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Random temporal connections promote network synchronization
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We report a phenomenon of collective dynamics on discrete-time complex networks: a random temporal
interaction matrix even of zero or/and small average is able to significantly enhance synchronization with
probability one. According to current knowledge, there is no verifiably sufficient criterion for the phenomenon.
We use the standard method of synchronization analytics and the theory of stochastic processes to establish a
criterion, by which we rigorously and accurately depict how synchronization occurring with probability one is
affected by the statistical characteristics of the random temporal connections such as the strength and topology of
the connections as well as their probability distributions. We also illustrate the enhancement phenomenon using
physical and biological complex dynamical networks.
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I. INTRODUCTION

Collective dynamics on complex networks such as syn-
chronization and stability [1–24] are a central theme in net-
work science and engineering. Most previous studies con-
cerned mainly static networks, i.e., networks whose structures
are fixed in time. Static networks, however, represent only an
approximate description of the real world—networks arising
in biological, physical, and social systems are often time vary-
ing or temporal [25–35]. Collective dynamics on temporal
networks, in spite of their importance, were far less studied.
In this regard, there was a line of work on synchronization and
stability in temporal networks [10,32,36–51]. For example,
moving agent networks were studied [36,37,41,45], where
interactions among the agents are switched on when they are
sufficiently close in the physical space. A result was that, if
all agents are moving randomly, there exists an interval in the
agent density in which synchronization can be achieved and
this interval does not depend on the network size [36,37]. An
alternative setting is a fixed set of zones: only when agents
enter into one of these zones will interactions be activated
[45]. In this case, the network synchronizability depends on
the system size in that synchronization is more difficult for
larger systems, which can be quantified by an algebraic scal-
ing law [45]. The problem of synchronization and stability in
temporal networks has potential applications in applied fields
such as wireless communication and intelligent robotics.

A key previous result on synchronization in temporal
networks is that the expectation value of nodal interaction or
coupling strength in the network must be nonzero and
even sufficiently large to achieve global synchrony
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[10,39,45,46,49]. This result agrees with intuition because,
when the nodal interactions are randomly varying with
time, a certain amount of average coupling is required for
any coherent behavior to emerge in the network. In this
article, we address the following questions: “Is there any
phenomenon that is different from the previous result?” and
“Can synchronization be achieved on temporal networks with
probability one, or equivalently, in a physical sense even when
the expectation value of the coupling in the network is fairly
small or even zero?” Affirmative answers to these questions
will indicate that, comparing with the case of a static network,
interaction matrices that are switched in a completely random
manner, even with zero or/and small average, are sufficient to
enhance network synchronization with probability one.

Although there have been numerous results on the positive
role of additive or multiplicative noise with zero mean to
induce the emergence of a variety of physical phenomena,
including stochastic resonances [52], state transitions [53],
and stochastic synchronization [54], the underlying systems
are described by continuous-time dynamical systems. Com-
paring with the infinitesimal step size or fast switching in the
continuous-time systems, the constant step size or the slow
iteration character hampers the positive role of randomness
in discrete-time systems that are broadly adopted in modeling
and in computations. Thus analytical and numerical advances
on the enhancement of collective dynamics of random tempo-
ral networks in a discrete-time mode are rare, only including
the recent result [55] which presents necessary conditions for
the enhancement phenomena in a probability moment sense,
requiring further improvement. According to the theory of
probability and stochastic processes, results in the moment
sense do not imply results emergent with probability one. In
this article, we establish the necessary and sufficient condi-
tions for the emergence of synchronization with probability
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FIG. 1. Snapshots of a random temporal network. The solid and
dashed lines indicate connections of positive and negative strength,
respectively. A unimodal probability distribution p(x) for the random
variable ξ is also shown.

one through rigorous mathematical analyses and test it by
using realistic biological and physical networks. An implica-
tion is that, in dynamical networks from the real world even
with discrete-time modes, randomness not in the traditional
sense of additive noises on the dynamical variables but in the
temporal and multiplicative variations of the network interac-
tions can be beneficial to the emergence and enhancement of
desired collective dynamics.

II. NETWORK MODELS AND SYNCHRONIZATION
STABILITY CONDITION

We begin by considering a discrete-time dynamical net-
work of N nodes, each represented by the dynamical variable
θ i (i = 1, 2, . . . , N ):

θ i(n + 1) = f (θ i(n)) +
N∑
j �=i

αi j[ f (θ j (n)) − f (θ i(n))]

+
N∑
j �=i

gi jξn[ f (θ j (n)) − f (θ i(n))], (1)

where the nonlinear map f (·) describes the individual nodal
dynamics, and αi j and gi j characterize the deterministic
(fixed) and randomly time-varying connections in the net-
work, respectively, with ξn being the temporal realizations of
a random variable ξ following a given probability distribution.
We assume that ξ can take zero mean: E(ξ ) = 0. A number of
examples of temporal realizations (snapshots) of the network
are illustrated in Fig. 1. The temporal structure described by
the third term in Eq. (1) can be regarded as due to the random
environmental fluctuations in biological or physical systems.

We first examine the case where the deterministic connec-
tions are absent: αi j = 0. For concreteness, we assume that
the individual nodal dynamical system is described by a one-
dimensional map having a global stable or chaotic attractor
and the network matrix G = {gi j} with gii = −∑N

j �=i gi j is
diagonalizable:

G = P−1diag{λ1, . . . , λN }P,

where P = {pi j} is a row-normalized transformation matrix
and λi (i < N ) are the complex eigenvalues that are distinct
from the trivial eigenvalue λN = 0. In this setting, the state of

system (1) in the synchronization manifold is

θ (n) =
N∑

j=1

pN jθ
j (n), θ (n + 1) =

N∑
j=1

pN j f (θ j (n)),

where pN j = 1/N for all j if G is symmetric. The syn-
chronization error e(n) = θ i(n) − θ (n) is governed by the
linearized dynamical evolution:

ei(n + 1) = f ′(θ (n))
[

ei(n) +
N∑

j=1

gi jξnei(n)

]
.

Letting [q1(n), . . . , qN (n)]� = P[e1(n), . . . , eN (n)]�, we ob-
tain a set of variational equations:

qi(n + 1) = f ′(θ (n))[qi(n) + λiξnqi(n)]

for i = 1, . . . , N . The theory of master stability function
[56–59] stipulates that the asymptotical stability of the vari-
ational equations associated with the nontrivial eigenvalues
limn→∞ qi(n) = 0 for all i < N guarantees the emergence of
local synchronization. We thus seek to establish a condition
for asymptotical stability of the generic variational equation:

q(n + 1) = f ′(θ (n))[q(n) + λξnq(n)],

which governs the evolution of an infinitesimal perturbation q
transverse to the synchronization manifold. Taking logarithm
and using inductive calculations, we get

ln |q(n + 1)| = ln | f ′(θ (n))| + ln |1 + λξn| + ln |q(n)|

= ln |q(1)| +
n∑

k=1

ln |1 + λξk| +
n∑

k=1

ln | f ′(θ (k))|.

Thus the exponential growth rate of q(n), defined as
S(q(n)) = (1/n) ln |q(n)|, is given by

S(q(n)) = S(q(1))
n + 1

+
n∑

k=1

ln |1 + λξk|
n + 1

+
n∑

k=1

ln | f ′(θ (k))|
n + 1

.

The strong law of large numbers [60] and the ergodic theory
of chaotic dynamical systems [61] give

lim
n→∞ S(q(n)) = E(ln |1 + λξ |) + λL

almost surely, where “almost surely” refers to “with proba-
bility one” or “in a physical sense,” E(·) is the expectation,
and λL is the Lyapunov exponent of f in the synchroniza-
tion manifold. The necessary and sufficient condition for the
asymptotical stability with probability one is thus given by
[ASC],

E(ln |1 + λξ |) < −λL,

which further leads to a condition for local asymptotical syn-
chronization to emerge with probability one in the networked
system (1): E(ln |1 + λiξ |) < −λL for all i < N [SEC]. In the
special case where ξ is deterministically set as unity and the
Lyapunov exponent λL is positive, the condition [SEC] can
be violated if the transverse spectrum λi has both positive
and negative eigenvalues. However, if ξ is random, some
appropriate choice of its distribution is able to induce syn-
chronization. More importantly, the above arguments indicate
that, in discrete-time systems, the real strength of the random
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FIG. 2. Emergence of synchronization in temporal networks with
randomly varying connections governed by discrete or uniform
probability distributions. Shown are the stability regions fulfilling the
condition [ASC] in the λ-λL plane for different probability distribu-
tions. In (a)–(d), the regions are below the highlighted boundaries
[solid (green) curves], and the colors represent the values of the
exponentially convergent or divergent rates. The distributions in
(e)–(g) are with discrete values with identical probability, while the
distribution in (h) takes on an infinite number of continuous values
with a uniform probability.

interactions cannot be counted directly as the expectation of
the interaction matrix per se, while it should be interpreted as
the expectation of its logarithm forms in the conditions [ASC]
and [SEC]. Observing the influence of the logarithm terms
is also consistent with the conventional requirement of the
classical results on the convergence in discrete-time systems.

III. SYNCHRONIZATION STABILITY CONDITION
ANALYTICS: FROM DISCRETE-VALUED DISTRIBUTION

TO CONTINUOUS-VALUED DISTRIBUTION

We derive the criteria for selecting synchronization-
enabling probability distribution. For simplicity, we drop
the superscript i and focus on the condition [ASC]. Con-
sider the case where the zero-mean random variable ξ takes
on discrete values x j with the corresponding probabilities
p j ( j = 1, . . . , v). The condition [ASC] becomes

v∑
j=1

p j ln |1 + λx j | < −λL.

To be concrete, we let x j take on values from the set of
finite elements: {−1, . . . ,−1 + 2−k,−1 + 21−k, . . . , 1} with
identical probability pj ≡ p = (2k+1 + 1)−1 and real-valued
transversal eigenvalue λ. As shown in Fig. 2(a), a region of
twin towers of an infinite height, which fulfills [ASC], appears
in the λ-λL plane for the distribution of k = 0 [Fig. 2(e)]. The
region is above the line λL = 0, manifesting that just random
temporal connections are sufficient for achieving synchroniza-
tion. Figures 2(b) and 2(c) show a rapid growth in the number
of towers as k increases to larger values [e.g., k = 2, 3 in
Figs. 2(f) and 2(g)]. When p(x) becomes a continuous-valued
distribution, the towers disappear abruptly and small twin
towers appear, as shown in Figs. 2(d) and 2(h), where ξ

follows a uniform distribution. We thus see that continuous-
valued random variables lead to bounded and smaller stability

regions in the λ-λL plane, while discrete random variables
yield unbounded stability regions.

Consider the case where ξ follows the Cauchy-Lorentz
distribution [62,63]:

p(x) = c
1

π

1

c2 + (x − d )2

with c > 0. For this unimodal and continuous-valued distribu-
tion, using the theorem of residues [64] and the calculations
presented in the Appendix makes the condition [ASC] become

E(ln |1 + λξ |) =
∫ +∞

−∞
ln |1 + λx|p(x)dx

= Re{ln[1 + λ(d ± ic)]} < −λL, (2)

where Re{·} is an operator taking the real part of a given num-
ber. For a real-valued transverse eigenvalue λ, the condition in
(2) becomes

ln
√

(1 + λd )2 + λ2c2 < −λL.

Specifically, for d = 0, which corresponds to a distribu-
tion centered at the origin with zero expectation, we get
ln

√
1 + λ2c2 < −λL. However, this condition fails, regard-

less of the network topology, when the dynamics in the syn-
chronization manifold are chaotic (i.e., λL > 0). The tenabil-
ity of the condition is guaranteed only for nonzero values of
d (nonzero expectation). For example, if d > 0, [ASC] holds
for some appropriately selected negative λ and sufficiently
small c satisfying the relation (1 + λd )2 + λ2c2 	 1. For
a symmetric network G with positive elements gi j (i �= j),
all transverse eigenvalues λi are negative, giving rise to the
remarkable phenomenon that random temporal connections
lead to the emergence of local synchronization.

Now consider the case where ξ obeys a bimodal probability
distribution:

h(x) = 1

2π

[
c1

c2
1 + (x − d )2

+ c2

c2
2 + (x + d )2

]
,

where c1,2 with c1 + c2 = 2 are the widths of the two peaks
in h and 2d > 0 is the distance between the two peaks. This
distribution is symmetric with zero mean [65] for c1,2 = 1.
Following the analysis with the unimodal distribution, we
obtain [ASC] as

E(ln |1 + λξ |) =
∫ +∞

−∞
ln |1 + λx|h(x)dx

= 1

2
Re{ln{[1+λ(d ± ic1)][1+λ(−d ± ic2)]}}

< −λL. (3)

For real-valued λ, condition (3) becomes

ln
[√

(1 + λd )2 + c2
1λ

2
√

(1 − λd )2 + c2
2λ

2
]

< −λL,

which generates a stability region in the λ-λL plane. As the
peak-to-peak distance 2d is increased, the region contracts
horizontally and stretches vertically, as shown in Figs. 3(a),
3(b), 3(e), and 3(f). We also find that, if the distribution h is
asymmetric, the stability region becomes asymmetric as well
but in the opposite order. Compared with the symmetric case,
we have that the inequality c1 < c2 (c1 > c2) allows λL to have
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FIG. 3. Emergence of synchronization in temporal networks with
randomly varying connections governed by continuous probability
distributions. Shown are the stability regions in which the condition
[ASC] holds in the λ-λL plane for different bimodal distributions
of the random connection variable ξ . The solid (red) curves in
(a)–(d) and the color bar have the same meanings as in Fig. 2. The
distributions in (e) and (f) are symmetric but with different peak
distances, and the distributions with c1 < c2 (g) and c1 > c2 (h) are
asymmetric with their higher peaks at different loci.

a larger selection range for networks whose matrix G has real
λ < 0 (λ > 0), as shown in Figs. 3(c), 3(d), 3(g), and 3(h).

To gain further insights, we investigate the condition
[ASC] for complex-valued λ. As shown in Fig. 4, for λL =
0.15, two leaflike stability regions in λ arise separately in
the complex plane. The two regions are symmetric only
for c1,2 = 1, for which a larger value of d results in larger
areas of the regions with a shorter distance between them, as
shown in Fig. 4(a). Making the distribution h asymmetric will
expand one region but shrink the other, as shown in Fig. 4(b),
implying that a smaller value of c1 with c1 < c2 enables
a diagonalizable network matrix G with positive elements
gi j (i �= j) to have a larger spectrum gap, i.e., a longer distance
between the largest and the smallest norms of the transverse
eigenvalues.

IV. PHYSICAL AND BIOLOGICAL EXAMPLES

We can now address the key question of whether
and how randomly varying connections can induce global
synchronization in physical or biological networks whose
deterministic version does not permit synchronization.

-0.5 0
-0.05

0

0.05

0 0.5
-0.05

0

0.05
(a) (b)

FIG. 4. Stability condition for complex eigenvalues. Shown are
the stability regions satisfying the condition (3) in the complex plane
of λ for λL = 0.15: (a) c1,2 = 1 and (b) d = 3. The horizontal dashed
line coinciding with the real axis corresponds to the dashed line
λL = 0.15 in Figs. 3(a)–3(d).
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FIG. 5. Random connection induced synchronization in a small-
world network of liquid-crystal spatial light modulators. Shown are
the synchronization probability versus the strength η of randomly
varying connections and m for different values of the reconnection
probability pr . The system parameters are a = 4.7 and K = 0.1,
and the Lyapunov exponent of the individual nodal dynamics is
λL ≈ 0.25. The probability is calculated using 100 realizations of the
small-world network, each of size N = 100.

The first example is an experimental liquid-crystal spatial
light modulator with a spatially dependent phase shift [66].
A possible relation between the phase shift and the captured
light, as generated by optical polarization, is a nonlinear map
given, e.g., by

f (θ ) = a

2
(1 − cos θ ).

Assuming that the deterministic network has a small-world
structure of one-dimensional lattice, we have in system (1)
αi j = [(1/(2m)]Ksi j , gi j = [1/(2m)]si j , where K is the de-
terministic coupling strength, si j ∈ {0, 1}, and the connection
matrix S = {si j} is symmetric with pr being the reconnecting
probability and 2m the number of nearest neighboring nodes
before reconnection [67]. Random fluctuations are described
by ξn = ηζn, where η is the fluctuation intensity and all ζn

independently obey a distribution that takes on the values
±0.2 with equal probability. For η ∼ 0, there is no synchro-
nization, as shown in Fig. 5. Interestingly, when we turn
on the value of η from zero, synchronization emerges. In
particular, for the values of η and m in an ivorylike region,
the synchronization probability is greater than 50% and can
even reach unity, as shown in Fig. 5. We have verified the
phenomenon directly and analytically through the condition
[ASC] by exploiting the matrix spectrum S of small-world
networks [68]. As shown in Fig. 5, the synchronization region
is also dependent on the reconstructing probability pr . We find
that an optimal value of pr in (0, 1) can maximize the area of
the ivorylike stability region.

Our second example is a neuronal network for which the
nodal dynamical system is two dimensional:

xi(n + 1) = f (xi(n)) +
N∑

j �=i

ai j
n [ f (x j (n)) − f (xi(n))],
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FIG. 6. Random connection induced emergence of synchroniza-
tion in a neuronal network. (a) Synchronization error [1/(N −
1)]

∑
i �=1 ‖x1(n) − xi(n)‖ in time for different values of the half fluc-

tuation band u. (b) Synchronized spiking dynamics of the membrane
potential variable of the mean field. (c) Minimization of the quantity
ζ corresponding to the value of u in (a).

where f (x) = [4.9(1 + x2
1 )−1 + x2, x2 − 0.001(x1 + 1)]� de-

scribes the dynamics of an individual neuron [69]. The net-
work has size N = 100 with connection matrix elements given
by ai j

n = [1/(2m)](K + ξn)si j , where the matrix S = {si j} de-
fines a small-world network and ξn is uniformly distributed
in [−u, u]. Figure 6(a) shows that the synchronization error
diminishes as the value of u is increased from zero to about
1.25. The synchronized spiking dynamics of x̄1(n) are shown
in Fig. 6(b), where x̄(n) = (1/N )

∑N
i=1 xi(n) is the membrane

potential of the mean field. The variational equations with
respect to the synchronization manifold are

q(n + 1) = � f (x̄(n))[1 + (K + ξn)λ j]q(n),

where � f is the Jacobian matrix of f and λ j is the transverse
eigenvalue of the matrix S/(2m). The quantity

ζ = max
j

{
E[ln |1 + λ j (K + ξ )|] + λL

max

}
< 0

can be used to characterize the synchronization stability,
where λL

max is the largest Lyapunov exponent of f in the
synchronization manifold M. As shown in Fig. 6(c), we have
ζ < 0 for u ∈ (1.00, 1.47) and it approaches a minimum for
u ≈ 1.25. That is, as the random variations in the network
connections (even of zero expectation) are tuned up, synchro-
nization emerges.

V. CONCLUDING REMARKS

To summarize, we find that making the interaction ma-
trix within a network randomly varying with discrete-time
iterations, even when the expectation value of its random
variations is fairly small or/and zero, can enhance or induce
synchronization with probability one which otherwise would
not possible either in a static setting or in a deterministic
temporal setting. Our mathematical analysis and demonstra-
tion using physical and biological networks suggest that the
finding holds generally true for different types of network
topologies and distributions of the interactions. A combina-
tion of randomness and temporal variations in the structure
of a network, not in the traditional sense of additive random

noises, thus has the benefit of promoting synchronization, a
type of collective dynamics that are relevant to networks in a
variety of natural and engineering systems.

Moreover, since finding optimal parameters in machine
learning and solving continuous-time systems or complex
networks usually require discrete-time iteration algorithms,
our findings can be beneficial to promoting the computational
performance of these algorithms when particular forms of
randomness are taken into account. Also, as the iteration
step size becomes infinitesimal, the stability condition derived
from the discrete-time algorithm could become the stability
condition for the continuous-time systems, which provides an
alternative way to depict how particular forms of randomness
promote synchronization emergent in continuous-time com-
plex networks. Additionally, the uncoupled nodal dynamics
are supposed to be all identical in the above discussions;
however, the method developed in the current article, with
standard continuum techniques for investigating synchroniza-
tion of Kuramoto’s oscillators [63], can be further generalized
to find synchronization-enabling randomness for networks
with nodal dynamics of a heterogeneous nature. All these
become our present or/and future research topics.
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APPENDIX: EVALUATION OF AN INTEGRAL ARISING
FROM SYNCHRONIZATION STABILITY ANALYSIS

In our mathematical analysis of synchronization stability
of randomly time-varying networks, the following integral
arises:

E(ln |1 + λξ |) =
∫ +∞

−∞
ln |1 + λx|p(x)dx,

where the singularity of the function ln(1 + λz) of complex
variable z is located either on the upper (lower) half of the
complex plane (case A) or on the real axis (case B).

For case A, we calculate the integral inside a semicircle,
denoted by 	R = [−R, R] ∪ CR, on the complex plane:∮

	R

ln(1 + λz)p(z)dz =
{∫ R

−R
+

∫
CR

}
ln(1 + λz)p(z)dz,

where the curve CR is set on the lower (upper) half of the
complex plane if the singularity of ln(1 + λz) is on the up-
per (lower) half of the plane. According to the theorem of
residues, we obtain that the value of the integral is ln[1 +
λ(d ± ic)] for sufficiently large R. The second integral goes
to zero in the limit of large R. Letting R → +∞, we have∫ +∞

−∞
ln |1 + λx|p(x)dx = Re{ln[1 + λ(d ± ic)]},
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FIG. 7. Integral region circumscribed by the directional and
closed curve 	R,ε = [− 1

λ
+ ε, R] ∪ CR ∪ [−R,− 1

λ
− ε] ∪ γε .

where Re{·} is an operator taking the real part of a given
number.

For case B, assuming that the singularity z = −1/λ (λ �=
0) is on the real axis, we analyze the function ln(1 + λz) of z
inside the region

G =
{

z ∈ C : z �= −1

λ
, −π

2
< arg

(
z + 1

λ

)
<

3π

2

}
,

where arg(·) is an operator taking the argument of a given
complex number. Since z = −1/λ is on the real axis, λ is a
real number. Suppose we have

z + 1

λ
=

∣∣∣∣z + 1

λ

∣∣∣∣eiθ ,

with −π

2
< θ <

3π

2
. We let

ln(1 + λz) = ln(λ) + ln

∣∣∣∣z + 1

λ

∣∣∣∣ + iθ,

where we define ln(λ) = ln |λ| + iπ for λ < 0 and ln(λ) uses
its regular definition for λ > 0.

Denote by 	R,ε a closed curve in the complex plane, as
shown in Fig. 7. Integration of the function ln(1 + λz)p(z)
along this closed curve can be separated into four parts:∮
	R,ε

ln(1 + λz)p(z)dz

=
{∫ R

− 1
λ
+ε

+
∫

CR

+
∫ − 1

λ
−ε

−R
+

∫
γε

}
ln(1 + λz)p(z)dz, (A1)

where CR is a counterclockwise semicircle from R to −R and
γε is a clockwise semicircle centered at −1/λ from −1/λ − ε

to −1/λ + ε.

To evaluate the integrals in Eq. (A1), we first have∫
CR

ln(1 + λz)
c

π [c2 + (z − d )2]
dz

=
∫ π

0
ln(1 + λR eiθ )

ciθ

π [c2 + (R eiθ − d )2]
R eiθ dθ,

where ∣∣∣∣ln(1 + λR eiθ )
ciθ

π [c2 + (R eiθ − d )2]
R eiθ

∣∣∣∣
� cR[ln(1 + R|λ|) + 2π ]

(R − |d|)2 − c2
.

In the limit R → +∞, the estimate tends to zero, yielding∫
CR

log(1 + λz)
c

π [c2 + (z − d )2]
dz → 0

for R → +∞.
Secondly, we evaluate the integral∫

γε

ln(a + λz)p(z)dz

=
∫ 0

π

ε ln(λε eiθ )p

(
−1

λ
+ ε eiθ

)
i eiθ dθ.

Using the boundedness of the probability distribution p(z)
in the neighborhood of z = −1/λ and the property of
ε ln(λε eiθ ) → 0 for ε → 0+, we have∫

γε

ln(1 + λz)p(z)dz → 0

for ε → 0+.
In the upper half of the complex plane, the function

ln(1 + λz)p(z) has a unique pole: z = d + ic. The theorem of
residues gives∫

	R,ε

ln(1 + λz)p(z)dz = ln[1 + λ(d + ic)]

for sufficiently large R and sufficiently small ε. Consequently,
letting R → +∞ and ε → 0+ in Eq. (A1), we get∫ +∞

−∞
ln(1 + λz)p(z)dz = ln[1 + λ(d + ic)]. (A2)

Finally, taking the real parts of both sides of Eq. (A2), we
obtain

E(ln |1 + λξ |)

=
∫ +∞

−∞
ln |1 + λx|p(x)dx = ln

√
(1 + λd )2 + λ2c2.

This result agrees with that obtained above for case A where
the singularity of ln(1 + λz) is not located on the real axis.
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