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Transportation networks with intrinsic flow dynamics governed by the Kirchhoff’s current law are ubiquitous
in natural and engineering systems. There has been recent work on designing optimal transportation networks
based on biological principles with the goal to minimize the total dissipation associated with the flow. Despite
being biologically inspired, e.g., adaptive network design based on slime mold Physarum polycephalum, such
methods generally lead to suboptimal networks due to the difficulty in finding a global or nearly global optimum
of the nonconvex optimization function. Here we articulate a design paradigm that combines engineering
control and biological principles to realize optimal transportation networks. In particular, we show how small
control signals applied only to a fraction of edges in an adaptive network can lead to solutions that are far
more optimal than those based solely on biological principles. We also demonstrate that control signals, if not
properly designed, can lead to networks that are less optimal. Incorporating control principle into biology-based
optimal network design has broad applications not only in biomedical science and engineering but also in other
disciplines such as civil engineering for designing resilient infrastructure systems.
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I. INTRODUCTION

The functioning of a modern society relies on effective
transportation networks. To design and optimize such net-
works with high efficiency and robustness is a significant but
extremely challenging problem. For example, as international
exchanges of population and goods intensify, the demand to
design efficient and robust transportation networks [1,2] is
becoming increasingly high. With advancement of urbaniza-
tion in developing countries, there is an ever growing need
for optimal urban transportation networks [3,4]. With the
tremendous population growth in many metropolitan areas
in the world, how to design highly efficient water distribu-
tion networks [5–8] and power grids that are susceptible to
cascading failures [9,10] becomes critical in infrastructure,
sustainability, and electrical engineering. Traditionally, one
aimed to design optimal transportation network by maximiz-
ing the transport efficiency at a fixed cost, and there were
mathematical results that the topology of an optimal network
depends on the convexity of the cost function [11,12]. Later,
it was shown [13] that minimizing the dissipation rate under a
global constraint is equivalent to minimizing the cost function
[11]. The mathematical underpinning of these studies is the
principle of Lagrange multipliers, which typically yields only
local minima of the cost function. To attain a global minimum
has thus been a critical issue. In this regard, a mathematical
proof exists that, subject to a global constraint, the optimal
transportation network should have a treelike and loopless
structure [14]. However, if there are fluctuations in the source
and/or sink or if the transport edges are damaged, then loops
can appear in the optimal network structure [15,16]. Recently,
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global resilience of optimal transportation network in re-
sponse to failures has been investigated [17,18]. In designing
optimal transportation networks subject to global constraints,
the principle of Lagrange multipliers is in fact the golden
standard.

In natural and especially biological systems, networks
that transport energy, chemicals, nutrients, or materials are
ubiquitous [19–21]. Examples include leaf veins of plants that
deliver and spread nutrients, vascular systems of animals that
carry oxygen to the whole body through blood circulation,
and river networks that govern the flow of water in cer-
tain geographical regions [7,22–24]. Such “nature-designed”
networks in general function well in terms of minimizing
the “cost” or dissipation and maximizing transport efficiency
with reasonable fault tolerance [25]. It is of general inter-
est to design optimal transportation networks as inspired by
natural or biological principles. In this regard, there was a
method aimed at minimizing the global energy dissipation
[26]. A model of adaptive dynamics was articulated [27] for
designing optimal transportation networks inspired by slime
mold Physarum polycephalum, which was based on a positive
feedback between the fluxes of nutrients through and the con-
ductivity of the tubes of the biological organism. Especially,
the conductivity of a tube (an edge) will increase with the
nutrient flux through it and, when the flux is terminated,
the conductivity will decrease exponentially to zero. The
adaptive-dynamics-based design method is a self-organized
process without any centralized control and explicit global
information, with the underlying process being to enhance
the existing strong tubes and degrade the redundant edges in
the network. During the process, the global energy dissipation
is minimized. The design principle based on locally adaptive
dynamics was used in designing the Tokyo rail system [26]
and the major transport networks in Mexico and China [28].
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When there are strong fluctuations in the flow distribution, the
adaptive-dynamics-based approach tends to generate optimal
networks with a hierarchical loop structure [29].

While mother nature always gives us the best possible and
most optimal design, because of the structural and dynamical
complexities of these networks, it is often difficult to fully
comprehend and grasp the underlying design principles. One
at best can only hope to have an approximate understanding
of these principles. In fact, the biologically inspired adap-
tive dynamics approach has drawbacks. For example, while
ideally one would hope to generate networks according to
the global minimum of some cost or energy function, the
optimal transportation network structure designed based on
adaptive dynamics [26] is the result of reaching only a lo-
cal minimum of the cost function. A recent work [30] has
revealed that adaptive dynamics coupled with the growth
of the underlying biological tissue can drive the system to
transportation network structure with nearly global optimum
(NGO). Mathematically, the biological growth effect can be
modeled by a time-dependent, increasing term in the equa-
tions underlying the adaptive dynamics. While incorporating
a growth mechanism into the network optimizing process has
fundamental biological support, there are natural or engineer-
ing systems in which growth is not important, such as water
transport networks. An interesting question is then whether
NGO transportation networks based on adaptive dynamics can
be designed without any growth mechanism.

In this paper, we articulate and investigate the principle
of incorporating control into adaptive dynamical evolution to
arrive at NGO transportation networks without the need to im-
pose any growth mechanism. The basic idea is schematically
illustrated in Fig. 1. Specifically, we randomly choose a set
of edges and add control signals to the equations governing
their adaptive dynamical evolution. The system will then
evolve into one with a hierarchical structure with high total
dissipation E , as shown on the right side of Fig. 1(a). A
suitable control signal can remove the hierarchical structure so
as to reduce the total dissipation. Extensive control, e.g., con-
trolling all edges, can lead to an NGO transportation network,
as shown on the left side of Fig. 1(a). However, the scheme to
apply a control signal to each and every edge in the network
may be unrealistic. We find that a temporal control strategy in
which a random, time-dependent subset of edges are chosen
to be controlled in every fixed time interval, as shown in
Fig. 1(b), can be advantageous. Although only a small fraction
of the edges are subject to control in any given time interval,
the end result is an NGO transportation network after a long
time evolution. Variations in the control such as targeting the
edges with relatively small values of conductivity can also
lead to an NGO network solution, as shown in Fig. 1(c).
Extensive computations show that diverse strategies to control
locally adaptive dynamics can in general achieve the goal
of generating an NGO transportation network. Thus, while
it is extremely difficult to find an exact global minimum of
the complex nonconvex cost function, realistic but nontrivial
control can lead to transportation networks corresponding to
solutions as close to the global minimum as possible. We note
that, biologically, for an organism such as P. polycephalum
[31], the control signal could be time-dependent light illumi-
nation. While the manifestation of the control signal depends

FIG. 1. Controlling adaptive dynamics to generate nearly opti-
mal transportation network structure. For different control strategies,
the effects are different. The green surface illustrates the underlying
“tissue” and the blue lines represent the connected tubes. The total
dissipation of the transportation network is E . The edges within the
black circles are controlled ones. (a) Strategy example 1: A control
signal is applied to every edge. After evolving the adaptive dynamics
for a long time, a nearly optimal network structure with low total
dissipation emerges, as indicated by the two left panels. However, if
control signals are added to only a small subset of randomly chosen
edges, then the resulting network will possess high total dissipation,
as demonstrated by the two right panels. (b) Strategy example 2:
Temporal control where a varying, random subset of edges receive
control signals every certain time interval. This strategy can lead to a
nearly globally optimal transportation network structure. (c) Strategy
example 3: Applying temporal control signals to a subset of edges
with small conductivity. In this case, the final network can also be
nearly globally optimal.

on the specific context, letting it be a power grid, a network
of water transportation channels, or a public transportation
network, our work demonstrates that flexible control strategies
can lead to the most optimal possible of such networks,
providing the designers with more options and a greater level
of freedom.

We note that an alternative global minimization method
has been articulated and studied, one based on simulated
annealing [15], which can generate NGO transportation net-
works with a highly symmetric hierarchical structure and
dense connections. However, the method is computationally
intensive and the final solution depends sensitively on the ini-
tial condition. In comparison, our method is computationally
efficient and robust.

II. ADAPTIVE NETWORK DYNAMICS
AND CONTROL FORMULATION

A. Adaptive dynamics

We consider networks that evolve adaptively in a bounded,
two-dimensional region (a sheet). The sheet can represent
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a tree leaf, a river basin, the power grid or a water supply
network in a city. Initially, we place a mesh on the sheet as a
triangular lattice or Voronoi tessellation. The coarse-grained
network has n tessellation units and m edges among them. Let
Ql be the flux through edge l , which is defined as

Ql = κl
Pi − Pj

Dl
, (1)

where κl and Dl are the conductivity and Euclidean distance of
the edge between units i and j, Pi, and Pj denote the potential
at unit i and j, respectively. For laminar flow transport in the
coarse-grained network, the Poiseuille’s law gives that the
conductivity of the edge connecting units i and j is κi j =
πr4/8η, where r is the radius of the tube and η is the fluid
viscosity. The flow vector Q is defined as

Q = κ · D−1 · A · P, (2)

where D and κ are the diagonal matrices of the edge distance
and conductivity, respectively, P is the vector of potential
of all the units, and A is the m × n incidence matrix of the
coarse-grained network with the property that the sum of all
elements in any row is zero. Each row of matrix A contains
two nontrivial elements only: a 1 and a −1, corresponding to
one edge in the coarse-grained network, and all other elements
are 0. The Kirchhoff’s current law stipulates that the balanced
flow in each unit can be calculated as

AT · Q = I, (3)

where AT is the transpose of the incidence matrix and I is a
vector specifying whether there is a source or a sink at each
unit. In plant biology, the ith element Ii of the vector I records
the sap input into the ith unit or its usage. It is convenient to
set Is = I0 for a source unit and Iu = I0/(n − 1) for a usage
unit. For simplicity, we assume that the network has only one
source unit, while all other units are sinks. The vector I is
given by

I = [−I0/(n − 1), . . . ,−I0/(n − 1), I0,

− I0/(n − 1), . . . ,−I0/(n − 1)]T .

Combining Eqs. (2) and (3), we get the following relationship
between P and I:

AT · κ · D−1 · A · P = I, (4)

with the solution given by

P = (AT · κD−1 · A)† · I, (5)

where † represents the Moore-Penrose pseudoinverse. With
the solution of P by I, substituting Eq. (5) into Eq. (2), we
obtain the dependence of the balanced flow Q on I and κ as

Q = κ · D−1 · A · (AT · κ · D−1 · A)† · I. (6)

Experimentally, it was observed that, in P. polycephalum,
there is a positive feedback between the flux and conductivity
of an edge [26]. This means that a large flux will increase
the conductivity of the edge. However, a small flux will grad-
ually degenerate the edge. In general, the positive feedback
mechanism alone is unable to evolve the system into an NGO
transportation network.

B. Formulation of control

To incorporate control into the dynamical evolution to
obtain an NGO solution of the final network, we assume that
the conductivity κl depends not only on the flux Ql but also
on the control signal g(t, μ):

dκl

dt
= f (|Ql |) − κl + δlcg(t, μ), (7)

where |Ql | is the absolute value of flux Ql and c is an edge
belonging to the set C in which there is a control signal added
to the adaptive dynamical evolution equation of each edge.
If edge l belongs to C, then δlc = 1; otherwise, δlc = 0. The
first term f (|Ql |) in Eq. (7) is the positive feedback between
the flux and conductivity of edge l . In a previous study [26],
two types of forms of f were considered. The first one is
f (|Ql |) = (|Ql |)γ . The second form takes into account the
saturation effect: f (|Ql |) = |Ql |γ /(1 + h|Ql |γ ), where h is
the half-saturation constant. In our work, we use the second
form of f , but we have verified that implementing the first
form yields qualitatively similar results.

We choose the control function g(t, μ) to be a sigmoid
function (a Fermi-Dirac distribution like function), defined as

g(t, μ) = 1

1 + e(t−μ)/σ
, (8)

where μ and σ are parameters. The value of μ determines
when the control signal will change the edge conductance,
where a larger value of μ will lead to a longer delay in the
effect of the control signal. The parameter σ is the decay rate
of the control signal with time. This form of the control signal
is inspired by the growth mechanism in transportation network
design [30]. The basic requirement of the control signal is
that it gradually approaches zero from a positive value. To
be concrete, we consider three methods to choose the control
set C: (1) random choice of the control edges, (2) choosing
edges with small conductivity, and (3) choosing edges with
large conductivity. Our general control strategy is to add a
control signal to each node in the control set C every T0 time
steps, as illustrated in Fig. 1(b). For one realization, we fix
a method to choose the control set and, for a different time
interval of T0 steps, a different control set is chosen. The
control signal g(t, μ) is time dependent, but it does not depend
on the specific control set C. Associated with our control
strategy, there are two limiting situations. The first one is that
the control set C changes every time step (T0 = 1). The second
is a fixed control set: T0 = +∞.

C. Total dissipation and cost constraint

We aim to find the network structure that minimizes the
total dissipation of the transportation process subject to the
cost constraint. For any edge, the dissipation is determined by
the flux through and conductivity of the edge: a larger flux and
smaller conductivity lead to higher dissipation while a smaller
flux and larger conductivity give rise to weaker dissipation.
It would thus seem that edges with larger conductivity are
preferred. However, this is practically difficult due to the cost
constraint. Previously, it was proved [13] that for a concave
cost constraint, the optimization process leads to networks that
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are realistic and feasible (e.g., without requiring arbitrarily
large conductivity).

In general, the total dissipation of the network can be
defined as

E =
∑

l

Dl
Ql

2

κl
, (9)

and the cost constraint is∑
l

Dlκl
β ≡ const, (10)

where β ∈ (0, 1) is the cost limiting parameter. In a gen-
eral sense, the cost constraint is the result of the finite
amount of material available to construct the physical network
[15,16,29]. In order to generate physically realizable net-
works, we demand that the cost function be concave [13]. For
such a choice, it is possible for adaptive dynamical evolution
to minimize the total dissipation E . Incorporating the cost
constraint into the control framework enables us to generate
NGO transportation networks.

D. Dynamical evolution process

We solve the adaptive dynamical equation using the unit
time step, together with the flow balance equation. The con-
ductivity obtained directly from the solution is in general
not consistent with the cost constraint. A previous approach
exploited the method of Lagrange multiplier to generate the
desired conductivity value [32]. However, this approach will
cause unjustified changes in the network structure. We thus
exploit the simple method of rescaling the conductivity. In
particular, from κ̂l , the original conductivity of edge l obtained
from the solution of the adaptive equation, the rescaled con-
ductivity is given by

κl =
(

const∑
l Dl κ̂

β

l

)1/β

κ̂l , (11)

where const is the cost constraint. The evolution process is
then governed by two equations:

Q = κ · D−1 · A · (AT · κ · D−1 · A)† · I,

d κ̂l

dt
= f (|Ql |) − κ̂l + δlcg(t, μ), (12)

where the flux Q is calculated from the controlled adaptive dy-
namics with the normalized conductivity. While convenient,
conductivity normalization is not necessary for realizing an
NGO transportation network. As Eqs. (6) and (2) show, flow
in an edge is not affected by normalization even though
the normalization can affect the potential on a unit. In our
simulations, we set the parameters as I0 = 1, β = 1/2, γ =
4/3 and initial conductivity value κl = κ0 = 1/2. Note that
Dl is the Euclidean length of edge l , which depends on the
lattice structure or Voronoi tessellation.

The main goal of our work is to generate from a coarse-
grained network of n tessellation units and m edges NGO
transportation networks that minimize the total dissipation
[Eq. (9)] subject to the cost constraint [Eq. (10)]. In the coarse-
grained network, there are 1 source and n − 1 sink units.
The optimization process follows the biologically inspired

adaptive equation with control, as described in Eq. (12). The
evolution of the adaptive equation decreases the total dissi-
pation of the designed transportation network gradually and
the total cost based on the normalization process in Eq. (11).
When a suitable control signal [Eq. (8)] is applied to certain
edges, an NGO transportation network emerges.

The protocol to arrive at an optimal transportation network
can then be described, as follows. One starts by generating
a coarse-grained network, where every edge has the same
initial conductance. Based on the initial conductance and the
Euclidean distance of every edge, one calculates the cost
constant using Eq. (10). One then evolves the biologically
inspired adaptive dynamics as in Eq. (12), from which the
flow matrix Q and the relative conductance κ̂ of every edge
that depends on the flow can be calculated. After obtaining
the relative conductance κ̂ , one uses Eq. (11) to normalize
it to generate the constrained conductance κ . Finally, one
repeats this process until an NGO transportation network
has emerged, as signified by the minimization of the total
dissipation by the constrained conductance κ .

III. RESULTS

A. Effect of global control: Emergence of NGO network
structure with minimum dissipation

In the absence of control, the adaptive dynamical evolution
is unable to drive the network to one with an NGO structure,
but control can result in an NGO network, as shown in
Fig. 2. In particular, we begin with a two-dimensional tissue
of a hexagon shape, which is a combination of two identical
triangular lattices, one displaced with respect to the other.
Each triangular lattice has 217 units and 600 edges. Without
control, the final optimal network structure from the adaptive
dynamical evolution contains no hierarchical structure, as
shown in Fig. 2(a). The network structure corresponds to a
local minimum of total dissipation: E ≈ 0.075, as shown in
Fig. 2(c). When a suitable control signal is applied to each
and every edge in the network, an NGO transportation net-
work with a hierarchical structure emerges, where the control
signal is 1/[1 + e(t−250)/50]. As shown in Fig. 2(b), the NGO
network resembles in structure the vein network of a leaf of
some natural plant. The evolution of the total dissipation is
shown in Fig. 2(d), where the total dissipation is E ≈ 0.045,
representing a 40% reduction in the total dissipation with
respect to the case without control. Comparing Figs. 2(c)
with 2(d), we see that, initially, the total dissipation is lower
for the adaptive dynamics without control, but in this case
the network structure cannot evolve to one with an NGO
structure. A global control signal applied to all edges makes
the emergence of an NGO structure possible.

B. Effect of partial control: Nonmonotonic
behavior in dissipation

While a unique NGO transportation network can be ob-
tained by controlling all edges in the network, realistically
only a fraction of the edges are accessible to control, espe-
cially for large systems. It is of practical interest to investigate
the possibility of generating NGO transportation networks
through partial control.
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FIG. 2. Resulting optimal network structure without and with
control. [(a) and (b)] Optimal transportation network structure re-
sulted from the evolution of adaptive dynamics without and with
control, respectively. Edges with conductivity value less than 10−8

are not shown. [(c) and (d)] Time evolution of the total dissipation
without and with control, respectively. The small hexagons denote
lattice units in (a) and (b). The green color represents the value of the
potential in the unit, where a brighter color indicates a lower potential
value. The width of a blue edge is proportional to κ1/4 in (a) and
(b). All edges are subject to control. The optimal transportation
networks in panels (a) and (b) have total dissipation E = 0.074977
and E = 0.045287, respectively. The parameters are h = 0.001, n =
217, m = 600, β = 1/2, and T = 2000. The parameter values for
the control signal are μ = 250 and σ = 50. A movie showing the
continuous evolution of the transportation network structure with
control is provided as Supplemental Material Video 1 [33].

For partial control where an external signal is added to a
fraction r of randomly chosen edges in a triangular lattice, we
first calculate the total dissipation E . Representative resulting
networks for four different values of r are shown in Fig. 3(a),
while the ensemble averaged value of E versus r is shown
in Fig. 3(b). Intuitively, one may expect that, as the fraction
of controlled edges is increased, the total dissipation would
decrease monotonically. However, the result in Fig. 3(b) in-
dicates a nonmonotonic behavior, where the dissipation starts
to increase as the value of r is increased from zero, reaches
a maximum value, and then decreases with r. The network
corresponding to the maximum dissipation has the structure
of a distorted main vein of considerable length, as shown in
Fig. 3(a) for the case of r = 0.32. It is the long vein which
results in the high dissipation, even though the transportation
network has a hierarchical structure. The general observation
is that, if partial control is not strong enough in the sense
that the fraction of controlled edges is not sufficiently large,
control is detrimental to realizing an optimal network with
low dissipation. Note that, for a given value of r, there are
many different choices of the subset of edges for control,
leading to statistical fluctuations in the total dissipation, as
shown in Fig. 3(b). The variance of the fluctuations increases

FIG. 3. Nonmonotonic behavior in total dissipation associated
with partial control. When a control signal is applied to a subset of
edges (partial control), the total dissipation in the long time limit
exhibits a counterintuitive, nonmonotonic behavior with the fraction
of controlled edges. (a) A single realization of the total dissipation
E , where four representative transportation networks resulted from
four different r values are illustrated. The network structure from
left to right corresponds to r = 0.04, 0.32, 0.6, and 0.92, respec-
tively. (b) Ensemble averaged value of the total dissipation E versus
r, where the ensemble size is 10. The control signal is 1/[1 +
e(t−250)/50]. The set of controlled edges is fixed. All other parameter
values are the same as in Fig. 2. The transportation networks emerged
from partial control with systematically increasing values of r are
shown in Supplemental Material Video 2 [33].

with the amount of the dissipation. For r � 1, the total dis-
sipation reaches minimum and the variances tend to zero. (A
detailed discussion of the nonmonotonic behavior is given in
Sec. IV B.)

We test two alternative partial control strategies that target
the edges with small and large conductivity values, respec-
tively, with results shown in Fig. 4. When partially control-
ling the small conductivity edges, a nonmonotonic behavior
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FIG. 4. Total dissipation of transportation network as a result of
selective control. Two selective strategies are tested: one controlling
edges with small and another with large conductivity. (a) Total
dissipation versus the fraction of controlled edges with the lowest
possible conductivity values, together with four representative net-
work structures for r = 0.13, r = 0.52, r = 0.67, and r = 0.8 (from
left to right, respectively). (b) Total dissipation versus the fraction
of controlled edges with the highest possible conductivity values,
together with four representative network structures for r = 0.06,
r = 0.4, r = 0.6, and r = 0.76 (from left to right, respectively). The
control signal is the same as that in Fig. 3. Since initially, all edges
are set with the same conductivity value, we differentiate the edge
conductivity after the first time step. The set of controlled edges is
fixed. All other parameters have the same values as in Fig. 2.

between the total dissipation and the fraction of the con-
trolled edges still occurs, as shown in Fig. 4(a). However,
the transportation network structure with the highest total
dissipation does not possess the structure of a main vein. For
r ∈ [0.5 0.9], there are a number of peaks in the total dissi-
pation with a similar structure for the underlying networks.
The networks for r = 0.52 and r = 0.67 both have a main
but folded vein, where the folds increase the length of the
main vein and result in higher dissipation. In the opposite case

FIG. 5. Phase diagram of total dissipation in a representative
parameter plane. [(a) and (b)] Two different views of the parameter
plane (r, μ), where r is the fraction of randomly chosen edges
subject to control and μ is a parameter characterizing the control
signal. The base lattice system from which the network evolves
is the two-dimensional hexagonal tissue in Fig. 2. The small red
dots in (a) are the numerically calculated values. Due to the high
computational load, a single realization of the evolution process is
used to generate the phase diagram. However, as shown in Fig. 3,
the fluctuations are small in comparison with the value of the total
dissipation itself. (c) Time evolution of the total dissipation (red,
ordinate on the left side) and the corresponding control signals
(blue, right side ordinate) for two points in the phase diagram. The
solid and dashed curves correspond to (r = 1, μ = 250) and (r = 1,
μ = −250), respectively. The set of controlled edges is fixed. Other
parameter values are the same as those in Fig. 2.

of partially controlling edges with large conductivity values,
the total dissipation versus the fraction of controlled edges
exhibits an approximately monotonic behavior, as shown in
Fig. 4(b). As more such edges are controlled, the hierarchical
structure in the network becomes more pronounced.

C. Effect of partial control: NGO network
structure and varying control signal

The abnormal increase in the total dissipation with the
fraction of controlled edges, as exemplified in Fig. 3, is
undesirable, as the control fails to realize the intended goal of
reducing the dissipation and generating a diverse set of NGO
transportation networks. Figure 5 presents a phase diagram of
the total dissipation in the parameter plane (r, μ), where r
is the fraction of randomly chosen edges subject to control
and μ is a parameter characterizing the control signal. We
see that choosing a different control signal can remove the
undesired behavior. For example, the abnormal increase in the
total dissipation occurs for μ � −150. Choosing μ � −150
will then remove the behavior. However, if the value of μ is
too small, the effect of control will diminish. Empirically, for
the parameter setting in Fig. 5, a viable range for the value
of μ is μ ∈ (−350,−150) for σ = 50, where the dissipation
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decreases monotonically as more edges are subject to control
and a diverse set of NGO transportation networks can be
generated through partial control. Figure 5(c) shows the time
evolution of the total dissipation and the underlying control
signals for μ = −250 and μ = 250, where the signal for the
former [g(t,−250)] is much weaker than the latter [g(t, 250)].
The two control signals lead to similar NGO networks, but
the number of the time steps required to achieve the NGO
solution for the former is less than that for the latter. It is
of practical interest to investigate whether a diverse set of
NGO transportation networks can be generated through partial
control.

D. Effect of varying control switching time interval

In our control method, a fraction r of edges are randomly
selected during each time interval T0. We find that, reducing
the value of T0 so as to make the set of controlled edges
change more frequently can lead to NGO networks with small
value of r, as shown in Figs. 6(a) and 6(b). For example,
Fig. 6(a) shows, for μ = 250, the emergence of an NGO
network when 50% of the edges are subject to control and the
set of controlled edges switches every 10 time steps. However,
if the value of T0 is larger, e.g., T0 = 1000, then the total
dissipation will still exhibit a nonmonotonic behavior with r.
A similar behavior occurs for μ = −250, where the desired
switching time interval is T0 < 100, as shown in Fig. 6(b).
When specifically targeting edges with relatively small or
large conductivity values, we obtain similar results, as shown
in Figs. 6(c)–6(f), with the feature that rapid switching of the
set of controlled edges is more effective if these edges have
small conductivity values.

E. Effect of positive feedback parameter γ

Here we studied how different values of the positive feed-
back parameter γ affect the total dissipation of the controlled
adaptive dynamics. Figure 7 shows the total dissipation versus
γ , with three specific examples of the resulting NGO network.
For γ ≈ 4/3, the total dissipation reaches a minimum. A
discontinuous change in the total dissipation occurs between
γ = 1 and γ = 1.02, due to a characteristic difference in the
structure of the resulting network. In particular, for γ = 1,
the network has a structure with more uniformly distributed
conductivity, while the transportation network for γ = 1.02
has a main vein structure. For γ = 2, the dissipation is high
because the final network has a hierarchical structure with a
relatively long main vein with a high conductivity value, so
the conductivity values of the edges between the main vein
and the sink units are small.

IV. THEORETICAL INSIGHTS

In the field of optimal transportation network design,
previous results were mostly numerical [14,26–29], as it is
not feasible to develop an analytic theory to understand the
adaptive dynamical processes leading to NGO transportation
networks. When control is present, analysis becomes even
more difficult. Nonetheless, theoretical insights into certain
aspects of the adaptive dynamics subject to control can be
gained through a physical analysis.

FIG. 6. Phase diagrams of total dissipation in the (r, T0) param-
eter plane. [(a) and (b)] Controlling a randomly selected set of
edges, [(c) and (d)] controlling a set of targeted edges with small
conductivity, and [(e) and (f)] controlling a set of targeted edges
with large conductivity. Panels in the left (right) columns correspond
to μ = 250 and μ = −250, respectively. Legends are the same as
those in Fig. 5. Other parameters are σ = 50, T = 5000. For T0 = 10
and μ = −250, the resulting transportation networks for different
values of r are shown in Supplemental Material Video 3 [33].
The resulting networks by targeting r fraction of edges with small
conductivity values for (T0 = 1, μ = 250) and (T0 = 10, μ = −250)
are shown in Supplemental Material Videoes 4 and 5, respectively
[33]. The results show that controlling the smallest conductance
edge is better than controlling the largest conductance edge or a
randomly picked edge, indicating the possible critical role played by
the small-conductance edges.

A. Scaling law between flow and conductance

Previously, it was proved that, under a global constraint,
where adaptive dynamics lead to optimal transportation net-
works with a treelike, loopless topology [14], an optimal flow
scaling law exists for this kind of systems [8,34]. Scaling
laws between flow and conductance for both homogeneous
and disordered transportation networks were also studied
[35]. Numerically, we find that, when control is present, the
NGO transportation networks possess a hierarchical, treelike
structure. To gain theoretical insights, it is useful to derive the
scaling law between flow and conductance in the presence of
control.
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FIG. 7. Effect of positive feedback parameter γ on NGO net-
work. The control scheme is to apply an external signal to 50% of
the edges with small conductivity for T1 = 10 and μ = 250. The
three networks shown obtained after 2000 time steps are for γ = 1,
γ = 1.02, γ = 2 (from left to right). Other parameters are the same
as those in Fig. 2.

Say the coarse-grained network of the underlying tissue
has n tessellation units and m edges between them. The NGO
transportation network has n − 1 edges, as shown in Fig. 2.
Without or with control, a similar algebraic scaling relation
between the flow through an edge and its conductivity value
arises, as shown in Fig. 8. In the three cases demonstrated, the
algebraic scaling exponent 1/γ exhibits the same approximate
value of 0.75. For edge l edge, we can thus write ln (|Ql |) =
a ln (κl ) + b, where a = 1/γ and b is an undetermined con-
stant.

We first consider the case of f (|Ql |) = (|Ql |)γ . For t →
∞, we have g(t, μ) → 0. When the adaptive dynamics have
reached a steady state, we have

(|Ql |)γ − κ̂l = 0. (13)

Substituting the flow-conductivity scaling relation into
Eq. (13), we obtain [

eb
(
κ

1/γ

l

)]γ − κ̂l = 0, (14)

so the relationship between κl and κ̂l can be written as

κl =
(

const∑
l Dl κ̂

β

l

)1/β

κ̂l . (15)

Setting λ = const/
∑

l Dl κ̂
β

l , we have κl = λ1/β κ̂l . Substitut-
ing this into Eq. (14) yields

{eb[(λ1/β κ̂l )
1/γ ]}γ − κ̂l = 0. (16)

Rearranging Eq. (16) and setting χ = ebγ λ1/β , we get

(χ − 1)κ̂l = 0, (17)

FIG. 8. Scaling relationship between flow and normalized edge
conductivity. The data points from all the edges with conductivity
value larger than 10−8 are shown. The circles represent numerical
data and the solid lines are fit. For r = 0, no control is applied, while
r = 0.32 specifies that 32% of the randomly chosen edges are subject
to a control signal characterized by the parameter values μ = 250
and σ = 50. The control signals are fixed in time. For r = 1, each
and every edge receives a control signal. All other parameters are the
same as those in Fig. 3. As the final NGO network has 217 units, the
number of edges with conductivity value larger than 10−8 is 216.

which indicates κ̂l = 0 for the steady state. Because there
are at least n − 1 edges with positive conductivity values, the
quantity κ̂l can have values that are different from the steady
state value. The only possibility to resolve the contradiction
is χ = ebγ λ1/β = 1, validating the flow-conductivity scaling
law for the case of f (|Ql |) = |Ql |γ .

In our simulations, the form of f (|Ql |) is more compli-
cated: f (|Ql |) = |Ql |γ /(1 + h|Ql |γ ). We can argue that the
algebraic flow-conductivity scaling law still holds. In partic-
ular, for t → ∞, we have g(t, μ) → 0. The condition for the
dynamics to reach the steady state is

|Ql |γ /(1 + h|Ql |γ ) − κ̂l = 0. (18)

Substituting the scaling relationship into this equation, we
have:

χκ̂l

1 + hχκ̂l
− κ̂l = 0 (19)

or (χ − 1 − hχκ̂l )κl = 0. The condition under which a steady
state has been reached is κ̂l = 0. For χ ≈ 1, we have χ −
1 − hχκ̂1 ≈ 0, because h is a small quantity (e.g., h = 0.001)
and κ̂l < 1, as explained in Sec. III E. While the argument is
only approximate, it gives indication as to how the adaptive
dynamical process can result in n − 1 distinct conducting
edges, providing a physical reason for the emergence of the
scaling law between flow and conductivity.
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B. Nonmonotonic behavior of total dissipation

To obtain a physical understanding of the counterintuitive
nonmonotonic behavior in the total dissipation versus the
fraction of controlled edges, we begin by identifying the
parameters on which the dissipation depends. Recall the defi-
nition of the total dissipation:

E =
∑

l

Dl
Ql

2

κl
. (20)

Substituting the flow-conductivity scaling relationship,
ln (|Ql |) = ln (κl )/γ + b, into Eq. (20), we get

E =
∑

l

Dle
2bκ

2/γ−1
l = e2b

∑
l

Dlκ
2/γ−1
l . (21)

For γ = 4/3 and β = 1/2, we get E = e2b
∑

l Dlκ
1/2
l =

e2bconst, indicating that a large b value will lead to a higher
value of the total dissipation. The steady-state condition in
Sec. IV A, i.e., χ ≈ 1, indicates that a smaller value of λ

will lead to a higher value of b. Because of the relation
λ = const/

∑
l Dl κ̂

1/2
l , we have that a high value of

∑
l Dl κ̂

1/2
l

corresponds to a small value of λ. The intuition is then that,
to have an NGO transportation network from the adaptive dy-
namics with γ = 4/3 and β = 1/2, one should make the value
of

∑
l Dl κ̂

β

l as small as possible to satisfy the Kirchhoff’s
current law.

To test this result, we show in Fig. 9(a) the values of κ̂
1/2
l

and its accumulative value for all edges with conductivity
larger than 10−8 for the same network as in Fig. 8. Figure 9(b)
shows that the accumulative value for r = 1 for the edges
with the largest conductivity values is larger than those for
r = 0 and r = 0.32 prior to rank < 13. That is, among the
three cases, the network for r = 1 has the largest main vein.
However, for rank > 13, the accumulative value for r = 0.32
is larger than those for the other two cases. For rank > 95,
the accumulative value for r = 0 is larger than that for the
r = 1 case, indicating that the number of small conductivity
edges for r = 0 is larger than that for r = 1. Figure 9(a)
reveals that the main vein for r = 0.32 is longer than that for
r = 1, leading to the highest total dissipation value for r =
0.32 (among the three cases examined). In fact, for r = 0.32,
there are relatively many more large conductivity edges for
12 < rank < 96, as can be seen from the network structure in
Fig. 3.

C. Main factor determining total dissipation

The total dissipation, defined in Eq. (21), is associated with
the steady state of the adaptive dynamics, where the following
condition holds:

χ = ebγ λ1/β ≈ 1. (22)

Replacing κl by κ̂l in Eq. (21), we obtain

E = e2b
∑

l

Dl (λ
1/β )1/γ−1κ̂

2/γ−1
l , (23)

indicating that the total dissipation depends on γ and β in a
complicated manner. Combining Eqs. (23) and Eq. (22), we

FIG. 9. Heuristic understanding of the nonmonotonic behavior
of total dissipation versus the fraction of controlled edges. [(a) and
(b)] The quantity κ̂

1/2
l and its accumulative sum, respectively, for all

edges with conductivity values larger than 10−8. Legends and param-
eter values are the same as those in Fig. 8. The results are arranged
in terms of decreasing conductivity values. The black dashed line on
the left side indicates that the value of κ̂

1/2
l for r = 0.32 is larger than

those for r = 1 and r = 0. The black dashed line on the right side
shows that the accumulative value of κ̂

1/2
l for r = 0 is larger than

that for r = 1.

get

E ≈ λ1/β
∑

l

Dl κ̂
2/γ−1
l . (24)
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Using the relation λ = const/
∑

l Dl κ̂
β

l with const =∑
l Dl0.5β in our system setting, we have

E ≈
(∑

l Dl κ̂
β

l

)1/β( ∑
l Dl κ̂

2/γ−1
l

)
( ∑

l Dl0.5β
)1/β

. (25)

To assess how the total dissipation depends on the feedback
parameter γ , we set β = 1/2 to obtain

E ≈
(∑

l Dl κ̂
0.5
l

)2( ∑
l Dl κ̂

2/γ−1
l

)
( ∑

l Dl0.50.5
)2 . (26)

As the value of γ is changed systematically, the total dissi-
pation also changes continuously—there is no discontinuity.
This means that the discontinuity in Fig. 7 must be due to the
change in the structure of the transportation network as γ is
changed, indicating a weak dependence of the dissipation on
the feedback parameter.

Similarly, to understand the dependence of the total dissi-
pation on the cost-limiting parameter β, we fix γ = 4/3 to
obtain

E ≈
(∑

l Dl κ̂
β

l

)1/β( ∑
l Dl κ̂

0.5
l

)
( ∑

l Dl0.5β
)1/β

, (27)

giving a sophisticated dependence of E on β. Numerically, we
find that the dependence is relatively weak.

The heuristic analysis of the total dissipation on the param-
eters γ and β thus reveals a rather weak dependence, suggest-
ing that the network structure has a predominate influence on
the dissipation.

V. DISCUSSION

Designing optimal transportation networks is relevant to
applied science and engineering fields such as computer sci-
ence and civil engineering in terms of specific systems such as
computer networks, water supply networks, the power grids,
and communication networks. Yet the basic physical mech-
anism and principle underlying the achievement of globally
optimal networks remain elusive. For uncovering the dynam-
ical origin of how a complex adaptive networked system can
evolve into an optimal state, insights from natural systems,
especially biological systems, are useful, as optimal trans-
portation networks abound in plants and animals in nature.
However, because of our limited understanding of the work-
ing of these natural systems, biologically inspired adaptive
dynamics-based design can fail to yield even NGO networks
[26]. Recognizing that external driving is crucial for growth in
biological systems [30], we articulate and investigate the idea
of incorporating control into biologically inspired adaptive
dynamics for generating NGO transportation networks.

We introduce a general class of sigmoid functions (simi-
larly to Fermi-Dirac distribution in statistical physics, which
has been widely used in various areas of complex dynami-
cal systems) as the control signal, whose strength gradually
decays with time evolution of the adaptive dynamics. We find
that partial control, i.e., applying control signals to only a frac-
tion of the edges in the network, can generate unexpectedly
high total dissipation, as represented by a counterintuitive,
nonmonotonic behavior of the dissipation in its dependence

on the fraction of the controlled edges. We have provided
a heuristic explanation for the nonmonotonic behavior. Im-
portantly, we find that, with certain temporal control strategy,
there exist optimal control signals of small amplitudes that can
eliminate this undesired nonmonotonic behavior and lead to
NGO transportation networks. In particular, the key ingredient
of our control strategy is being “temporal” in the sense that
we do not choose a fixed set of edges for control but randomly
switch the set of the same size from time to time. The temporal
variation in the control set, coupled with targeting the edges
with small conductivity values, can yield NGO transportation
networks, regardless of system details such as the initial
network structure and values of the system parameters. While
we can find the NGO transportation networks by varying the
control set of edges, at the present there is no first-principle
method that can be used to identify the set of minimum control
links so as to generate NGO transportation networks in a
self-consistent manner.

Our work broadens, significantly, the ways to design NGO
transportation networks by exploiting both biologically in-
spired adaptive dynamics and control. This, in principle, can
generate an infinite number of distinct NGO networks (the
cases demonstrated in this paper are only a small set of
illustrative examples). This is consistent with the proclaim
of prominent mathematician and philosopher Gottfried W.
Leibniz: “There are no two identical leaves in the world.”
Indeed, the fact that there exist different leaf vein structures
indicates that they all belong to the NGO type. Thus, while
there are no two identical leaves in the world, we find the
following claim appropriate to conclude this paper: All the
leaves have an NGO structure.
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APPENDIX: EFFECTS OF TISSUE SHAPE
AND DISORDERED COARSE-GRAINED GRID

To address the issue of whether variations in the tissue
shape would affect the ability of the evolutionary dynamics
to yield an NGO transportation network, for simplicity we
consider the setting where a control signal is applied to each
and every edge and study three combinations of the tissue
shape and lattice structure. The results are shown in Fig. 10.
Specifically, shown in Figs. 10(a), 10(b) and 10(e) are the final
transportation networks resulting from a leaf-shaped tissue,
from such a tissue with a disordered coarse-grained grid, and
from a circular tissue, respectively. The corresponding time
evolution of the total dissipation is shown in Figs. 10(c),
10(d) and 10(f), respectively, which exhibit a similar pattern.
The tissues in Figs. 10(a) and 10(e) have a triangular lattice
structure and all resulting networks are of the NGO type.
The results suggest that the tissue shapes and lattice structure
have no effect on the ability for a fully controlled system to
evolve into a transportation network of the NGO type.
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FIG. 10. NGO transportation networks resulted from different
tissue shapes and disordered coarse-grained grids. All edges receive
a control signal. [(a), (b), and (e)] NGO transportation networks
obtained from a leaf-shaped tissue with a triangular lattice structure,
a leaf-shaped tissue with a disordered coarse-grained grid, and a
circular shape tissue with a triangular lattice structure, respectively.
[(c), (d), and (f)] Time evolution of the total dissipation correspond-
ing to the cases in (a), (b), and (e), respectively. The optimal trans-
portation networks in panels (a), (b), and (e) have total dissipation
E = 0.060704, E = 0.059422, and E = 0.019519, respectively. In
all cases, the evolution time is 2000 time steps, and the control
parameter is μ = 250. For the leaf-shaped tissue, there are n = 291
units and m = 802 edges. For the circular-shaped tissue, there are
n = 301 units and m = 840 edges. Other parameters are the same as
in Fig. 3 in the main text.

When partial control is applied, NGO transportation net-
works can still arise, as shown in Fig. 11, where the tissue
shapes and lattice structure are the same as those in Fig. 10.
For a leaf-shaped tissue with a triangular lattice structure,
partial control does not affect the total dissipation associated
with the final NGO network [cf. Fig. 10(a) and Fig. 11(a)].
However, when a disordered coarse-grained grid is used, par-
tial control results in a higher amount of the total dissipation,

FIG. 11. NGO transportation network from different tissue
shapes and coarse-grained grid under partial control. The scheme is
to apply a control signal to 50% of randomly chosen edges for T0 =
10. [(a), (b), and (e)] The final NGO transportation networks (after
2000 time steps) from a leaf-shaped tissue with a triangular lattice
structure, such a tissue with disordered coarse-grained grid, and a
circular tissue with a triangular lattice structure, respectively. [(c),
(d), and (f)] The corresponding time evolution of the total dissipation.
The optimal transportation networks in panels (a), (b), and (e) have
total dissipation E = 0.060653, E = 0.064113, and E = 0.019645,
respectively. The strength of the control signal is μ = 250. Other
parameters are the same as those in Fig. 10.

as shown in Fig. 11(b), which is about 8% higher than that
under full control. The reason is that, under partial control, the
main vein tends to bend. For a circular tissue with a triangular
lattice structure, partial control results in a final NGO network
with a more complicated structure with slightly more total
dissipation in comparison with the case of full control, as
shown in Figs. 11(e) and 11(f). We find that using a different
value of the strength of the control signal (e.g., μ = −250) or
targeting a set of edges with small conductivity can result in
qualitatively similar NGO networks.
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