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The method for stabilizing an unstable periodic orbit in chaotic dynamical systems originally formu-
lated by Ott, Grebogi, and Yorke (OGY) is not directly applicable to chaotic Hamiltonian systems. The
reason is that an unstable periodic orbit in such systems often exhibits complex-conjugate eigenvalues at
one or more of its orbit points. In this paper we extend the OGY stabilization method to control Hamil-
tonian chaos by incorporating the notion of stable and unstable directions at each periodic point. We
also present an algorithm to calculate the stable and unstable directions. Other issues specific to the con-

trol of Hamiltonian chaos are also discussed.

PACS number(s): 05.45.+b

I. INTRODUCTION

In a recent paper, Ott, Grebogi, and Yorke (OGY) pro-
posed a method to control chaos in nonlinear dynamical
systems [1]. Their idea is based on the observation that a
chaotic attractor has embedded within it an infinite num-
ber of unstable periodic orbits. By applying small, judi-
ciously chosen temporal perburtations to an accessible
parameter of the system, they demonstrated that an origi-
nally chaotic trajectory can be converted to a desired
periodic orbit. A major advantage of the method is that
it does not require a priori knowledge of the system equa-
tions. A time series from measuring one of the system’s
dynamical variables is generally sufficient to achieve the
desired control [1-3]. Another advantage of the method
lies in one’s flexibility to choose and control, in principle,
any one of the unstable periodic orbits in the attractor.
One chooses the one that gives the best system perfor-
mance according to some criterion. This method has
since attracted growing interest and it has been applied in
a variety of scientific disciplines [3—-12]. In fact, chaos
has been controlled successfully in various physical ex-
periments, including a magnetic ribbon [6], a fluid con-
vection system [7], a spin-wave system [8], a chemical
system [9], an electric diode [10], laser systems [11], and
cardiac systems [12]. Extension of the original method to
control high-dimensional dynamical systems [4] and to
control transient chaos [5] has also been investigated.

In this paper, we address the issue of controlling chaos
in Hamiltonian systems. Our goal is to stabilize a chaotic
orbit around some desired unstable periodic orbit for
two-dimensional Hamiltonian maps. These maps may
arise from surfaces of a section of two-degree-of-freedom
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time-independent Hamiltonian systems or from an exper-
imental time series coming from a conservative process.
At the first glance, one might think that the stabilization
problem here is analogous to that in dissipative systems
and, hence, the original OGY algorithm would apply to
Hamiltonian systems in a straightforward way. That is
not so, and the reason is that in Hamiltonian maps, due
to area conservation, the Jacobian matrices evaluated
along an unstable periodic orbit often exhibit complex-
conjugate eigenvalues on the unit circle at some of its or-
bit points. This can be illustrated by using the much-
studied standard map [13],

(Xp+1Yn+1)
=[(x,+y,)mod(27)—m,y, +psin(x,+y,)], (1)

where p is the control parameter. Figure 1(a) shows a
plot of the phase space for p =1, where the chaotic in-
variant set results from a single long trajectory. Most of
the blank regions correspond to Kolmogorov-Arnold-
Moser (KAM) islands and smaller chaotic invariant sets.
Figures 1(b) and 1(c) show an unstable period-7 orbit and
an unstable period-10 orbit, respectively, where the
centers of the plus signs indicate the locations of the orbit
points. The horizontal and vertical directions at each
point signify the real and imaginary axes in the complex
plane spanned by the eigenvalues. The nature of the pair
of eigenvalues at each orbit point is schematically
represented by two dots near the point (see figure cap-
tions). We see that it is quite common for an orbit point
to possess complex-conjugate eigenvalues. We have also
examined a large number of other periodic orbits and
found similar mixing of real and complex-conjugate
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FIG. 1. (a) A single chaotic trajectory in the standard map
[Eq. (1) with p=1] originated from the initial condition
(x9,90)=1(0.5,0.5). Notice the sharp contrast of the particle
density in different phase-space regions. This is a manifestation
of the ‘““layered” structure of Hamiltonian systems. (b) and (c)
The locations of a period-7 orbit and a period-10 orbit in the
chaotic region, respectively. Eigenvalues associated with each
orbit point are schematically represented by two dots. If the
two dots are on the horizontal axis the periodic point has real
eigenvalues, and if the two dots are on the circle then the point
possesses complex-conjugate eigenvalues. The integers denote
the order of orbit points under iterations of the map.

eignvalues along these orbits. In fact, one can show
analytically (by studying the Jacobian matrix) that this is
a general feature of the standard map when it is far from
hyperbolicity.

Due to the existence of complex-conjugate eigenvalues
on the unit circle along an unstable orbit, the original
OGY formula for calculating the temporal-parameter
perturbation generally fails to apply in Hamiltonian sys-
tems because it is expressed in terms of the real eigenval-
ues and eigenvectors along the periodic orbit [1] (see
below for details). One might argue that since the period-
ic orbit itself is unstable, parameter perturbations can
still be applied at every mth time step if the period of the
desired orbit is m. In this way, the original OGY formu-
la again becomes applicable. Although this is a viable ap-
proach for noise-free Hamiltonian systems, it is extremely
vulnerable to external or system noises, particularly if the
period of the desired orbit is large [14]. Hence, it is desir-
able to use an extension of the OGY method to allow for
parameter perturbations at each time step of the system.

Our work starts by generalizing the original OGY for-
mula to a form in which the temporal-parameter pertur-
bations are expressed both in terms of the Jacobian ma-
trix and of the unstable direction along a periodic orbit.
Such a form is useful because although individual points
along a periodic orbit can have complex-conjugate eigen-
values (and hence the eigenvectors are not defined in the
real plane), these points still necessarily possess stable
(contracting) and unstable (expanding) directions. To see
how this arises we consider a small circle at one of the
periodic-orbit points, say X,. By iterating the circle
backward one step, we typically arrive at an ellipse
around X, _,. Similarly, the image of a circle at X, _;
under F is generally an ellipse at X,,. This indicates that
there is a direction in the neighborhood of X, _, along
which the distance contracts and another direction along
which the distance expands. The images of these two
directions approximate the stable and unstable directions
at X,. Thus the key point is to utilize these two direc-
tions in place of the stable and unstable eigenvectors in
the original OGY formula [1]. (Later in this paper we
will discuss an algorithm developed for a different prob-
lem [15] to calculate the stable and unstable directions at
a given point.) The resulting formalism enables us to ap-
ply control at each time step during the evolution of the
system. We will demonstrate the effectiveness of this ap-
proach by numerical examples.

Another issue arising in controlling Hamiltonian chaos
concerns the length of the initial chaotic transient 7 be-
fore a trajectory can be stabilized. The length of such a
chaotic transient depends sensitively on the initial condi-
tion. In dissipative chaotic systems, for randomly chosen
initial conditions, 7 has an exponential probability distri-
bution [16], i.e., P(7)~exp[ —(7/{7))] for large 7, where
(1) is the average length of time for control, and it scales
with the maximum-allowable parameter perturbation as a
power law [1]. Hence, in this case, {7) is always finite.
In Hamiltonian systems, however, the probability distri-
bution of 7 is algebraic [17]: P(r)~7" ¢ for large 7,
where a is the decay exponent with a value between 1
and 2. Hence, in this case, the average length of time for
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control 7) is infinite. In practice, such a long time for
control poses a major difficulty in controlling Hamiltoni-
an chaos. It is thus necessary to “guide” a given initial
condition to the desired controlling region (the neighbor-
hood of the periodic orbit) in an efficient way before be-
ing able to stabilize the periodic orbit. Such a “target-
ing” algorithm has been proposed for dissipative systems
[21] and it can be applied directly to some cases we con-
sider in this paper [22]. However, since the main purpose
of the present paper is on the application of the OGY
method to Hamiltonian systems, we will only briefly dis-
cuss special features of targeting in Hamiltonian systems.

The organization of the paper is as follows. In Sec. II
we review the basic theory of the OGY method and
derive an expression for temporal-parameter perturba-
tions that does not explicitly involve the eigenvalues. In
Sec. III, we describe a method to calculate the stable and
unstable directions along a trajectory (which can be ei-
ther periodic or chaotic). In Sec. IV, we present our nu-
merical results for the standard map and briefly discuss
the issue of targeting and the effect of external noise. In
Sec. V, we present the conclusion.

II. THE CONTROL METHOD

We consider the following discrete time dynamical sys-
tem,

X, ., =F(X,,p), )

where X; ER?, p ER is an externally controllable param-
eter, and F is a smooth function in both variables. Since
we do not want to change the dynamics substantially, we
restrict our parameter perturbation to be small. In other
words, we require

lp—pol <8, 3)

where p, is some nominal parameter value and § is a
small number defining the range of parameter variation.
Our objective is to program the parameter p in such a
way that a typical trajectory in the chaotic region is sta-
bilized around some desirable unstable periodic orbit
after an initial chaotic transient. The procedure is as fol-
lows. First we choose the periodic orbit that yields the
best system performance. Next, we define a small region
around each of the periodic-orbit points whose size is
proportional to 8. Suppose the particle starts with some
initial condition in the chaotic region. Due to the ergodi-
city, there is a certain probability that the particle will
enter the small region around one of the periodic-orbit
points. In a typical Hamiltonian system, due to the
“stickiness” effect [18—-20] of the KAM islands, the ini-
tial transient could be very long (to be discussed below).
Once the particle is inside the small region, p will be judi-
ciously changed to keep the trajectory around the period-
ic orbit.

Specifically, assume that the unstable orbit of period m
to be controlled is
X01p)—>Xpa(p) =+ = Xom (P)=>Xo(m +1)(P)

=Xoi(p) -

The linearized dynamics in the neighborhood of the
period-m orbit is

X, 1= Xom+1)(Pr ) =M [X, =X, (p,)] , 4)

where M is the two-dimensional Jacobian matrix at the
orbit point X,,, p, =po+(Ap),, (Ap), =8. Note that
the parameter variation will result in the following shift
of the periodic-orbit points:

XOn(pn)_XOn(pO)z(Ap)ngn > (5)

where g, =93X,, (p )/8p|p0.

In Eq. (4), we will not express the Jacobian matrix M
in terms of eigenvalues and eigenvectors because there
may exist complex-conjugate eigenvalues on the unit cir-
cle at some of the periodic points. Instead we explore the
stable and unstable directions associated with these
points. The stable and unstable directions do not neces-
sarily coincide with the eigenvectors [15] at a given
periodic point if m71. In the case of complex-conjugate
eigenvalues, those eigenvectors are not even defined in
the real plane. The existence of both stable and unstable
directions around each orbit point can be seen as follows.
Let us choose a small circle of radius € at some orbit
point X,,. In a Cartesian coordinate system with the
origin at X,,, the circle can be expressed as
dx*+dy?=¢? The image of the circle under F~! in the
Cartesian coordinate system with the origin at X, _)
can be expressed as A (dx’')?+B(dx’')(dy’)+C(dy’)*=1,
which is typically an ellipse. Here 4, B, and C are func-
tions of the entries of the inverse Jacobian matrix at X,,.
This deformation from a circle to an ellipse means that
the distance along the major axis of the ellipse at X, _ 1
contracts as a result of the map. Similarly, the image of a
circle at X, ;) under F is typically an ellipse at X,,.
This means that the distance along the inverse image of
the major axis of the ellipse at X, expands under F.
Thus the major axis of the ellipse at X, (, ) and the in-
verse image of the major axis of the ellipse at X, ap-
proximate the stable and unstable directions at X, _1).
In Sec. III, we discuss a systematic method of finding
these stable and unstable directions for general two-
dimensional maps.

Let e,(,, and e, ,, be the stable and unstable directions
at Xy, and let f,, and f,,, be two vectors that satisfy
fumum™ Fso€sm=1 and £, €)= €u(m =0
To control the orbit, we require that the next iteration of
a trajectory point after falling into one of the small neigh-
borhoods around X, lies on the stable direction at

Xom+1lPo) i€,
[xn+1_X0(n+1)(Po)]'fu(n+1)=0 . 6)

Substituting Egs. (4) and (5) into Eq. (6), we obtain the
following expression for the parameter perturbations:

M [X, 11— X0, o) 1} Futn+1)
[(M-g,)=8gy+1] fun+n

(Ap),= , (7
where M is evaluated at X,,(pg). Note that the quanti-
ties in Eq. (7) are all experimentally accessible through
the time-delay embedding method, although a slight
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modification of Eq. (7) is required in such cases [2]. In
particular, the Jacobian matrices and their inverses along
a periodic orbit can be obtained by using the algorithm
proposed by Eckmann and Ruelle [23]. We emphasize
that the parameter perturbations calculated from Eq. (7)
apply to the system at each time step, thus minimizing
the effect of external noise [1,14]. It should also be noted
that there are other ways to stabilize unstable periodic or-
bits, e.g., the “pole placement method” [4]. However, we
believe [4] that parameter perturbations based on stable
and unstable directions [Eq. (7)] are optimal.

III. CALCULATING STABLE
AND UNSTABLE DIRECTIONS

Once we know the Jacobian matrices, the stable and
unstable directions at each orbit point can be calculated,
and f,, ) in Eq. (7) can then be obtained. To achieve
this, we use an algorithm developed in Ref. [15]. This al-
gorithm can be applied to cases where the period of the
orbit is arbitrarily large.

To find the stable direction at a point X, we first iterate
this point forward N times under the map F and get a
trajectory F/(X), FX(X), ..., FMX), as schematically
shown in Fig. 2(a). Now imagine we put a circle of arbi-
trarily small radius € at the point F¥(X). If we iterate
this circle backward once, the circle will become an el-
lipse at the point FY ~1(X) with the major axis along the
stable direction of the point F¥Y 1(X). We continue
iterating this ellipse backward, while at the same time
keeping the ellipse’s major axis of order € via certain nor-
malization procedures. When we iterate the ellipse all
the way back to the point X, the ellipse becomes very
thin, with its major axis along the stable direction at
point X provided N is large enough.

In practice, instead of using a small circle, we take a
unit vector at the point F¥(X), since the Jacobian ma-

F(X)
F(N—l)(x)
X FN(X)
(a)
F-(N—l)(x)
FNX)
F~4(X)
X

(b)

FIG. 2. A schematic illustration of our method to find (a) the
stable and (b) the unstable directions for a trajectory point X.

trices of the inverse map F~! rotates a vector in the
tangent space of F towards the stable direction. Thus we
iterate a unit vector backward to the point X by multi-
plying by the Jacobian matrices of the inverse map at
each point on the already existing orbit. A key point in
the calculation is that we do not actually calculate the in-
verse Jacobian matrix along the trajectory by iterating
the point F¥(X) backwards using the inverse map F~ ',
The reason is that if we do so, the trajectory will usually
diverge from the original trajectory F¥(X), F¥Y ~1(X),
..., Fi(X) after only a few backward interactions.
What we do is to store the inverse Jacobian matrix at
every point of the orbit F(X) (i=1,...,N) when we
iterate forward the point X beforehand. We normalize
the vector after each multiplication to the unit length.
For sufficiently large N, the unit vector we get at X is a
good approximation of the stable direction at X.

Similarly, as shown schematically in Fig. 2(b), to find
the unstable direction at point X, we first iterate X back-
ward under the inverse map N times to get a backward
orbit F~/(X) (j=N, ..., 1). We then choose a unit vec-
tor at point F~¥(X) and iterate this unit vector forward
to point X along the already existing orbit by multiplying
by the Jacobian matrix of the map N times since the
Jacobian matrix of the forward map rotates a vector to-
wards the unstable direction. We normalize the vector to
the unit length at each step. The final vector at point X
is a good approximation of the unstable direction at that
point if N is large enough. Again, to avoid divergence
from the original trajectory, we do not actually iterate
the inverse map. What we do in this case is to choose X
to be the end point of a forward orbit, all the points be-
fore X are the inverse images of X, and we store the Jaco-
bian matrices of the forward map at those points.

The method so described is very efficient. Particularly,
it converges fast. For N =20, the error between the cal-
culated and real stable (or unstable) directions is on the
order of 10~ for chaotic trajectories in the Hénon map
[15]. For the standard map we find a similar rate of con-
vergence.

IV. NUMERICAL RESULTS AND DISCUSSIONS

We have successfully controlled all the unstable period-
ic orbits we set out to control for the standard map of Eq.
(1) by perturbing the parameter p. Figure 3(a) shows the
result of stabilizing the period-7 orbit in Fig. 1(b). Here
the horizontal axis is time and the vertical axis is the x
projection of the orbit. Figures 3(b) and 3(c) show the re-
sult for controlling the period-10 orbit in Fig. 1(c). In
both cases, we start a chaotic trajectory from the initial
condition (xq,y,)=(0.02,0.02). As soon as the trajectory
falls into a small circle of radius 0.01 around any one of
the periodic-orbit points, the temporal-parameter control
of Eq. (7) is turned on to stabilize the trajectory around
the periodic orbits. We set §=0.01 in both cases. An in-
teresting feature of the time series in Figs. 3(a)-3(c) is the
appearance of “holes” in the uncontrolled trajectory.
These holes are the consequence of the stickiness effect of
KAM islands. Namely, when the trajectory enters the
neighborhood of some KAM islands associated with an
elliptic periodic orbit, they tend to stay near the islands
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FIG. 3. Time series for stabilizing (a) the period-7 orbit [cor-
responding to Fig. 1(b)] (x projection). (b) and (c) x and y pro-
jections, respectively, of stabilizing the period-10 orbit [corre-
sponding to Fig. 1(c)]. In (a)-(c), the initial condition is
(x0,Y0)=1(0.02,0.02) and 6=0.01. Note that the initial chaotic
transient is on the order of 10*. In (b), only six distinct values of
x are seen. The reason is because four pairs of the period-10 or-
bit have the same x values. A similar explanation applies to (c),
where only five distinct y values are seen.

for a long time. When this occurs, the trajectory wanders
around the KAM islands and spares the chaotic region in
between the KAM islands, thus leaving unfilled regions
in the projection of the trajectory on the x or y axis.

Another feature in Figs. 3(a)-3(c) is that the initial
chaotic transient before the trajectory can be stabilized is
quite long (on the order of 10* in these cases). This is
again due to the stickiness effect of KAM islands. In dis-
sipative chaotic systems the average length of time for
control {7) scales with the predefined range 8 of parame-
ter perturbations [cf. Eq. (3)] as [1]

(r)~86"7, (8)

where y (finite) is a scaling exponent. So in this case, {7)
is finite if §0. In contrast, in Hamiltonian systems, {7)

(a)

|
>

) t=t0+At (b)

T T
0 10000 20000 30000

At

FIG. 4. An example of an extremely long chaotic transient
(on the order of 10° that arises in the case of stabilizing a
period-5 orbit. (a) The locations and eigenvalues of the period-5
orbit. (b) Time series of x before and after the stabilization. Ini-
tial condition of the trajectory is (x4,y,)=(0.5,0.5) and
8=0.01. This superlong chaotic transient arises because the
period-5 orbit and the initial condition are apparently in
different ‘“layers” of the phase space separated by Cantori
(remains of KAM surfaces) [see Fig. 1(a) and text].
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can be expresed as
(T)~f7’_“d7, 9

which diverges for typical values of the decay exponent a
(a=1.45 in Karney’s numerical experiment [18], a=1.34
in Chirikov and Shepelyansky’s numerical experiment
[19], and @ <1.96 in a theory based on a Markov-tree
model by Meiss and Ott [20]). In practice, this means
that the average transient could be extremely long re-
gardless of the magnitude of §. Figures 4(a) and 4(b)
show such a case in which the periodic orbit to be con-
trolled is a period-5 orbit. Figure 4(a) shows the locations
and the nature of eigenvalues of the orbit and Fig. 4(b)
shows the chaotic transient and the stabilized orbit. Note
that the beginning time in Fig. 4(b) has been reset to O
after an initial time of 1.65X10°% In other words, the
transient in this case is on the order of 10°%. This situation
of an extremely long chaotic transient in controlling
Hamiltonian chaos (in the presence of KAM surfaces) is
fundamentally different from the situation of controlling
dissipative chaotic attractors.

A possible solution to the problem of long chaotic tran-
sients is “targeting” [21], in which a point is brought rap-
idly to the desired place (‘“‘target”) in the phase space via
small parameter perturbations. However, in Hamiltonian
systems, the phase space is divided into layered com-
ponents which are separated from each other by Cantori
[24], remains of KAM surfaces. One typically observes
that particles initialized in one layer of the chaotic region
wander in that layer for a long period of time before they
cross the Cantori and wander in the next layer. This fact
can also be seen in Fig. 1(a), where the density of particles
in different layers shows sharp contrast. If an initial con-
dition and the intended target are in the same layer, the
conventional targeting method [21] is expected to apply
directly [22]. When the initial condition and the target
are in different layers, however, it is not clear whether
such a targeting method can effectively bring the particle
from one layer to another and then to the target. Thus
devising a general scheme of targeting for the layered
Hamiltonian phase-space structure is still an open ques-
tion.

Finally, we briefly discuss the influence of external
noise in controlling Hamiltonian chaos. In the presence

of noise (say, with a Gaussian probability distribution), a
trajectory stabilized around an unstable periodic orbit
will occassionally be “kicked” out of the neighborhood of
that periodic orbit [1]. To effectively achieve the control,
the magnitude of the parameter perturbation must exceed
the average amplitude of the noise. Even so, there is still
a probability of the controlled trajectory being kicked
out. In dissipative systems, this may not be as serious a
problem because after a relatively short chaotic transient,
the trajectory will move back to the desired controlling
region. In Hamiltonian systems, however, when this
occurs, the trajectory may experience an extremely long
transient before it comes close to the controlling region,
as mentioned above. It is then necessary to apply the tar-
geting method to bring the trajectory back after it is
kicked out by the noise. Consequently, we believe that an
efficient and practically applicable package of controlling
Hamiltonian chaos would contain both the control algo-
rithm developed in this paper and a targeting algorithm
yet to be developed.

V. CONCLUSION

The major contribution of the present work is an ex-
tension of the original OGY stabilization method of con-
trolling dissipative chaos to chaotic Hamiltonian systems,
where unstable periodic orbits often possess complex-
conjugate eigenvalues on the unit circle [25]. Particular-
ly, we have used an expression for the temporal-
parameter perturbations not explicitly involving the ei-
genvalues and eigenvectors at each periodic-orbit point.
This is done by utilizing the stable and unstable direc-
tions associated with each orbit point. In addition, we
have presented an efficient algorithm to calculate the
stable and unstable directions for a periodic orbit. We
have also discussed the effect of KAM islands on the con-
trol, which leads us to believe that a targeting algorithm
will be an important ingredient in achieving a practical
control of Hamiltonian chaos.
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