'=1+(Du)sgn(cosB')sinf3’ . (12)

If |I'|>1,,,, the particle continues to move along a
straight line trajectory leaving the array of scatterers and
never returns. Such particles will be regarded as having
escaped from the scattering region. New scattering
occurs only if |I'| <I_,,. Following Troll and Smilansky
[5], we choose B and [ as our dynamical variables. Thus
the two-dimensional map Egs. (11) and (12) can be sym-
bolically represented as

(B,1"=M(B,I) . (13)

The phase space for M is defined by the domain
[0,27) X[ — I paxs I max )» Which is a cylinder. It can be easi-
ly verified that M is area preserving.

In our subsequent numerical experiments, we choose
V(r) to be the following Woods-Saxon potential [12]
which is often used in the context of nuclear physics [13]:

" 1+exp[(r—Ry)/a]’

where V|, (>0), R,, and a are constants. At large dis-
tance r, V' (r) behaves like the Yukawa potential that van-
ishes exponentially as r increases. We fix V=10,
R,=0.5, «a=0.1, D=4, and R =1.4. Thus
V(r=R)/V,~10"% so in practice adjacent potentials
do not overlap each other. When the particle energy is
large, say E >>10, we observe that the phase space con-
tains Kol’mogorov-Arnol’d-Moser (KAM) surfaces and
chaotic regions [14] (nonhyperbolic chaotic scattering).
For E <10, we find numerically that all the KAM sur-
faces are destroyed and the phase space only contains
chaotic invariant sets (hyperbolic chaotic scattering).
Henceforth we choose E as our control parameter and in-
vestigate the scattering behavior of the system for E < 10.

The chaotic invariant sets lie in the closure of the inter-
section of the stable and unstable manifolds. Note that
the map has two unstable fixed points: (0,0) (correspond-
ing to a straight trajectory along the —y axis) and (0,7)
(corresponding to a straight trajectory along the +y
axis). Numerically, we find that for E > E fz4.4, there
exist two topologically and dynamically isolated chaotic
invariant sets associated with these unstable fixed points.
Note that the two chaotic sets must be identical due to
the symmetry of the system with respect to =0 (or 27)
and B=m. At the energy value E 4.4, the stable mani-
fold of one chaotic set becomes heteroclinically tangent
to the unstable manifold of the other chaotic set, as
shown in Fig. 6(a). At this crisis point, both chaotic sets

V(r) (14)
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are dynamically linked and particles initiated near one
chaotic set can reach and exit along the unstable mani-
fold of the other chaotic set. As E decreases passing
through E, the closures of the stable and unstable mani-
folds of the two chaotic sets heteroclinically cross each
other forming additional chaotic sets at the intersection.
Since both the stable and unstable foliations of the chaot-
ic sets have Cantor structures before the crisis, there
must be an uncountably infinite number of tangencies be-
tween E, and E;~4.1 [corresponding to the last tangen-
cy, as shown in Fig. 6(b)].

It is known that Cantor structures in stable and unsta-
ble foliations give rise to an infinite number of singulari-
ties in the scattering function [1-5]. For our system it is
convenient to define a scattering function as the exit an-
gle B, versus the incoming angular momentum / of a
particle trajectory at fixed incident angle B;,. (The angu-
lar momentum is related to the impact parameter s by
! =us.) Figures 7(a) and 7(b) show the scattering func-
tions at E =35 (before the crisis) and E =1 (after the
crisis), respectively. Both plots exhibit the typical feature
of chaotic scattering [1-5]. That is, they contain both
smooth parts and wildly oscillating parts. Further en-
largements of these plots in the oscillating regions reveal
similar structures. Moreover, the exit angle B, at E =1
can have any values between 0 and 2. This means that

B
0 Lo ;____‘//ﬁ:\é
—-415 -2.08 0.00 208 4.15
/
27 -
3 |
2
B =
F.4
2
0 &
4

FIG. 6. Stable and unstable foliations for (a) E =4.4 (near
the crisis) and (b) E =4.1 (near the last tangency). The unstable
foliation is nearly horizontal.
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an upward incident trajectory (/2 =<p;,=2.55<37/2)
can turn over, possibly cycle in some potential, and then
exit downward (0<B<w/2 or 37/2=<B<2m) for E=1.
Due to the symmetry of the system (the system is invari-
ant under B—fB+m), a downward moving trajectory can
exit upward. However, at large energy (E >5), we ob-
serve numerically that an upward (downward) incident
particle can never exit downward (upward). This means
that as E is decreased, the deflection angle of a particle
trajectory caused by an individual scatterer increases sub-
stantially, enabling the particle trajectory to turn over
and cycle in the individual potential. Comparison be-
tween Figs. 7(a) and 7(b) indicates that there appear to be
“more” singularities at E =1 than at E =5, which sug-
gests that the scattering is enhanced after the crisis.

We now compute the fractal dimension of the set of
singularities in the scattering function as the energy value
is decreased passing the crisis value. The procedure is
similar to that used to obtain Figs. 3 and 4(b). Briefly, for
a fixed value of “uncertainty” €, we randomly choose an

(a
21 L ' .
E=5
o Bin= 2.55
2 L
Bout Lk ;‘j /_
5 o
0 T T T
—4.4 -2.2 0 2.2 44
/
(b)
21( 1 1 |
E=1
31: Bin= 2.55
R L
Bout "HJ i
| L
2
O T T T
-1.98 -0.99 0 0.99 1.98
/

FIG. 7. Scattering functions for (a) E=5 and (b) E =1. The
incident angle is B8;,=2.55. Note that visually there appear to
be “more” singularities in the scattering function at E =1.
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initial condition [, at some fixed value of B;; (2.55 in our
computation) and two other initial conditions /;*+e. The
initial condition / is said to be uncertain if these three in-
itial conditions exit the system via different scatterers.
Figures 8(a) and 8(b) show plots of the uncertainty frac-
tion f (€) (computed by accumulating the number of un-
certain initial conditions to 200) versus € on a logarithmic
scale for E =5 and 1, respectively. These data can be
fitted by straight lines, the slopes of which give the uncer-
tainty exponent a (a@=0.53+0.02 for E =5 and
a=0.4310.01 for E =1). Fractal dimensions of the Can-
tor sets in the scattering function are therefore
d(E =5)=0.47£0.02 and d (E =1)=0.5710.01. Figure
9 plots d versus E, which shows that d=0.486 for

(@)

I I I |
0

B I W ____1,
o= 0.53 = 0.02 |

d=0.47 £ 0.02

|
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FIG. 8. Uncertainty fraction f(€) versus € on a logarithmic
plot for (a) E =5 and (b) E =1. The uncertainty exponent a is
the slope of the plot and the uncertainty dimension is given by
d=1—a.
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FIG. 9. Fractal dimension of the set of singularities of the
scattering function as a function of E obtained by fixing
B =2.55.

E>E;. The dimension increases as E decreases from E,
to E;=4.1. For E <4.1, d ~0.560. The increase in the
fractal dimension indicates a proliferation of singularities
in the scattering function. Consequently, chaotic scatter-
ing is enhanced after the crisis. While there is an overall
dimension increase as E decreases from E, to E,, the
behavior of d in E,>E > E, is likely to be very compli-
cated. It is possible that the function d(E) is a devil’s
staircase in this energy interval, as suggested by the one-
dimensional models in Sec. II. Changing S;, will not
significantly change the dimension values in Fig. 9, as
long as the line cuts through all components of the stable
foliations. This has been verified by computing the di-
mension at various energy values with sightly different
Bin- The overall features of Fig. 9 appear therefore to be
robust.

The physical origin of the crisis can be related to the
occurrence of “orbiting” of particle trajectories as the en-
ergy is decreased. For a circular potential, orbiting
means that at a fixed energy value, it is possible for the
particle with the critical angular momentum [/, to ex-
hibit near zero radial motion in the potential and hence
the particle circulates in the potential for an infinite num-
ber of times. Orbiting occurs when both the energy and
angular momentum satisfy the following equations:

dr/dt|,_, =V 2[E—V 4(r,;)]1=0,
(15)
dVglr)/dr|,, =0,

where Vg(r)=V(r)+1%/2r? is the effective potential.
The latter condition distinguishes orbiting from a turning
point of a particle trajectory, which only requires
dr/dt =0. Figure 10(a) shows an orbiting situation at
E =1 in which we plot Vg(r) at I=1_,., =1 ~1.35
(the orbiting angular momentum), and / =0.5</_;,. For
=1, Veg(r) attains a local quadratic maximum at
r=r.; whose value is equal to the particle energy E.
Hence 6(/)— — « for / —1[_;,. For values of angular mo-
menta in the neighborhood of /_;,, deflection angles are
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no longer — but still assume large absolute values.
Therefore, for E =1, particles with their angular momen-
ta near [ will circulate in an individual potential for
many times before they exit this potential. Figure 10(b)
shows V4(r)’s at ten different angular momenta with
l=nl_,, /10, where n =1,2,...,10 for E =5. There ex-
ist no values of angular momentum such that the effective
potential can exhibit a local maximum at E =35 and
hence orbiting is not possible for E =5. This indicates
that deflection angles for scattering particles are small.
Consequently, at this energy value particles incident from
below (above) can exit only upward (downward), thereby
leading to the two isolated chaotic invariant sets being
isolated. As the energy is lowered towards the situation
of orbiting, the maximum deflection angle 8, increase.
When 6,,, far exceeds , particle trajectories can turn
around so as to induce the crisis observed. Since the oc-
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FIG. 10. Plots of V 4(r) at several different angular momenta
for (a) E=1 and (b) E =5. In (a), where orbiting can occur,
three V. q4(r)’s at ] =0.5, I ;, (the orbiting angular momentum),
and l,,, are plotted. In (b), where there is no orbiting, ten
Vg(rysatl=nl_,, /10,n=1,2,...,10 are plotted.

currence of crisis does not require 6, to be o, crisis
occurs at an energy value larger than that required for or-
biting to occur.

IV. DISCUSSIONS

In this paper we have used both one-dimensional mod-
els and a two-dimensional physical scattering system to
demonstrate the phenomenon of crisis in open dynamical
systems that exhibit chaotic scattering. This novel bifur-
cation in chaotic scattering is characterized by hetero-
clinic tangencies of stable and unstable foliations of sym-
metric chaotic invariant sets. The physical manifestation
of such crisis is an increase of the fractal dimension in the
Cantor set of singularities in the scattering function.
Consequently, chaotic scattering is enhanced due to the
crisis.

The generality of the phenomenon of crisis in chaotic
scattering is suggested by the simple one-dimensional
models in Sec. II. While the stable and unstable mani-
folds associated with the chaotic invariant sets in the
two-dimensional physical scattering system look rather
special, namely, the stable manifolds have a sharp bend
and the unstable manifolds are almost straight, the condi-
tion for a crisis to occur is independent of these specific
geometrical shapes of the manifolds. As we have dis-
cussed in the one-dimensional models, crisis and the sub-
sequent increase in the fractal dimension depend only on
the occurrence of an infinite number of heteroclinic
tangencies of the stable and unstable foliations. Since
fractal stable and unstable foliations are a general feature
of chaotic scattering systems [1-5], we expect crisis in
chaotic scattering to be typical.

The map for the scattering system is smooth and two
dimensional. Nonetheless, our one-dimensional models
capture the essential features of the two-dimensional
scattering system. For instance, although the tangencies
are quadratic for the scattering system, the stable mani-
fold exhibits a very large curvature at the tangency. Both
stable and unstable manifolds away from the tangency
points are almost straight lines. Therefore our one-
dimensional model Eq. (1) is a good dynamic representa-
tion of the scattering system at the heteroclinic crossing.
Furthermore, the one-dimensional models suggest that
the function of d versus some parameter value is a devil’s
staircase in a parameter range determined by the crisis
and the last tangency. It is, however, difficult to quantify
this explicitly for our two-dimensional scattering model
because of the difficulty in computing the uncertainty di-
mension, which involves numerical integration of
deflection angles 6(1).

At a first glance, the two-dimensional scattering system
studied in this paper is very close to the model extensive-
ly studied by Troll and Smilansky [5]: Both systems con-
sist of a one-dimensional array of two-dimensional
scatterers and individual scattering potentials at lattice
sites are radially symmetric and of finite range. But while
Troll and Smilansky study the case of a schematic
deflection function, linear in the angular momentum,

kl/(uD), I<uR ,

o= 0, I>uR ,

(16)
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we use a realistic scattering potential of the Woods-Saxon
type. The linear deflection function in Eq. (16) is a good
choice because it enables a detailed analytical analysis of
chaotic scattering and the study of various types of bifur-
cations that lead to chaotic scattering. Our potential is
not so readily amenable to analytical investigation, but
has the advantage of realistically capturing the energy
dependence of quantum phase shifts [14] and classical
scattering functions. Moreover, the Woods-Saxon poten-
tial, as shown in Sec. III, shows new dynamical phenome-
na not present in the schematic model studied in Ref. [5].
Nevertheless, the transition to chaotic scattering studied
as a function of k in the Troll-Smilansky model (the TS
model) serves as a convenient framework in which we
will now discuss similarities and differences between the
two models.

For small k, 0 <k <4, the TS model exhibits two ellip-
tic fixed points in the (5,!) plane. This range of k values
is the domain of small angle scattering which corre-
sponds to the regime of nonhyperbolic scattering
(E >10) in our system with the Woods-Saxon potential.
At k =4 the two elliptic points become hyperbolic. A
similar critical point exists in the Woods-Saxon model
where at E =10 the scattering turns from nonhyperbolic
to hyperbolic. We did not attempt to calculate this criti-
cal point with very high precision. After this critical
point, the scattering in the two models is quite different.
While in the TS model the invariant set in the k range
4 <k <R /D is trivial (it consists of two points only), in
the Woods-Saxon model we observe nontrivial chaotic
scattering in the energy range E;SE <10. The new
feature which the Woods-Saxon potential introduces is
the existence of nontrivial chaotic scattering in the chan-
neling regime in which a scattering trajectory going up-
wards (downwards) will never turn around and scatter
anew from a scattering potential below (above) from
which it came in the first place. In contrast to the TS
model where the invariant set in the channeling regime is
trivial, in the Woods-Saxon case this regime is character-
ized by two nontrivial dynamically decoupled chaotic in-
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variant sets.

At k=mR /D a bifurcation occurs in the TS model
after which two invariant sets emerge which are dynami-
cally coupled. In our case, before the heteroclinic col-
lision, the two invariant sets are also dynamically decou-
pled. But in contrast to the TS model they are nontrivial
Cantor sets. At a bifurcation they collide and form a sin-
gle dynamically coupled set. This is the major new
feature which is introduced by going from the linear
deflection function model to the Woods-Saxon model,
i.e., a model with realistic scatterers.

The existence of a nontrivial channeling regime is also
apparent from Fig. 7(a), where the smooth structure in
the scattering function originates from scattering off the
entry disk, i.e., it reflects the shape of the single-disk
scattering function 6(I). This function, as expected, is
point symmetric around / =0 and B,,,=f;, (=2.55). It
goes to zero, as expected, at [=—I_ . =—4.4, so
Bou=Bin=2.55 at —I,,. At .. =4.4 it deviates from
zero since a particle can scatter once more from the po-
tential immediately above. With this information, Fig.
7(a) shows that at E =5, we have essentially trivial one-
(two-) disk scattering for / >0. For [/ <0, on the other
hand, we see the complicated structures pointed out al-
ready in Sec. III which indicate the presence of chaotic
scattering. Therefore, Fig. 7(a) clearly shows that at
E =5 we have nontrivial chaotic scattering in the chan-
neling regime. This result is a necessary condition for the
major new phenomenon reported in this paper, namely,
the occurrence of a crisis in chaotic scattering. Chaotic
channeling provides the two dynamically decoupled sets
which merge when crisis occurs.
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