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Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to
fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical
inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm,
we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby
recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation
of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish
the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series
is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes,
is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the
method using combinations of distinct types of binary dynamical processes and network topologies, and provide a
physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction
method contributes an additional piece to the rapidly expanding “toolbox” of data based reverse engineering of
complex networked systems.
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I. INTRODUCTION

Data based reconstruction of complex networked systems
has been an active area of research in network science and
engineering with applications in a wide range of disciplines
[1–43]. A tacit assumption in most existing works is that
continuous-valued nodal time series, either in continuous or
discrete time, are available so that various statistical measures
can be computed for identifying the underlying network
structure. This has led to a diverse array of reconstruction
methodologies [1–44]. For example, from time series the
traditional Pearson correlation can be calculated to reveal the
complex structure of the brain functional and neural networks
[6,7,45,46]. Bayesian estimation has also been used for recon-
structing neural networks [47,48]. Based on continuous-time
series and knowledge about the nodal dynamical equations, a
delayed feedback control scheme can be designed to reveal the
network structure based on the principle of synchronization
[8,23]. For stochastic and nonlinear network dynamics that
generate noisy, continuous-time series, situations can arise
where the network matrix is directly proportional to the dynam-
ical correlation matrix that can be calculated straightforwardly
from the time series, leading to a class of computationally
efficient reconstruction methods [15,17,29,36,41]. When the
data amount is small, i.e., when only short (continuous or
discrete) time series are available, the principle of compressive
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sensing [49] can be exploited to develop frameworks for a
variety of reconstruction tasks [24–26,38–40,42,43,50] (see
Ref. [51] for a recent review.) We note that, in most previous
works, the values of the measured time series are continuous in
a range, regardless of whether time is continuous or discrete.

In real systems, there are network dynamical processes that
generate binary time series, i.e., the values of the time series
assume only two possible values, e.g., 0 or 1. For example,
in disease spreading on a social network, the state of each
node (person) can be conveniently characterized as susceptible
or infected [52], which equally applies to virus propagation
on computer networks. In certain classes of neural networks,
each node (neuron) can be classified as active or inactive
[53]. In classical evolutionary game dynamics such as the
prisoner dilemma game, each node can be in one of the two
states: cooperation or defection [54,55]. In a political network,
the state of each node (the opinion of each individual) can
be either “for” or “against” [56]. Because of the binary (or
more generally, polarized) nature of the available data, the
corresponding network reconstruction problem is difficult. In
spite of the challenge, there have been previous efforts. For
example, a compressive sensing based method was developed
to reconstruct the propagation or diffusion network of disease
spreading and to identify the source [40]. In this case, the
network dynamical process is assumed to be known, e.g.,
the classical susceptible-infection-refractory dynamics. For
a variety of binary-state dynamics, a Boltzmann machine
based on the classical Ising model can be reconstructed from
the polarized data to yield the network structure and nodal
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dynamics [57], but the computational demand is high, making
the method effective but only for relatively small networks.
Quite recently, a linearization approach was proposed [43]
to approximate the nodal dynamical equations that generate
the binary time series so as to convert network reconstruction
into a sparse signal optimization problem, which can then be
solved by the conventional lasso (least absolute shrinkage and
selection operator) method from statistics and machine learn-
ing. The core of this linearization approach is to estimate the
switching probabilities for a node to change from one state
to another based on properly selected and averaged strings of
binary time series, a process that requires fine adjustments of
a number of algorithmic parameters to ensure that the selected
strings are neither too special nor too similar to each other.

In this paper, we develop a statistical inference based
method to reconstruct complex network structure from bi-
nary time series. The principle of statistical inference has
recently been used in network science for tasks such as
identifying the community structures for single-layer [58],
multilayer [59], or signed [60] networks, and detecting the
core-periphery structure for complex networks [61]. In general,
the statistical inference method has a solid mathematical
support and often can lead to robust performance. The key
to structural reconstruction is to calculate the probability for
an arbitrary pair of nodes to have a link. More importantly,
it is necessary to distinguish the probability values associated
with actual links and those with nonexistent links. Accurate
reconstruction demands that the two kinds of probability values
be unequivocally distinguishable. Exploiting the expectation-
maximization (EM) algorithm in statistical inference, we
derive formulas for the probabilities with the finding of a
generic feature: in all cases investigated there exists a finite
gap between the two types of probability values. Surprisingly,
the appealing gap feature is robust as it holds for a large
number of combinations of the binary-state dynamics with
model and real complex network structures, and it continues
to exist even when there are stochastic perturbations to the
binary time series. As a result, a threshold probability value
can be readily determined (and we provide a formula for it) to
ascertain whether there is an actual link between any pair of
nodes. The final outcome is an unprecedented high accuracy of
network structural reconstruction. Another appealing feature
of our reconstruction methodology is that no parameters are a
priori assumed—all parameters can be estimated based on the
available binary data. Our reconstruction method adds a piece
into the rapidly expanding “toolbox” of reverse engineering of
complex dynamical networks, a problem with broad applica-
tions.

II. STATISTICAL INFERENCE BASED MATHEMATICAL
FORMULATION OF RECONSTRUCTION

For a networked system hosting binary-state dynamics, at
any time a node can be in one of the two states: 0 (inactive)
or 1 (active). The basic setting under which our method is
applicable is that, for the underlying dynamical process, the
probability of each node being activated at next time step is
determined only by its active neighbors at the current step, so
only transitions from inactive to active nodes are considered
for the network reconstruction. The binary dynamical process

is Markovian. Except for this condition, further details of the
dynamical process are assumed to be unknown but only the
binary time series of the nodal states are available.

In general, if the neighbors of each node can be accurately
identified, the full topology and structure of the network can
be ascertained. Consider a network of size N and M time
steps during the dynamical evolution. The available data can be
represented as an M × N matrix (labeled as S). For example,
for the illustrative network structure in Fig. 1(a), the matrix
representation of the data is the one shown in Fig. 1(b). Let
si(t) be the state of node i at time t , where si(t) = 1 if i is
active [corresponding to the black squares in Fig. 1(b)] and
si(t) = 0 if i is inactive [illustrated by the blank squares in
Fig. 1(b)].

Let i → j denote the event that node i has a direct effect on
the state of node j . For example, node i can spread a disease
or send a piece of information to node j at time t . For the type
of binary dynamical processes considered, we assume that the
probability for each node to be activated is affected only by its
active neighbors. As a result, node i has a direct effect on node
j only when node i is one of the neighbors of node j . That is,
the event i → j indicates whether node i is connected to node
j , which is a property independent of time t . The conditional
probability of sj (t + 1) = 1 and i → j , given si(t) = 1 and
sj (t) = 0, is

P 0→1
i→j = P [sj (t + 1) = 1,i → j |si(t) = 1,sj (t) = 0]

= P
j

i · Pi→j , (1)

where P
j

i = P [sj (t + 1) = 1|si(t) = 1,sj (t) = 0] in Eq. (1) is
the probability of sj (t + 1) = 1 under the conditions si(t) =
1 and sj (t) = 0, and the quantity Pi→j = P [i → j |si(t) =
1,sj (t) = 0,sj (t + 1) = 1] is the posterior probability of i →
j given si(t) = 1, sj (t) = 0, and sj (t + 1) = 1.

To illustrate how the value of P
j

i can be calculated from
matrix S, we consider an illustrative example. Say we know
that, at time t = 1, 5, 8 and 10, the state of node i is in an active
state [i.e., si(t) = 1, for t = 1, 5, 8, and 10] and the state of
node j is in an inactive state [i.e., sj (t) = 0, for t = 1, 5, 8, and
10]. From the matrix S, we have sj (t = 2) = 1, sj (t = 6) = 1,
sj (t = 9) = 1, and sj (t = 11) = 0. We get P

j

i = 3/4.
Take the network in Fig. 1(a) as an example. If we wish to

infer the neighbors of node 33, we can extract some pairs of
time strings, as shown in Fig. 1(b), where each pair includes
the time string with s33(t) = 0 and its next time strings (i.e.,
at t + 1). We see that four pairs of such time strings can
be extracted: T and T + 1, T + 1 and T + 2, T + 5 and
T + 6, and T + 7 and T + 8, where each pair is highlighted
by frames with a different color. Based on these time strings,
we can calculate P 33

i for all i �= j . For example, we have
P 33

16 = 2/3, as shown in Fig. 1(b). Our goal is then to exploit
statistical inference to estimate the posteriori probability Pi→j .
Node i is a neighbor of node j if Pi→j > 0, otherwise,
Pi→j = 0 if they are not connected. This analysis indicates
that the values of P

j

i and Pi→j do not depend on time,
so the probability P [sj (t + 1) = 1,i → j |si(t) = 1,sj (t) = 0]
can simply be denoted as P 0→1

i→j , which does not depend on time
either.
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FIG. 1. Schematic illustration of our binary-state network reconstruction methodology based on statistical inference. In this example, the
data are collected by implementing the voter model on an empirical network—the Zachary karate-club network, where initially 30% of the
nodes are randomly set to state 1. (a) The actual structure of the network. (b) The data matrix, where each row is a time string representing
all nodes’ states at that time step and each column is a node’s state at different time steps. The black and blank squares denote the 1 and 0
state, respectively. Say we wish to ascertain all neighbors of node 33 (highlighted by the red frame), so only the strings with �t

33 = 0 and its
next string at t + 1 are used. Each pair of useful strings are highlighted by a frame with a different color. The quantity P 33

16 is the probability
of the event s33(t + 1) = 1 under the prior conditions of s16(t) = 1 and s33(t) = 0. We have P 33

16 = 2/3 for this example (highlighted by the
blue frame). (c) The values of Pi→33 are obtained through the EM algorithm, where only the nonzero values of the probability are shown. The
neighbors of node 33 in the network are shown in the lower right corner (marked by light-red color). (d) The values of Pi→j for each node j ,
where the red nodes and blue points denote the actual and nonexistent links, respectively. The red dashed line represents the threshold � = 1/N

for determining whether a reconstructed value Pi→j can be regarded as representing an actual link or a null link. (e) If we choose � = 0, there
are eight false links as predicted (marked by the red links in the network). However, for � = 1/N , all actual links are correctly inferred.

Remark 1. For the Markovian type of dynamical processes
considered, the probability of each node’s being activated is
affected only by its active neighbors. Other scenarios require
a generalization of our method to non-Markovian type of
dynamics.

Remark 2. To reconstruct the network structure from time
series data, a necessary condition is that the network structure
should have detectable effects on the dynamics. If the dynam-
ical processes are independent of the network structure, the
reconstruction task is impossible. For the dynamical processes
studied, the probability of each node’s being activated is
affected only by its active neighbors.

A nonzero value of the probability P
j

i indicates that node
j is affected by node i. Since the probability of each node’s

being activated is determined solely by its active neighbors, a
nonzero value of P

j

i indicates an actual connection between
nodes i and j , which does not depend on time. The value of
Pi→j can be estimated once the matrix S is given, which does
not depend on time either. As a result, the probability in Eq. (1)
can be denoted as P 0→1

i→j . From Eq. (1), we see that, if node j is
not activated at time tm, the expected number of node j being
activated by its neighbors at tm + 1 is given by

E
tm+1
j =

∑
i �=j

P 0→1
i→j �

tm
i + εj

=
∑
i �=j

Pi→jP
j

i �
tm
i + εj , (2)

022301-3



MA, CHEN, LAI, AND ZHANG PHYSICAL REVIEW E 97, 022301 (2018)

where�
tm
i = 1 when node i was activated at time tm, otherwise,

�
tm
i = 0. εj characterizes the stochastic influence (noise) on

node j .
Note that, due to the errors from the collected data and

the assumptions used in the development of the method (e.g.,
the assumption of the Poisson distribution), it is necessary
to consider the presence of noise perturbation in Eq. (2).
While different types of noise can be considered, additive noise
facilitates both computation and analysis, as done in previous
works (e.g., Ref. [43]).

To simplify notation, we let � denote the quantities Pi→j

and εj . To derive analytically an EM estimation, we assume
that the relevant probability distributions are Poisson [58,59].
The reason is that Poisson distribution can be generally used
to characterize the probability of a given number of events
occurring in a fixed interval of time. It is thus natural to
use Poisson distribution to describe the times that node i is
being activated. As in Refs. [59,62–64], using the Poisson
distribution can make feasible mathematical analysis and
computations with the EM algorithm (described below). We
note that, with any assumption of the probability distribution,
errors are inevitable. For example, the value of Pi→j may be
slightly larger than zero even though node i is not a neighbor
of node j . To reduce such errors, a remedy is to set a cutoff
threshold to determine if Pi→j > 0 indicates an actual link or
it is simply an error.

The probability �j can then be expressed as

P
({

�
tm+1
j

}
m=1,...,M

∣∣�,
{
�

tm
i

}
m=1,...,M; i=1,...,N

)

=
∏

m,�
tm
j =0

e−E
tm+1
j

(
E

tm+1
j

)�
tm+1
j

�
tm+1
j !

. (3)

Next, we exploit the EM method to maximize the likelihood
Eq. (3) so that the model parameters � can be estimated
from the binary data. The EM algorithm is general for finding
the maximum likelihood estimate in latent variable models,
which contains two steps. For the E step, one “fills in” the
latent variables using the posterior probability and, for the
M step, one maximizes the expected complete logarithmic
likelihood with respect to the complete posterior distribution.
Jensen’s inequality is a key tool in the E step for generating
the objective function of M step. A comprehensive explanation
of the principle of the EM algorithm can be found in Ref. [65].
The algorithm has also been widely used in network structure
reconstruction, e.g., in Refs. [59,62–64]. It is convenient to
maximize the logarithm of the likelihood:

L(�) =
∑

m,�
tm
j =0

⎡
⎣�

tm+1
j log

⎛
⎝∑

i �=j

Pi→jP
j

i �
tm
i + εj

⎞
⎠

−
⎛
⎝∑

i �=j

Pi→jP
j

i �
tm
i + εj

⎞
⎠

⎤
⎦, (4)

�
tm+1
j ! ≡ 1 since �

tm+1
j equals 0 or 1 in this work, therefore

we have omitted the terms �
tm+1
j !. Using Jensen’s inequality

[66], we obtain

log

⎛
⎝∑

i �=j

Pi→jP
j

i �
tm
i + εj

⎞
⎠

= log

⎛
⎝∑

i �=j

ρ
tm
i

Pi→jP
j

i �
tm
i

ρ
tm
i

+ ρtm
ε

εj

ρ
tm
ε

⎞
⎠

�
∑
i �=j

ρ
tm
i log

Pi→jP
j

i �
tm
i

ρ
tm
i

+ ρtm
ε log

εj

ρ
tm
ε

=
∑
i �=j

ρ
tm
i log Pi→jP

j

i �
tm
i +ρtm

ε log εj

−
∑
i �=j

ρ
tm
i log ρ

tm
i −ρtm

ε log ρtm
ε , (5)

where

ρ
tm
i = Pi→jP

j

i �
tm
i∑

i ′ �=j Pi ′→jP
j

i ′ �
tm
i ′ + εj

(6)

and

ρtm
ε = εj∑

i ′ �=j Pi ′→jP
j

i ′ �
tm
i ′ + εj

. (7)

To find a maximum likelihood solution of Eq. (4), we seek to
maximize the following quantity:

L(�,ρ) =
∑

m,�
tm
j =0

∑
i �=j

(
�

tm+1
j ρ

tm
i log Pi→jP

j

i �
tm
i

−�
tm+1
j ρ

tm
i log ρ

tm
i − Pi→jP

j

i �
tm
i

)

+
∑

m,�
tm
j =0

[
�

tm+1
j ρtm

ε log εj

−�
tm+1
j ρtm

ε log ρtm
ε − εj

]
(8)

with respect to � and ρ. Calculating the partial derivative of
L(�,ρ) with respect to Pi→j and εj and setting them to be
zero, we have

∂L(�,ρ)

∂Pi→j

=
∑

m,�
tm
j =0

(
�

tm+1
j ρ

tm
i

Pi→j

− P
j

i �
tm
i

)
= 0 (9)

and

∂L(�,ρ)

∂εj

=
∑

m,�
tm
j =0

(
�

tm+1
j ρtm

ε

εj

− 1

)
= 0, (10)

which give

Pi→j =
∑

m,�
tm
j =0

(
�

tm+1
j ρ

tm
i

)
∑

m,�
tm
j =0

(
P

j

i �
tm
i

) (11)
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and

εj =
∑

m,�
tm
j =0

(
�

tm+1
j ρ

tm
i

)
∑

m,�
tm
j =0 (1)

, (12)

respectively.
Equations (6), (7), (11), and (12) constitute our method.

From the initial conditions of Pi→j and εj , we can iterate these
equations until convergence is achieved. Since a single iterative
process does not ensure global optimization, we carry out the
above iteration process several times and choose the relevant
values that give the maximum of the quantity in Eq. (4). As an
example, Fig. 1(c) shows the value of Pi→33 (only Pi→33 > 0
is shown) calculated from the iterative process. Similarly, the
values of Pi→j for all the nodal pairs can be calculated, as
shown in Fig. 1(d), where the red and blue dots denote the
actual and nonexistent links, respectively. Theoretically, node
i is a neighbor of node j if Pi→j > 0 with the threshold value
� = 0. However, the simple choice of � = 0 will lead to error
due to the uncertain factors. For example, as shown in Fig. 1(e),
there are eight false links (represented by the red lines). In this
case, it is necessary to choose a nonzero threshold for each
node to eliminate reconstruction error. For instance, by setting
� = 1/N for all nodes in Fig. 1, we can reconstruct the original
network with zero error.

An explanation is in order. It is often difficult to directly
maximize the formula in Eq. (4). We can first use Jensen’s
inequality to get the lower bound of the formula at �, which is
denoted by L−(�) = ∑

i �=j ρ
tm
i log Pi→jP

j

i �
tm
i +ρtm

ε log εj −∑
i �=j ρ

tm
i log ρ

tm
i −ρtm

ε log ρtm
ε —the last term of Eq. (5). We

initialize the parameter �1, e.g., by setting P1→j = Pj−1→j =
Pj+1→j = . . . ,PN→j = εj = 1/N . We can show that the
equality conditions in Eq. (8) are satisfied when the conditions
in Eqs. (6) and (7) are met. We thus have L−

�1
(�1) = L(�1),

where L−
�1

(�) denotes the lower bound function of L(�) at �1,
so L−

�1
(�1) indicates the value of L−

�1
(�) at � = �1. Further,

by maximizing L−
�1

(�), we obtain a new maximum point �2:

L(�2) � L−
�1

(�2) � L−
�1

(�1) = L(�1),

meaning that �2 is a better solution than �1.
We also note that the initial conditions of Pi→j and εj can

be chosen in different ways. For example, we can set P1→j =
Pj−1→j = Pj+1→j = . . . ,PN→j = εj = 1/N . The quantities
ρ

tm
i and ρtm

ε in Eqs. (6) and (7) can be calculated, guaranteeing
the equality condition in Eq. (8). Then, Eqs. (11) and (12)
can be calculated. Iterating the above process leads to a local
optimal solution. The value of the likelihood function at the
next time step is better than that at the last step. Since the
convergence of the EM algorithm has been confirmed in many
previous works, we can stop the iteration process when the
value of the likelihood function is stable or the fluctuations
are smaller than a given threshold value. While one round of
the iteration may yield a local rather than a global optimal
solution, we can choose different sets of initial values to carry
out different rounds of iteration and choose the best solution.

We remark that errors in the collected data and uncertainties
in the assumption of the Poisson distribution can be modeled
by noise perturbation. The simple choice of � will lead to
small errors. While errors cannot be completely eliminated by

increasing the value of M , the gap that is key to distinguishing
actual from nonexistent links will be enlarged. Figure 1 shows
that the accuracy of reconstruction can be improved if we set
� = 1/N for all nodes.

III. PERFORMANCE CHARACTERIZATION
AND DEMONSTRATION

A. Local and global performance indicators

We use a number of indicators to characterize the local and
global performance of our reconstruction methodology.

AUROC and AUPR—local performance indicators. The
AUROC (area under receiver operating characteristic, δAUROC)
and AUPR (area under precision-recall, δAUPR) curves are
standard local (node-wise) performance indicators used widely
in signal processing and computer science [67], which can
be calculated for each node in the network. The average
values over all the nodes can then be used to characterize the
reconstruction performance for the whole network. To define
AUROC and AUPR, it is necessary to calculate three basic
quantities: TPR (true positive rate, RTP), FPR (false positive
rate, RFP), and Recall. In particular, TPR is defined as

RTP(l) = PT (l)

P
, (13)

where l is the cutoff in the list of reconstructed links, PT (l) is
the number of true positives in the top l predictions in the link
list, and P is the number of positives. FPR is given by

RFP(l) = PF (l)

Q
, (14)

where PF (l) is the number of false positives in the top l

predictions in the link list, and Q is the number of negatives
in the gold standard. The reconstruction precision can be
defined as

δPrecision(l) = PT (l)

PT (l) + PF (l)
= PT (l)

l
. (15)

The measure Recall is defined as

δRecall(l) = RTP(l) = PT (l)

P
. (16)

Varying the value of l from 0 to N , we plot two sequences
of points: [RFP(l),RTP(l)] and [δRecall(l),δPrecision(l)]. The areas
under the two curves give the values of AUROC and AUPR,
respectively. For the case of zero error in reconstruction where
all the actual links have been predicted, we have δAUROC = 1
and δAUPR = 1. In the worse case scenario where the predicted
links are completely random (so that the reconstruction task
fails entirely), we have δAUROC = 0.5 and δAUPR = P/2N .

F1 score—A global performance indicator. Higher values
of AUROC and AUPR only demonstrate that the predictions
of the actual links are better than that for the nonexistent links,
but do not give the number of actual links in the network.
These local measures do not indicate whether a specific link has
been correctly inferred. To determine whether a reconstructed
probability value (i.e., Pi→j ) corresponds to an actual or a
null link, it is necessary to set a threshold � for each node.
Figure 2 shows, for each node, the value of Pi→j for i �= j

(i = 1,2, . . . ,N) in three model networks: random network
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FIG. 2. Demonstration of placementof threshold probability
value for calculating the global performance indicator F1. For combi-
nations of two types of binary-state dynamics [voter dynamics in (a)
and Kirman dynamics in (b)] and three complex network topologies,
the values of Pi→j for i �= j (i = 1,2, . . . ,N ) for each node in the
network are shown. The result for a node corresponds to a column
above the x axis consisting of N − 1 number of points. The red nodes
and blue points denote the actual and nonexistent links, respectively.
Three model networks (ER, SW, and SF networks) are used. All
networks have N = 100 nodes and average degree 〈k〉 = 6. The
length of the binary time series is M = 15 000.

(ER) [68], scale-free network (BA or SF) [69], and small-
world (SW) network [70]. The dynamical processes are Voter
dynamics in Fig. 2(a) and Kirman dynamics in Fig. 2(b),
respectively. (The details of these two processes, together with
six other types, are given in the Appendix.) We see that, for
node j , there exists a gap dividing the values of Pi→j for i �= j

(i = 1,2, . . . ,N). It is thus reasonable to place a threshold �j

in the gap for node j to determine whether a value of Pi→j

can be regarded as representing an actual link (red points,
Pi→j > �j ) or a nonexistent link (blue points, Pi→j < �j ). In
so doing, we obtain the nonzero values Pi→j > 0 for i �= j and
rerank them in descending order, denoted as P ′

l (l = 1,2, . . .).
It is important to choose a proper threshold �j for each

node j . From Fig. 2, we see that there is a gap, which can
be used to separate the actual from the nonexistent links.
Computationally, it is necessary to set a threshold for the
task. We consider two different scenarios. First, suppose that a
sequence of the values of Pi→j is 0.8, 0.7, 0.6, 0.01, and 0.0001.
In this case, the threshold can be set between the values of 0.6
and 0.01 through the maximum value of P ′

l − P ′
l+1. However,

the threshold value is between 0.01 and 0.0001 when using
P ′

l /P
′
l+1. For this scenario, the former choice of the threshold

value is more reasonable than the latter. Second, for a different
sequence, such as 0.2, 0.1, 0.09, and 0.0001, through P ′

l − P ′
l+1

we find a threshold value between 0.2 and 0.1. However,
through P ′

l /P
′
l+1, we get a threshold value between 0.09 and

0.0001. For this scenario, the latter case is more reasonable.
Combining the two cases, we define the threshold �j for node
j as

�j = arg max
l

[
P ′

l

P ′
l+1

(P ′
l − P ′

l+1)

]
. (17)

With the threshold value so determined, we can ascertain, for
any pair of nodes in the network, whether there is an actual

TABLE I. Local reconstruction performance with model and real networks. Values of AUROC and AUPR for various dynamics on a variety
of model and empirical (real) networks. The parameters in the dynamical models are described in the Appendix. The size and average degree
of the three types of model complex networks (ER, BA, and SW) are N = 500 and 〈k〉 = 6. The length of the binary data string is M = 50 000
for N = 500, M = 15 000 for N < 500, and M = 100 000 for N > 1000. The largest values AUROC and AUPR for each case are highlighted
in bold. For comparison, the corresponding AUROC and AUPR values from the recent lasso method [43] are also shown.

AUROC/AUPR Voter Kirman Ising SIS Game Language Threshold Majority

lasso 0.980/0.971 0.990/0.959 0.997/0.997 0.954/0.946 0.993/0.992 0.961/0.926 0.995/0.996 0.997/0.996
Karate

EM 0.999/0.999 1.000/1.000 1.000/1.000 0.983/0.982 1.000/1.000 0.998/0.998 1.000/1.000 1.000/1.000

lasso 0.974/0.917 0.996/0.984 0.999/0.997 0.981/0.941 0.996/0.988 0.987/0.945 1.000/1.000 0.998/0.992
Dolphins

EM 1.000/1.000 1.000/1.000 1.000/1.000 0.998/0.993 1.000/1.000 1.000/0.999 1.000/0.999 1.000/1.000

lasso 0.967/0.865 0.984/0.912 0.989/0.968 0.896/0.801 0.974/0.926 0.951/0.851 1.000/0.999 0.983/0.943
Polbooks

EM 1.000/0.999 1.000/1.000 1.000/0.999 0.940/0.864 0.994/0.991 0.991/0.975 0.998/0.998 0.999/0.997

lasso 0.959/0.812 0.991/0.949 0.991/0.950 0.928/0.711 0.986/0.920 0.927/0.703 1.000/1.000 0.987/0.927
Football

EM 1.000/1.000 1.000/1.000 1.000/1.000 0.996/0.973 0.999/0.998 0.999/0.994 1.000/1.000 1.000/0.999

lasso 0.943/0.781 0.655/0.331 0.971/0.808 0.789/0.607 0.968/0.860 0.923/0.622 1.000/0.998 0.965/0.723
Email

EM 1.000/1.000 0.955/0.799 1.000/1.000 0.977/0.893 0.999/0.997 0.999/0.990 1.000/1.000 1.000/1.000

lasso 0.999/0.975 0.988/0.784 0.998/0.974 0.994/0.972 0.999/0.979 0.977/0.751 1.000/1.000 0.996/0.929
ER(500)

EM 1.000/1.000 1.000/1.000 1.000/1.000 1.000/0.997 1.000/1.000 1.000/1.000 1.000/1.000 1.000/1.000

lasso 1.000/1.000 0.992/0.838 1.000/0.998 1.000/1.000 1.000/0.998 0.997/0.930 1.000/1.000 0.998/0.937
SW(500)

EM 1.000/1.000 1.000/1.000 1.000/1.000 1.000/1.000 1.000/1.000 1.000/1.000 1.000/1.000 1.000/1.000

lasso 0.996/0.953 0.940/0.697 0.994/0.963 0.968/0.926 0.989/0.946 0.978/0.861 1.000/0.998 0.994/0.944
BA(500)

EM 1.000/0.999 0.992/0.971 1.000/1.000 0.983/0.949 0.998/0.997 0.998/0.992 1.000/1.000 1.000/1.000
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TABLE II. Characterization of global performance of proposed statistical inference based reconstruction method. Listed are the values of
F1 score and ERR for various combinations of binary dynamics and networks (model and empirical), where the threshold �j for each node is
determined according to Eq. (17). Other parameters are the same as in Table I.

F1/ERR Voter Kirman Ising SIS Game Language Threshold Majority

Karate 0.994/0.013 1.000/0.000 1.000/0.000 0.981/0.039 0.994/0.013 1.000/0.000 0.947/0.103 1.000/0.000
Dolphins 1.000/0.000 1.000/0.000 0.997/0.006 0.984/0.031 0.994/0.013 1.000/0.000 1.000/0.000 0.994/0.013
polbooks 0.986/0.027 1.000/0.000 0.990/0.020 0.867/0.254 0.972/0.054 0.960/0.077 0.986/0.027 0.972/0.057
Football 1.000/0.000 0.999/0.002 0.999/0.002 0.844/0.277 0.992/0.015 0.941/0.116 0.963/0.072 0.992/0.016
Email 0.998/0.004 0.712/0.531 0.998/0.004 0.853/0.265 0.984/0.031 0.943/0.108 0.995/0.010 1.000/0.001
ER(500) 1.000/0.000 1.000/0.000 1.000/0.000 0.998/0.005 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000
SW(500) 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000
BA(500) 0.998/0.006 0.930/0.142 0.997/0.008 0.968/0.064 0.993/0.016 0.984/0.033 0.995/0.011 0.999/0.003

link. The F1 score is given by [71]

F1 = 2δPrecisionδRecall

δPrecision + δRecall
, (18)

where δPrecision = PT /(PT + PF ) and δRecall = PT /(PT +
NF ), respectively. The quantities PT , NF , PF , and NT denote
the true positive, false negative, false positive, and true neg-
ative. The condition F1 = 1 indicates that the reconstructed
links perfectly match with those in the original network.

Another global indicator, denoted by ERR(RER), is defined
as the ratio of the number of erroneous links (false positive
and false negative) to the number of links of the true network.

Namely,

RER = NF + PF

PT + NF

. (19)

B. Reconstruction performance with model and real networks

We consider eight types of binary-state dynamical processes
as studied recently in Ref. [43] with the lasso method. For
the network structures, we use three types of model complex
networks (ER, SF, and WS) and a number of empirical net-
works as described in the Appendix. In Table I, we compare the

FIG. 3. Dependence of reconstruction performance on data length. For the eight types of binary-state dynamics implemented on ER, SW,
and SF networks, AUROC [(a)–(c)] and F1 score [(d)–(f)] versus M , the length of the binary time series, for ER (left panel), SW (central panel),
and SF (right panel) networks. All networks have N = 500 nodes with the average degree 〈k〉 = 6. The parameters for each type of dynamics
are described in the Appendix. For the large number of combinations of binary dynamical processes and network topologies, both the local
(AUROC) and global (F1 score) performance measures approach almost the highest possible values when M becomes sufficiently large.
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performance of our EM algorithm with that of the lasso method
under the same setting. We see that the performances of the two
methods for the threshold dynamics are almost identical as both
exhibit nearly perfect values of AUROC and AUPR (almost
100%). However, for the other seven types of binary-state
dynamics in combination with different network structures
(model or empirical networks), our EM based reconstruction
method yields results that are more accurate than those with
the lasso method. The value of F1 scores from our method for
various combinations of network structures and binary-state
dynamics are summarized in Table II, where we see that the
values of F1 score in most cases are close to unity, indicating
accurate reconstruction performance. Since the lasso method
does not rely on any threshold value for each node [43], it is
not feasible to compare performance in terms of the F1 score.

Figure 3 shows, for the model networks, the dependence of
the values of AUROC and F1 score on M , the length of the
binary time series, where we see that, in all cases, AUROC
approaches a stable and large (e.g., >.97) value for M ≈
25 000. The values of F1 score are also large (e.g., >0.92).
In terms of the network topology, the highest performance is
achieved for the SW, followed by ER and then SF networks.
The intuitive reason for the relatively inferior performance with
SF networks lies in the difficulty to infer the neighbors of hub
or high degree nodes.

Figure 4 shows the results, for the combinations of eight
binary dynamical processes and the three distinct complex

network topologies, of the dependence of the reconstruction
performance on the network average degree 〈k〉. We note a
decreasing trend in the reconstruction accuracy as the average
degree becomes larger. The reason is that an increase in 〈k〉
demands more links to be predicted, leading to a decrease in
the reconstruction accuracy if the data length is not increased
accordingly. Another phenomenon is that, except for the SIS
and Kirman dynamics, the average degree does not have an
appreciable effect on the reconstruction accuracy. The heuristic
reason of the relatively stronger dependence of the recon-
struction performance on the average degree for the SIS and
Kirman dynamics is that, for these two types of dynamics, the
probability of being activated is proportional to the number
of active neighbors m rather than the density of the active
neighbors, m/k. As a result, increasing the average degree
will expedite the dynamical propagation of the “virus” or
information, leading to most nodes being activated in a rel-
atively short time. From the standpoint of reconstruction, this
is damaging due to lack of sufficient information about the
time evolution of the underlying dynamics. To improve the
reconstruction performance, one can reduce the transmission
rate λ in the SIS process and the transmission rate c1 + md in
the Kirman dynamics. On the contrary, for the other six types
of binary-state dynamics, for a large average degree value,
the probability of being activated is not significantly increased
due to its dependence on the density m/k (not on m itself),
so the slow pace of the dynamical evolution on the networks

FIG. 4. Effect of increasing the network average degree on reconstruction performance. For the eight types of binary-state dynamics
implemented on ER, SW, and SF networks, AUROC [(a)–(c)] and F1 score [(d)–(f)] versus the average degree 〈k〉, for ER (left panel), SW
(central panel), and SF (right panel) networks. All networks have N = 500 nodes and the length of the binary time series is fixed at M = 50 000.
In general, the reconstruction accuracy tends to decrease as the average degree becomes larger.

022301-8



STATISTICAL INFERENCE APPROACH TO STRUCTURAL … PHYSICAL REVIEW E 97, 022301 (2018)

FIG. 5. Effect of stochastic disturbance on reconstruction. The local [AUROC (a)–(c)] and global [F1 score (d)–(f)] performance indicators
versus ρ, the fraction of randomly flipped binary states in the data, for the voter (blue squares), game (red circles), and threshold (blue up
triangles) models, for ER (left panel), SW (central panel), and SF (right panel) networks. All networks have the size N = 500 with the average
degree 〈k〉 = 6. The length of the binary time series is M = 50 000.

persists and, consequently, there is still a sufficient amount of
information required for the reconstruction task.

Finally, we demonstrate the robustness of our EM algorithm
against stochastic disturbance. Specifically, we randomly flip
a fraction ρ of the binary states among the total number MN

of states and calculate the values of AUROC and F1 score
versus ρ for various combinations of the dynamics and network
topology. The results are shown in Fig. 5. From the top panel,
we see that the values of AUROC are larger than 0.96 even
when 20% of the states are flipped, which are more robust
than those with the lasso method (e.g., Table III in Ref. [43]).
We also see that the reconstruction performances with the voter
and threshold dynamics are relatively more robust to stochastic
perturbations than those with the other six types of dynamical
processes. A possible reason is that, in the game dynamics, each
node’s payoff depends sensitively on the neighbors’ states. If
one neighbor’s state is flipped, there can be a dramatic change
in the payoff, affecting directly its strategy (cooperation or
defection) and consequently the reconstruction accuracy.

IV. DISCUSSION

In physics and mathematics, the various inverse problems
to infer the internal structure or “gears” of the underlying
system based on observations are always challenging. For
complex networked systems, recent years have witnessed
the development of various frameworks and methodologies
to address the inverse or reverse-engineering problem [51],
leading to the gradual establishment of a toolbox of network

and dynamics reconstruction algorithms to deal with a variety
of specific tasks. This work adds another piece into this tool-
box: a statistical inference based method specifically designed
to address the network reconstruction problem for binary
dynamical processes without requiring any a priori knowledge
about the switching functions generating the binary-state dy-
namics. The key underpinning of our method is an expectation-
maximization based algorithm to maximize the probability
(likelihood) that there is a link between an arbitrary pair of
nodes in the network. As a result, a feature that is particularly
appealing from the standpoint of network reconstruction arises:
a distinct gap between the probability values that correspond
to actual links and those associated with nonexistent links.
Statistical inference theory also enables us to obtain an explicit
formula for placing a threshold in the gap so that the actual
and nonexistent links can be distinguished unambiguously in
an automated fashion. It is this feature that leads to the superior
performance of our statistical inference based methodology as
compared with those of the previous methods. In particular,
we demonstrate, using a large number of combinations of
binary dynamical processes and complex network topologies,
that our method is capable of reconstructing the network
structure based solely on binary time series with unprecedented
accuracy, regardless of the nature of the intrinsic switching
functions generating the binary state dynamics. Additional
features of our methodology are effectively parameter-free and
robustness against stochastic fluctuations in the data. While our
method is articulated for network structural reconstruction and
hence does not address the issue of identifying the underlying
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dynamical processes, it represents a practically useful addition
to the toolbox of reconstructing complex networks structure
and dynamics, which is being expanded at a rapid pace by
many research groups.

ACKNOWLEDGMENTS

The authors thank Dr. Z.-S. Shen for discussions. This
work was supported by National Natural Science Foundation
of China under Grants No. 61473001 and No. 11331009, and
partially supported by the Young Talent Funding of Anhui
Provincial Universities under Grant No. gxyqZD2017003
and the Key Scientific Research Fund of Anhui Provincial
Education Department under Grant No. KJ2017A025. Y.-C.L.
would like to acknowledge support from the Vannevar Bush
Faculty Fellowship program sponsored by the Basic Research
Office of the Assistant Secretary of Defense for Research
and Engineering and funded by the Office of Naval Research
through Grant No. N00014-16-1-2828.

APPENDIX

The basic structural parameters of the five empirical net-
works used in the numerical demonstration are summarized
in Table III. The eight binary-state dynamical modes are
summarized below with parameters given in Ref. [43].

(1) Voter model. The voter model assumes that a node
randomly chooses and then adopts one of its neighbors’ state at
each time step. If m neighbors among total k neighbors are in
an active state, the probabilities of being active and inactive are
m/k and (k − m)/k, respectively [72]. Since the voter model
can cause the nodal states to converge into a stable state, we
randomly initialize the states of all nodes after each 100 time
steps.

(2) Kirman model. In this model, each node changes its state
from 0 to 1 with the probability c1 + dm and the probability
associated with the opposite change is c2 + d(k − m), where
the parameters c1 and c2 quantify the individual action that is
independent of the states of the neighbors and d characterizes
the action of copying from neighbors’ state [73]. In our
computations, we set c1 = 0.1, c2 = 0.1, and d = 0.08.

(3) Ising model. This is the classic paradigm for under-
standing ferromagnetism at the microscopic level of spins.
Each node switches its state from 0 to 1 with the probability
[1 + eβ(k−2m)/k]−1 and from state 1 to 0 with the probability
[eβ(k−2m)/k]/[1 + eβ(k−2m)/k], where β = 2 characterizes the
combining effect of temperature and ferromagnetic interaction
[74].

(4) SIS model. This model describes the epidemic process
of disease spreading with infection and recovery. A susceptible
individual can be infected with probability 1 − (1 − λ)m (from
state 0 to 1) at each time step, and an infected node can recover
to the susceptible state at the recovery rate μ, where λ is the
transmission rate [52]. In our simulations, we set λ = 0.5 and
μ = 0.5 if the average degree is smaller than 10; otherwise we
choose λ = 0.35 and μ = 0.5.

TABLE III. Structural parameters of the five empirical networks
used in our numerical simulations. The parameters N and E are
the total numbers of nodes and links, respectively, C and r are the
clustering and assortative coefficients, respectively, H is the degree
heterogeneity defined as H = 〈k2〉/〈k〉2.

Network N E 〈k〉 C r H

Karate 34 78 4.5882 0.5879 −0.4756 1.6933
Dolphins 62 159 5.129 0.2901 −0.0718 1.3255
Polbooks 105 441 8.40 0.4875 −0.1279 1.4207
Football 115 613 10.6609 0.4032 0.1624 1.0069
Email 1133 5451 9.6222 0.2540 0.0782 1.9421

(5) Game model. For evolutionary game dynamics on
complex networks [54], a player (a node) can be a cooperator
(active—the 1 state) or a defector (inactive—the 0 state).
A player plays with each of his/her neighbors using one
chosen strategy at every time step. The players obtain payoff
a (d) if both choose to cooperate (defect). If one player
cooperates while the other defects, the cooperator will obtain
low payoff b, while the defector will gain higher payoff c.
The payoff of a player is the sum of payoffs from playing a
game with all its neighbors. A player switches the strategy
with a probability that depends on the payoff it may gain in
the next round under the current circumstance. Each player
switches its state from 0 to 1 with the probability [α +
e(β/k)([(a−c)(k−m)+(b−d)m])]−1 and from state 1 to 0 with the prob-
ability [α + e(β/k)([(c−a)(k−m)+(d−b)m])]−1, where α qualifies the
willingness for a player to change its strategy according to
those of its neighbors, and β is associated with the effect of the
expected payoff. We choose a = b = 5, c = d = 0, α = 0.1,
and β = 1 in our simulations.

(6) Language model. In this model, the two states denote
two different language choices of a person. The transition
probability from the primary to the secondary language is
proportional to the fraction of speakers in the neighbors with
the power α, multiplied by the parameter s (or 1 − s) according
to the respective language [75], where α = 0.7 and s = 0.5.
Because of the problem of converging to a stable state, we
randomly initialize the states of all nodes after every 100 time
steps.

(7) Threshold model. This is a deterministic model, where a
node becomes active if the fraction of active neighbors m/k is
larger than the threshold 1/2, and no recovery transformation
is permitted [76]. Due to the problem of fast convergence to a
stable state from any initial condition, we randomly initialize
the states of all nodes after every five time steps.

(8) Majority-voter model. In this model, a node tends to
align with the majority state of its neighbors, with Q being
the probability of misalignment [77]. We set Q = 0.3 and
randomly initialize the states of all nodes after every 10 time
steps to overcome the difficulty of fast convergence to a stable
state.
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