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Synergistic interactions promote behavior spreading and alter phase
transitions on multiplex networks
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Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer
network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing
interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in
behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior
spreading model on a double layer network, where the key manifestation of the synergistic interactions is that
the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the
other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors
in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition
associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of
one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous
(second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A
surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer
adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the
behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to
fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network
layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole
system.
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I. INTRODUCTION

A central problem in network science and engineering is
to understand, predict, and control the dynamics of virus or
information spreading on complex networks [1–3]. Social
contagion processes such as the propagation of an opinion,
diffusion of a belief, and spread of a particular behavior
occur commonly in the real world [4–11]. With the modern
technological advances, a variety of online social network-
ing platforms (e.g., Facebook and YouTube) have become a
routine necessity for a substantial fraction of individuals in
the entire population. Spreading dynamics in modern online
social networks have attracted a great deal of recent attention
and a variety of mathematical models have been articulated
to understand and predict the relevant phenomena [3,12–14].
For example, the threshold model, a binary state spreading
model, was introduced earlier to address the phenomenon of
behavior adoption, where a node in a social network adopts a
new behavior only when the number [15] or the fraction [16]
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of its nearest adopted neighbors exceeds a threshold value.
A representative threshold model reveals the phenomenon
that the final size of the nodes adopting the behavior first
grows continuously and then decreases discontinuously as
the mean degree of the network is increased [16]. Within
the threshold model, the effects of parameters and network
structure on the dynamics of social behavioral spreading have
been studied, which include the initial seed size [17], the clus-
tering coefficient [18–20], the community structure [21,22],
and multiplexity [23–25]. The dynamical process described by
the threshold model, however, is Markovian because the state
of a node depends only on the current state of its neighbors.
The original model is thus not able to encompass an impor-
tant aspect of real contagion dynamics: social reinforcement
originated from the memory effect [26–29]—a feature that is
characteristically non-Markovian. To overcome this deficiency
of the classical threshold model, a non-Markovian behavior
spreading model taking into account the received cumulative
pieces of behavioral information for any node to adopt the
behavior was introduced [30]. A prediction of the modified
model is that the dependence of the final behavior adoption size
on the information transmission rate can change from being
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discontinuous to being continuous through continuous changes
in the dynamical or structural parameters. The non-Markovian
behavior spreading model also allows additional issues such
as the heterogeneity of adoption thresholds [31], the limited
contact capacity [32], and the effect of temporal network
structure [33] to be addressed.

Most previous works on network behavior spreading fo-
cused on a single social behavior contagion process through
empirical methods [8,9] and mathematical models [13–
16,30,34]. In the real world, it is common for two or more
distinct behaviors to spread simultaneously in a social sys-
tem, where interactions between the corresponding spreading
processes inevitably arise. For example, individuals who have
adopted Windows services are more likely to use other services
from the same company, e.g., Microsoft Office. In online
networking systems, two different tweets on the same event
or subject can diffuse on the twitter network at the same
time. The user seeing one tweet will experience an increased
exposure to the other tweet, and vice versa, since these two
tweets are closely related. In this case, the two tweets spread
synergistically as they mutually prompt each other in the
process of retweeting [35]. The synergistic mechanism is also
typical in the adoption of online services. A good example is
the adoption of two online services, say Google and YouTube
through two types of tweets: one containing the URLs with
Google and another with YouTube. The numbers of the two
types of tweets are synchronized most of the time, implying
that they are synergistic to each other [36]. The synergistic
effect also occurs in disease spreading, where the interaction
between pathogens may mutually strengthen their spreading
process, and such an effect may have played a role in the
coepidemic of the Spanish flu and pneumonia in 1918 [37–41].
In spite of its ubiquity, the synergistic mechanism among two or
more simultaneously spreading behaviors was not investigated
in previous studies [13–16,30].

In this paper, we articulate a synergistic social behaviors
spreading model to address and understand the impacts of
synergistic interactions among multiple behaviors on their
spreading. As the spreading of each behavior typically occurs
on a different network layer, it is necessary to incorporate
a multilayer network structure [42–44]. To be concrete, we
consider the spreading dynamics of two distinct behaviors in
two-layer coupled networks, where each layer supports the
spreading of one behavior with its own transmission path,
as described by a non-Markovian process. The synergistic
mechanism between the two behavior adoption dynamics is
that, once a node adopts a behavior in one layer, it becomes
more susceptible to adopting the other behavior that spreads in
the other network layer. We develop an edge-based compart-
mental theory to analyze and understand how the synergistic
interactions impact the simultaneous spreading dynamics of
the behaviors. We find, as suggested by intuition, that the
synergistic interactions greatly facilitate the adoption of both
behaviors. However, surprisingly, a phenomenon is that the
adoption of one behavior can lead to a characteristic change in
the adoption of the other behavior: its final adoption size versus
its information rate can change from being discontinuous
to continuous, where the former corresponds to a first-order
phase transition while the latter corresponds to a second-order
transition. Remarkably, the synergistic effect can induce a

two-stage contagion process, in which nodes having adopted
one behavior in one layer will adopt the other behavior in
the other layer. When there is a sufficient number of seeds,
i.e., when the number of nodes having adopted the other
behavior in the other layer is sufficiently large, the remaining
nodes will adopt the behavior quickly. While it is intuitively
understandable that the synergistic interactions can promote
the spreading dynamics of the distinct behaviors involved, our
work lays a quantitative foundation for this phenomenon. Our
model will not only serve as a useful framework to understand
the interplay between synergy and simultaneous spreading of
multiple behaviors or diseases, but will also provide insight
into predicting or even controlling the underlying dynamics.
Due to the ubiquity of synergy in different fields such as social
science, computer science, biology, and biomedicine, broad
relevance of our model is warranted.

In Sec. II, we describe the network and the synergistic
behavior spreading models. In Sec. III, we carry out a de-
tailed theoretical analysis. In Sec. IV, we present extensive
simulation results with respect to the theoretical predictions.
In Sec. V, we summarize the main results and discuss a few
pertinent issues.

II. MODEL

There are two components in our model: multiplex networks
and spreading dynamics of synergistic behaviors. We first
introduce the model of multiplex networks, and then present
the synergistic behavior spreading model.

A. Model of multiplex networks

In general, network layers in an interdependent networked
system have different internal structures and dynamical func-
tions. To capture the essential dynamics of simultaneous
spreading of distinct behaviors, we focus on multiplex net-
works [42–44]. Consider the simple setting of a duplex system
consisting of two layers or subnetworks. Initially, we generate
two independent layers, denoted as a and b, which have the
same node set and support the spread of behaviors 1 and 2,
respectively. We use the configuration model [45] to generate
each subnetwork, where the degree distribution Pa(ka) of layer
a is completely independent of the distribution Pb(kb) of layer
b. For large and sparse subnetworks, the configuration model
stipulates that both interlayer and intralayer degree-degree
correlations are negligible.

B. Synergistic behavior spreading model

We use a representative non-Markovian spreading model,
the susceptible-adopted-recovered (SAR) [30] model, to de-
scribe the dynamics of behavior spreading, and then introduce
the synergistic mechanism between the spreading processes of
the two behaviors.

For each behavior c ∈ {1,2}, at any time a node will be
in one of the three states: susceptible (Sc), adopted (Ac) and
recovered (Rc). A node in state Sc has not adopted behavior c

but it has an interest in c. A node in the Ac state has adopted the
behavior and can transmit the information about the behavior
(denoted as information c) to its neighbors. The node loses
interest in transmitting the information when it is in the Rc
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state. The evolution process of behavior c can be described, as
follows. Initially, ρc(0) fraction of nodes are randomly chosen
as the nodes that have adopted the behavior and the remaining
nodes are set to be in the susceptible state. At each time
step, each node in the Ac state transmits the information to
each of its susceptible neighbors with the transmission rate λc.
Suppose a neighboring node v already has accumulated m − 1
pieces of information c from its distinct neighbors. One more
successful transmission will make the number of information
pieces to become m. We assume nonredundant information
transmission, i.e., once an adopted node has transmitted the
information to node v, the former will not transmit the same
information to the latter again. If the cumulative number m

pieces of information c that the susceptible node v has is
equal to or larger than a threshold, the node will adopt the
behavior c and changes its state to Ac. Simultaneously, each
Ac node will turn to the Rc state at the recovery rate γc. The
behavior spreading process will terminate when all the adopted
nodes have recovered. More specifically, ρ1(0) and ρ2(0) are
the fractions of nodes randomly chosen as seeds (i.e., adopted
nodes) for behavior 1 and 2 on each layer, respectively, where
the remaining nodes are in the susceptible state. Information 1
(2) diffuses in layer a (b) with transmission rate λ1 (λ2), and the
recovery rates for behaviors 1 and 2 are γ1 and γ2, respectively.

In the general SAR model, each susceptible node has its own
adoption threshold for a behavior. However, for simplicity in
modeling the synergistic interaction between the spreading of
the two behaviors, we assume that all nodes have the same
adoption threshold for each behavior: we denote the adoption
threshold for behavior 1 in layer a as T1 and that for behavior 2
in layer b as T2. As a manifestation of mutual synergy, a node
having adopted one behavior will become more susceptible to
adopting the other behavior. To quantify the synergistic effect,
we assume that, once node i has adopted behavior 1 (2), it
will generate an increase �T2 > 0 (�T1 > 0) in the number of
pieces of information about behavior 2 (1). The quantities �T1

and �T2 thus characterize the strength of the synergistic effect,
and we have �T1 ∈ [0,T1] and �T2 ∈ [0,T2]. For �T1 = 0, a
node having adopted behavior 2 in layer b will not impact on
its adoption of behavior 1 in layer a. Similarly, the adoption
of behavior 1 will have no effect on adopting behavior 2 if
�T2 = 0. If a node has adopted behavior 2, it will adopt
behavior 1 only if �T1 + m � T1, where m represents the
number of cumulative pieces of behavioral information 1 in
layer a that this node has received from distinct neighbors.

III. THEORY

We exploit the edge-based compartmental theory [30,46–
48] to analyze the dynamical process of behavior spreading
subject to synergistic interactions, under the assumption that
each subnetwork is large and sparse with no internal degree-
degree correlations. We also assume that the degree distribution
of network a is completely independent of that of network
b, so interlayer degree-degree correlation can be neglected
too. The fraction of nodes in each state can be treated as a
continuous variable. For each behavior c ∈ {1,2}, we denote
Sc(t), Ac(t), and Rc(t) as the fractions of nodes being in
the susceptible, adopted, and recovered state, respectively, for
behavior c in the corresponding layer at time t . During the

spreading process, the susceptible nodes adopting behavior c

decreases the value of Sc(t) but leads to an increase in Ac(t),
and the recovery of the adopted nodes for behavior c decreases
Ac(t) but increases Rc(t). Using these notations, the dynamical
evolution equations for behavior c can be written as

dAc(t)

dt
= −dSc(t)

dt
− γcAc(t) (1)

and

dRc(t)

dt
= γcAc(t). (2)

For t → ∞, the states of all individuals remain unchanged and
Rc(∞) is the final adoption fraction of behavior c.

A. Edge-based compartmental theory

Despite that the spreading processes of behaviors 1 and 2
occur in different networks (a and b, respectively) and the
dynamical parameters such as the information transmission
rates (λ1 and λ2), the recovery rates (γ1 and γ2), and the
adoption thresholds (T1 and T2) are different, the mathematical
equations governing the underlying processes have identical
forms. It thus suffices to derive the equations for behavior 1
spreading in layer a.

To solve Eqs. (1) and (2), we need to calculate the fraction of
susceptible nodes for behavior 1 at time step t . First, for nodes
of degree ka in layer a, two cases can arise where the nodes
do not adopt behavior 1: (1) These nodes have not adopted
behavior 2 on layer b and the cumulative number of received
pieces of information 1 in layer a is less than T1, and (2)
these nodes have already adopted behavior 2 in layer b, but
the cumulative number of received pieces of information 1 in
layer a is less than T1 − �T1. Under the assumption that there
is no dynamical correlation between the layers, we have that
the fraction of susceptible nodes of degree ka for behavior 1 at
time t is given by

S1(ka,t) = S2(t)
T1−1∑
m=0

φ1(ka,m,t)

+ [1 − S2(t)]
T1−1−�T1∑

m=0

φ1(ka,m,t). (3)

In Eq. (3), the first term on the right side is the probability that
a node of degree ka in layer a at time t does not adopt behavior
1. This term contains two parts that describe the following two
situations, respectively: (1) the received cumulative number
of pieces of information 1 is less than T1 with probability∑T1−1

m=0 φ1(ka,m,t), and (2) with probability S2(t), a random
node in layer b does not adopt behavior 2 at time t (i.e., a node
in layer b does not adopt behavior 2 and is still in the susceptible
state), where the quantity φ1(ka,m,t) is the probability for a
node of degree ka to have received m pieces of information 1
by time t in layer a. Combining the two parts, we find that the
first term is identical to the second term in Eq. (3). Using the
degree distribution of network a, we can express the fraction
of susceptible nodes for behavior 1 as

S1(t) =
∑
ka

Pa(ka)S1(ka,t). (4)
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In Eq. (3), the quantity φ1(ka,m,t) can be expressed as

φ1(ka,m,t) = [1 − ρ1(0)]Bka,m[θ1(t)], (5)

where Bk,m(w) denotes the binomial distribution Bk,m(1 −
w)mwk−m and θ1(t) is the probability that a random neighbor
v of node u in layer a has not transmitted the behavioral
information 1 to node u by time t . To take into account the
dynamical correlations among the states of the adjacent nodes,
we make use of the cavity theory [30,46–48] to analyze the
quantity θ1(t), where node u is in the cavity state so that it
cannot transmit the behavioral information to its neighbors but
it can receive the information from its neighbors.

To solve Eqs. (3) and (4), we need the value of θ1(t) [the
computation of S2(t) is the same as that of S1(t)]. Noting that
a random neighbor v of node u in layer a can be in one of the
following three states: S1, A1, and R1, we have that θ1(t) is the
sum of the probabilities that the neighbor v does not transmit
information 1 to u when v is in the S1, A1, or R1 state. We have

θ1(t) = ξS
1 (t) + ξA

1 (t) + ξR
1 (t), (6)

where ξS
1 (t) [ξA

1 (t) or ξR
1 (t)] denotes the susceptible (adopted

or recovered) neighbor v of u which has not transmitted
information 1 to node u up to time t in layer a.

Suppose a random neighbor v of degree k′
a of node u is

susceptible initially; node u cannot transmit information 1 to
v since u is in the cavity state. Node v can only receive the
information from its other k′

a − 1 neighbors. The probability
that node v has received m pieces of information 1 in layer a

by time t is then

τ1(k′
a,m,t) = Bk′

a−1,m[θ1(t)]. (7)

Similar to Eq. (3), we have that the probability that the
neighboring node v is still in the susceptible state for behavior
1 at time t is given by


1[k′
a,θ1(t),θ2(t)] = S2(t)

T1−1∑
m=0

τ1(k′
a,m,t)

+ [1 − S2(t)]
T1−1−�T1∑

m=0

τ1(k′
a,m,t). (8)

For uncorrelated networks, the probability for a random edge to
connect a node of degree k′

a is k′
aP (k′

a)/〈ka〉, where 〈ka〉 is the
average degree of network layer a. A neighboring node in the
susceptible state cannot transmit the behavioral information.
Thus, ξS

1 (t) is equal to the probability that the neighboring
node is in the susceptible state, which is

ξS
1 (t) = [1 − ρ1(0)]

∑
k′
a
k′
aP (k′

a)
1[k′
a,θ1(t),θ2(t)]

〈ka〉 . (9)

If a random neighbor v is in the adopted state for behavior 1,
success in information transmission from node v to node u will
result in a decrease in θ1(t). We thus have

dθ1(t)

dt
= −λ1ξ

A
1 (t). (10)

At the same time, once the adopted neighbor v has recovered
before it can transmit information 1 to node u, there will be
an increase in ξR

1 (t). (Note that here we use the synchronous
updating rule, meaning that the transmission and recovery

events happen consecutively in discrete time steps.) The
increase in ξR

1 (t) contains two parts that describe the following
two situations, respectively: (1) with probability 1 − λ1, the
neighboring node v has not transmitted information 1 to u,
and (2) simultaneously, node v recovers with probability γ1.
Combining these two parts, we obtain the increment of ξR

1 (t) as

dξR
1 (t)

dt
= γ1(1 − λ1)ξA

1 (t). (11)

Combining Eqs. (10) and (11), we obtain an explicit expression
for ξR

1 (t):

ξR
1 (t) = γ1[1 − θ1(t)](1 − λ1)

λ1
. (12)

Inserting Eqs. (9) and (12) into Eq. (6), we can write ξA
1 (t) as

ξA
1 (t) = θ1(t) −

∑′
ka

k′
aP (k′

a)
1[k′
a,θ1(t),θ2(t)]

〈ka〉
− γ1[1 − θ1(t)](1 − λ1)

λ1
. (13)

Substituting Eq. (13) into Eq. (10), we get the time evolution
of θ1(t) as

dθ1(t)

dt
= −λ1θ1(t) + γ1[1 − θ1(t)](1 − λ1)

+ λ1(1 − ρ1(0))

×
∑

k′
a
k′
aP (k′

a)
1[k′
a,θ1(t),θ2(t)]

〈ka〉 . (14)

Following a similar procedure, we can derive the expression
of θ2(t), the probability that a random neighbor v of node u

in layer b has not transmitted the behavioral information 2 to
node u by time t , and S2(kb,t). We have

dθ2(t)

dt
= −λ2θ2(t) + γ2[1 − θ2(t)](1 − λ2)

+ λ2(1 − ρ2(0))

×
∑

k′
b
k′
bP (k′

b)
2[k′
b,θ1(t),θ2(t)]

〈ka〉 (15)

and

S2(kb,t) = S1(t)
T2−1∑
m=0

φ2(kb,m,t)

+ [1 − S1(t)]
T2−1−�T2∑

m=0

φ2(kb,m,t), (16)

where the form of 
2[k′
b,θ1(t),θ2(t)] in Eq. (15) is similar

to 
1[k′
a,θ1(t),θ2(t)], and φ2(kb,t) in Eq. (16) is similar to

φ1(ka,t). It is thus not necessary to write down the expressions
again. Using the degree distribution of network b, we have the
fraction of susceptible nodes at time t in layer b as

S2(t) =
∑
kb

Pb(kb)S2(kb,t). (17)

Iterating Eqs. (1)–(4) and (14)–(17), we can obtain the
fractions of susceptible nodes at time t in both layers: S1(t)
and S2(t). In addition, we can substitute S1(t) [S2(t)] into
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FIG. 1. Effect of synergistic strength on behavior spreading for random regular double-layer networks (RR-RR). (a),(b) For T1 = 2 and
T2 = 4, the fractionsR1(∞) andR2(∞) of recovered nodes in layersa andb, respectively, versusλ, whereλ1 = λ2 = λ. (c),(d) The corresponding
plots for a different set of threshold values: T1 = 3 and T2 = 4. The symbols are direct simulation results while the lines are the corresponding
theoretical prediction obtained by iterating Eqs. (1)–(4) and (14)–(17). The plots in the inset of (d) are results from five stochastic simulations
for the parameter settings (�T1 = 2, �T2 = 2, T1 = 3, and T2 = 4). The network sizes of both layers are set as N = 5 × 104, the simulation
results are averaged by using 20 multiplex network realizations, and each multiplex network is with 103 independent dynamical realizations.
Other parameters are γ1 = γ2 = 1.

Eqs. (1) and (2) and calculate the fractions of the adopted
nodes and of the recovered nodes in layer a (b) at time t .
Taking the limit t → ∞, we can obtain the final fractions of
adoption of the two behaviors. Results on the final adoption
fractions from direct numerical simulations together with the
corresponding theoretical predictions for different parameter
values are shown in Fig. 1. We obtain a good agreement
between theory and numerics. For example, for T1 = 2 and
T2 = 4, Fig. 1(b) shows that, without the synergistic effect
of behavior 1, i.e., �T2 = 0, behavior 2 will not exhibit
any outbreak. For �T2 = 2, behavior 2 is adopted globally.
When there are mutual synergistic effects, e.g., �T1 = 1 and
�T2 = 3 or T1 = 3 and T2 = 4, the adoption of both behaviors
is enhanced, as shown in Figs. 1(c) and 1(d), respectively. Note
that there are some outliers [e.g., there are is black square in
Fig. 1(a) and two black squares in Fig. 1(d)] around the critical
transmission rate since the SAR model is not a deterministic
threshold model, which is in contrast to the Watts threshold
model. The randomness exists in the process of simulations
when the behavior information transmission rate is smaller
than 1. Supposing a susceptible node with adoption threshold
equal to 3, when it has three adopted neighbors it will not adopt
the behavior if one of its adopted neighbors does not succeed
in transmitting the behavior information. As shown in the inset
of Fig. 1(d), there are some stochastic simulations that R2(∞)
does not jump from a small value (i.e., the value close to the
initial fraction of adopted nodes) to 1 directly. Instead, R2(∞)
will jump to a value close to 0.5 first, and then increases to 1.

A fundamental issue in spreading dynamics in complex
networks is phase transitions [3]. As a system parameter (e.g.,

the infection rate) changes through a critical point, the final size
of the infected nodes starts to increase from zero. An abrupt and
discontinuous increase in the final size signifies a first-order
phase transition, while a gradual and continuous change is in-
dicative of a second-order phase transition. An objective of our
study is then to uncover and understand the effect of synergistic
interactions on the phase transitions associated with the social
behavior spreading dynamics. To analyze the phase transition,
we focus on the fixed point (root) of Eqs. (14) and (15) associ-
ated with the final state (i.e., t → ∞). Simplifying notation as
θ1 ≡ θ1(∞) and θ2 ≡ θ2(∞), we write Eqs. (14) and (15) as

θ1 = f1(θ1,θ2), (18)

and

θ2 = f2(θ1,θ2), (19)

respectively, where

f1(θ1,θ2) =
[1 − ρ1(0)]

∑
k′
a
k′
aPa(k′

a)
1(k′
a,θ1,θ2)

〈ka〉

+ γ1

λ1
[1 − θ1](1 − λ1), (20)

and

f2(θ1,θ2) =
[1 − ρ2(0)]

∑
k′
b
k′
bPb(k′

b)
2(k′
b,θ1,θ2)

〈kb〉

+ γ2

λ2
[1 − θ2](1 − λ2). (21)
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FIG. 2. Phase transitions associated with simultaneous behavioral spreading on double-layer random regular networks. The graphical
solutions of Eqs. (18), (19), and (24) are presented. The upper panels show the results for the case T1 < T2, i.e., T1 = 1 and T2 = 4, where
g2(θ1,θ2) is plotted as a function of θ2 for �T2 = 0 (a), �T2 = 2 (b), and �T2 = 3 (c). The fixed points of Eqs. (17) and (18) are the intersections
between the respective curves and the horizontal axis. Other parameters are �T1 = 0, λ1 = 0.12, and ρ1(0) = ρ2(0) = 0.05. The lower panels
show the cases of T1 = T2 for T1 = T2 = 3, �T1 = �T2 = �T , and λ1 = λ2 = λ, where the values of g(θ ) are plotted as a function of θ for
�T = 0 (d), �T = 1 (e), and �T = 2 (f). The fixed points of Eq. (24) are the intersections between the respective curves and the horizontal axis.
The initial adoption fraction is ρ(0) = 0.05. The blue dots in (b), (e), and (f) denote the points of tangency. Other parameters are γ1 = γ2 = 1.

Because of the nonlinear functions 
1(k′
a,θ1,θ2) in Eq. (20)

and 
2(k′
a,θ1,θ2) in Eq. (21), to analyze the whole parameter

space is infeasible. We thus focus on some representative or
benchmark cases to gain certain analytic understanding of
the numerical results. Specifically, we consider two cases in
terms of the adoption thresholds of the two behaviors: (1) the
adoption threshold of one behavior is less than that of the other
behavior (T1 < T2 or T1 > T2), and (2) T1 = T2.

B. Solutions for T1 < T2

For T1 < T2, �T1 = 0 and �T2 > 0, indicating that the
adoption of behavior 2 has no effect on the spread of behavior
1 but the adoption of the latter will enhance the spread of
former, as shown in Fig. 1. Because Eqs. (18) and (19) are
nonlinear functions of θ1 and θ2, typically there are multiple
roots. In addition, there is persistent transmission of behavioral
information from individuals in an adopted state (i.e., A1 or
A2) to their neighbors, so θ1(t) and θ2(t) decrease with time.
Thus, if Eqs. (18) and (19) possess more than one stable fixed
point, only the one with the maximum value is physically
meaningful [30]. Since Eq. (18) contains the parameters λ1

and θ1 only, for a given value of λ1, we can obtain the value
of θ1. For given values of the parameters λ2 and �T2, with
θ1 we can solve Eq. (19) numerically. As shown in the top
panel of Fig. 2, we see that Eq. (19) typically has a nonzero
trivial solution even for small values of λ2, indicating that,
even when the initial adopted fraction of behavior 2 is small
[e.g., ρ2(0) = 0.05], it will always be adopted by a certain

fraction of the nodes. However, the initial fraction of seeds
will have an effect on the final adoption size [17,30]. To better
focus on the effect of synergistic interactions on simultaneous
spreading of the two behaviors, we set ρ1(0) = ρ2(0) = 0.05
and calculate the final adoption size versus the behavioral
information transmission rate with a particular eye on the
possible type of phase transitions.

For �T2 = 0, the number of roots (fixed points) of the func-
tion g2(θ1,θ2) = f2(θ1,θ2) − θ2 is 1 or 3, as shown in Fig. 2(a).
Because the physically meaningful solution is the maximum
value of the stable fixed point of Eq. (19), there is no global
outbreak in behavior 2 [verified numerically; see Fig. 4(a)].
For �T2 = 2, the function g2(θ1,θ2) is tangent to the horizontal
axis at θc

2 for the critical value of λc
2 ≈ 0.74. Further increasing

λ2 above λc
2 removes the tangent point and leaves g2(θ1,θ2)

with only one intersection point with the horizontal axis.
Importantly, from the standpoint of bifurcation analysis, we see
that, at this point, the physically meaningful fixed point θ2 de-
creases abruptly to a small value, signifying a first-order phase
transition. The critical value λc

2 for a given λ1 can be obtained
by using the criterion that a nontrivial solution of Eq. (19)
emerges, which corresponds to the point at which the function
g2(θ1,θ2) is tangent to the horizontal axis at the critical value of
θc

2 . That is, the critical condition for this case can be obtained
by combining Eqs. (18) and (19) and the following equation:

dg2(θ1,θ2)

dθ2

∣∣∣∣
θc

2

= 0. (22)
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For �T2 = 3 and λ1 = 0.12, Eq. (19) has a single root whose
value decreases with λ2, as shown in Fig. 2(c). This means
that R2(∞) increases with λ2 continuously.

For a given value of the transmission rate λ1 of behavior 1,
the critical condition is then that behavior 2 will be adopted
if its transmission rate λ2 is larger than λc

2. Similarly, we can
compute the minimal information transmission rate of behavior
1 required for a global outbreak of behavior 2. In particular,
setting λ2 to be the maximum value (i.e., λ2 = 1.0) and
substituting it into Eqs. (19) and (22), we get the critical values
of θ1 and θ2. Substituting these values into Eq. (18), we obtain
λm

1 , the minimal information transmission rate of behavior 1.
Numerical solutions of Eq. (19) also show that, for large val-

ues of λ1 and �T2 > 0, it has one fixed point only when varying
λ2, so R2(∞) increases with λ2 continuously. As a result, there
exists the critical parameter value θc

1 (i.e., λc
1), across which the

dependence of R2(∞) on λ2 changes from being discontinuous
to continuous. For the special case of T1 < T2 (e.g., T1 = 1,
T2 = 4, �T1 = 0, and �T2 > 0), we can numerically solve
Eqs. (19) and (22), together with the condition [49]

d2g2(θ1,θ2)

dθ2
2

∣∣∣∣
θc

2

= 0. (23)

Once θc
1 is determined, we can substitute the value of θc

1
into Eq. (18) to get λc

1. In particular, R2(∞) increases with
λ2 discontinuously for λ1 < λc

1 and the increasing pattern
becomes continuous for λ1 � λc

1. Using the same approach,
we can determine the critical value of λc

2 above (below) which
R2(∞) increases with λ1 discontinuously (continuously).

C. Solutions for T1 = T2

This is the symmetric case where �T1 = �T2 = �T , λ1 =
λ2 = λ, 〈ka〉 = 〈kb〉, and Pa(k) = Pb(k) = P (k). The symme-
try implies θ1(t) = θ2(t) and f1(θ1,θ2) = f2(θ1,θ2). For sim-
plicity, we denote θ (t) ≡ θ1(t) and f [θ (t)] ≡ f1[θ1(t),θ2(t)].
Equations (18)–(21) can be written as

θ = f (θ ), (24)

where

f (θ ) = [1 − ρ(0)]
∑

k kP (k)
(k,θ )

〈k〉 + γ

λ
(1 − θ )(1 − λ).

Similar to treating Eq. (8), we have


(k,θ ) = S(∞)
T −1∑
m=0

Bk−1,m(θ )

+ [1 − S(∞)]
T −1−�T∑

m=0

Bk−1,m(θ ). (25)

The final fraction of the susceptible nodes of behavior 1 (2) in
layer a (b) is given by

S(∞) = [1 − ρ(0)]
∑

k

P (k)

{
S(∞)

T −1∑
m=0

Bk,m(θ )

+ [1 − S(∞)]
T −1−�T∑

m=0

Bk,m(θ )

}
. (26)

Using the same analysis method as for the case T1 < T2, we
find that the number of fixed points of Eq. (24) is 1 or 3, as
shown in the lower panel of Fig. 2. Whether there is a tangent
point between the function g(θ ) = f (θ ) − θ and the horizon
axis depends on the strength �T of synergistic interactions.
For �T = 0, there is no tangent point and only the maximum
value of the fixed point of Eq. (24) is physically meaningful,
indicating that behavior 2 is adopted by a small fraction of
nodes only. For �T = 1 and �T = 2, the function g(θ ) can
be tangent to the horizon axis, as shown in Figs. 2(e) and 2(f).
When λ2 is increased passing through λc

2, the tangent point
disappears and the function g(θ ) has only one intersecting point
with the horizontal axis. In this case, the fixed point θ changes
discontinuously to a small value, signifying a first-order phase
transition.

IV. NUMERICAL VALIDATION

In this section, we perform extensive simulations of be-
havior spreading on different multiplex networks. We use the
notation “RR-RR” to denote the case where both layer a

and layer b host the random regular networks. The notation
“ER-SF” represents the setting where layer a is an Erdös-Rényi
(ER) random network [50] and layer b hosts a scale-free
(SF) network [51]. Other possible combinations are “ER-
ER,” “SF-SF,” and “SF-ER.” The size of each network is
Na = Nb = 5 × 104 and the average degree is 〈k〉 = 10 for
both networks. The initial adoption fractions of behavior 1
in layer a and behavior 2 in layer b are set to be ρ1(0) =
ρ2(0) = 0.05. To calculate the pertinent statistical averages,
we use 20 multiplex network realizations and at least 103

independent dynamical realizations for each parameter setting.
Unless otherwise specified, the above parameters are adopted
in the simulations. Let X1 denote the situation where a node
is in the A or R state in layer a so, for example, the notion
X1S2 means that, in layer a, a node is in the adopted state
or recovered state but it is in the susceptible state in layer b.
Similarly, A1S2 indicates that a node is in the adopted state in
layer a and is in the susceptible state in layer b, which means
that the node adopts behavior 1 but not behavior 2.

A. RR-RR multiplex networks

We first perform direct numerical simulations of behavioral
spreading dynamics on double layer networked systems con-
sisting of two random regular networks to provide support for
our theoretical predictions.

Our theoretical analysis in Sec. III B gives that, for T1 <

T2, synergistic interactions can promote behavior adoption
and spreading. To be concrete, we set T1 = 1 and T2 = 4.
Figure 3(a) shows the time evolution of the fraction R2(t)
of the recovered nodes in layer b for different values of the
synergistic interaction strength �T2. We see that behavior 2
will not break out if �T2 = 0. For �T2 = 2 and �T2 = 3,
R2(t) exhibits a two-stage contagion process, where nodes
having adopted behavior 1 in layer a will first adopt behavior
2, until when there is a sufficient number of seeds (i.e., nodes
having adopted behavior 2) in layerb to stimulate the remaining
nodes. When this happens, behavior 2 will be adopted quickly
in layer b. This phenomenon can be explained by noting that,
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FIG. 3. Time evolution of behavior spreading subject to synergistic interactions. For random regular double-layer networks, (a),(d) the
fraction of recovered nodes R2(t) versus time t , (b),(e) the fraction of nodes in state X in layer a and in state S in layer b versus time, (c),(f)
the fraction of nodes in the S state in both layers a and b versus time. (d)–(f) are the simulation results when �T2 = 2 for different network
sizes N . The parameters are λ1 = 0.06, λ2 = 0.8, T1 = 1, T2 = 4, and �T1 = 0. The symbols are simulation results and the lines are theoretical
prediction in (a)–(c). In the theoretical analysis of the state X1S2(t), dynamical correlations between the layers are ignored. Other parameters
are γ1 = γ2 = 0.5.

for a small fraction of the initial seeds for behavior 2 [i.e.,
ρ2(0) = 0.05], if the synergistic effect of adoption of behavior
1 is absent (i.e., �T2 = 0), behavior 2 will not be adopted
globally and only the recovery of the seeds can lead to an
increase in the value of R2(t). Note that the number of X1S2(t)
nodes increases with the adoption of behavior 1 in layer a

[Fig. 3(b)] since the S1 nodes will change to X1 nodes and
there is no decrease in the number of S2 nodes in the network.
For �T2 = 2, nodes that have adopted behavior 1 are more
likely to adopt behavior 2 as compared with those that have
not adopted behavior 1. Nodes having adopted behavior 1 in
layer a will first adopt behavior 2 in layer b, as indicated by the
decrease in the number of the X1S1(t) nodes in Fig. 3(c). Before
most of the X1S2 nodes have adopted behavior 2, the seeds
(i.e., adopted nodes for behavior 2) in layer b are sufficient to
stimulate the remaining nodes to adopt behavior 2, inducing
a two-stage contagion process. A similar phenomenon occurs
for �T2 = 3. When the simulation results are compared with
the theoretical predictions, we find the former matches well
with the latter for �T2 = 0, while the deviation emerges when
�T2 = 2, which is derived from the finite-size effects of the
networks and the dynamical correlation between layers. From
the bottom panels of Fig. 3, we will find that the deviation is
decreased when increasing the network size, but the deviation
will still exist since the interlayer dynamical correlations are
ignored in the theoretical method.

Figure 4(a) shows, for T1 = 1, T2 = 4, and λ1 = 0.12,
R2(∞) versus λ2 for different values of �T2, where the
fraction of the X1S2 nodes in the system is about 0.393. As
the synergistic interaction strength �T2 is increased, behavior
2 is adopted more readily since the number of information
pieces about it is decreased. A remarkable phenomenon is
the characteristic change in the dependence of R2(∞) on

λ2. In particular, for �T2 = 2, R2(∞) increases with λ2

discontinuously but the increasing pattern becomes continuous
for �T2 = 3. The reason for the characteristic change is
that, for �T2 = 2, the nodes having adopted behavior 1 still
need to receive an additional two (i.e., T2 − �T2) pieces of
information to adopt behavior 2. The system will accumulate
a relatively large number of nodes in the subcritical state when
the behavioral information transmission rate approaches the
critical point, as shown in the inset of Fig. 4(a). Therein, the
subcritical state is defined that the node in such state will adopt
the behavior if it receives one additional piece of behavior
information [30]. A slight increase in λ2 will cause a node in
this state to receive an additional piece of information and thus
adopts behavior 2. The node can then transmit the information
to its neighbors, which will cause its subcritical neighbors
to adopt behavior 2 accordingly, and so on, leading to an
avalanche of behavior adoption for the X1S2 nodes. When
most of the X1S2 nodes have adopted behavior 2 in an abrupt
fashion, there is a sufficient number of A2 nodes in layer b

to stimulate the remaining S1S2 nodes to adopt behavior 2.
As a result, increasing λ2 slightly can lead to a discontinuous
change in the value of R2(∞). However, for �T2 = 3, only
one additional piece of information about behavior 2 is needed
for the X1S2 nodes to adopt this behavior. As the value of
λ2 is increased from zero, some X1S2 nodes may receive one
piece of information about behavior 2 and adopt it, leading to
a continuous decrease in the number of nodes in the subcritical
state, as shown in the inset of Fig. 4(b). This is equivalent to the
dynamical process in the susceptible-infected-recovered (SIR)
model, in contrast to the cascading process in, for example,
the Watts threshold model. As a result, the value of R2(∞)
first increases with λ2 continuously. When most of the X1S2

nodes have adopted behavior 2, the fraction of adopted nodes
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FIG. 4. Asymptotic and stable adoption of behavior 2. For random
regular double-layer networks, the final adoption size of behavior
2 versus the information transmission rates: (a) R2(∞) versus λ2

for different values of the synergistic strength �T2, where the
transmission rate for behavior 1 is λ1 = 0.12 and the correspond-
ing fraction of the nodes adopting behavior 1 is R1(∞) ≈ 0.393,
(b) R2(∞) versus λ1 for different values of λ2. The inset in (a) shows
the final fraction 
 of nodes in the subcritical state for behavior 2.
The subcritical state is defined as the state for a node that it will adopt
the behavior when it receives one additional piece of information.
The inset in (b) shows the final adoption fraction of behavior 1
in layer a versus λ1, where �T2 = 3. The symbols are simulation
results and the lines (i.e., dotted, dotted dashed, and solid lines) are
theoretical prediction. Other parameters are T1 = 1, T2 = 4, �T1 = 0,
and γ1 = γ2 = 1.

in layer b is sufficient to stimulate the remaining S1S2 nodes
to adopt behavior 2. Since the fraction of adopted nodes is
relatively large [e.g., X1(∞) ≈ 0.393], the value of R2(∞)
increases with λ2 continuously [30] at a faster rate, as shown
in Fig. 4(a). The same process occurs for �T2 = 4. These
numerical results agree well with our bifurcation analysis
based theoretical prediction.

Figure 4(b) shows the dependence of R2(∞) on λ1 for
different values of λ2. For a relatively small value of λ2 (e.g.,
λ2 = 0.5), R2(∞) increases with λ1 continuously, which can
be understood by noting that, in this case, a global adoption
of behavior 2 requires more seeds in layer b, and the spread
of this behavior depends strongly on the spread of behavior
1. However, for relatively large values of λ2 (e.g., λ2 = 0.7
and λ2 = 0.8), R2(∞) versus λ1 can exhibit an abrupt or
discontinuous increase. In this case, a slight increase in the
fraction of seeds for behavior 2 is sufficient for it to spread
globally by its own dynamics. Both the continuous growth for
small values of λ2 and the discontinuous increase for larger
values of λ2 are predicted by our bifurcation analysis based
on Eqs. (18), (19), (22), and (23) by replacing θ2 with θ1
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FIG. 5. Dependence of final adoption size of behavior 2 on the
transmission rates. For random regular networks, color coded values
of R2(∞) in the parameter plane (λ1, λ2) of the two information
transmission rates: (a) numerical results and (b) theoretical prediction
based on solutions of Eqs. (1)–(4) and (16)–(19). The plane is divided
into three regions by the two vertical lines, where the dotted vertical
line (λ1 = λm

1 ) is from Eqs. (18), (19), and (22) for λ2 = 1, and
the dashed vertical line (λ1 = λc

1) is determined by Eqs. (18), (19),
(22), and (23). In region I, only a small fraction of the nodes is
exposed to adopting behavior 2. In regions II and III, there is a
discontinuous (first-order) and a continuous (second-order) phase
transition, respectively. The green circles and the red line in region II,
respectively, indicate the numerically obtained critical information
transmission rate of behavior 2 and the theoretical prediction from
Eqs. (17), (19), and (22) for a given value of λ1. The inset in (b)
shows the final adoption fraction of behavior 1 versus the information
transmission rate of this behavior. Other parameters are T1 = 1,
�T1 = 0, T2 = 4, �T2 = 3, and γ1 = γ2 = 1.

in Eqs. (22) and (23). There is a good agreement between
numerics and theory.

Our analysis and numerical computations indicate that,
with synergistic interactions between the spreading dynamics
of two behaviors, both λ1 and λ2 can affect R2(∞) and
the associated phase transition characteristically. To further
demonstrate the role of the synergistic interactions, we show
in Fig. 5 color coded values of R2(∞) in the parameter plane
(λ1, λ2) for T1 = 1, T2 = 4, �T1 = 0, and �T2 = 3. There are
three regions in the parameter plane, determined by the two
vertical lines at λm

1 and λc
1, respectively, which are associated

with characteristically distinct behavioral adoption dynamics.
In region I (λ1 < λm

1 ), only a small fraction of the nodes in
layer b adopt behavior 2. In region II (λm

1 < λ1 � λc
1), there is a

discontinuous phase transition, where a larger fraction of nodes
adopt behavior 2 for λ2 > λc

2 (white solid line). In region III
(λ1 > λc

1), there is a continuous phase transition. The distinct
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FIG. 6. Behavioral adoption dynamics under symmetrical syner-
gistic interactions. For random regular double-layer networks, (a) the
fraction of recovered nodes R(∞) [i.e., R1(∞) = R2(∞) ≡ R(∞)]
versus λ, where λ1 = λ2 ≡ λ. The symbols are simulation results
and the solid lines are the theoretical prediction obtained by iterating
Eqs. (24) and (26). (b) The simulation results of R(∞) versus λ when
T = 3 and �T = 2 for different network sizes N . Other parameters
are γ1 = γ2 = 1.

types of phase transition are predicted through our bifurcation
analysis in Sec. III.

To gain further insight into the effects of synergistic inter-
actions in behavioral adoption dynamics, we study the special
case where the two types of behaviors are completely symmet-
ric to each other. Figure 6(a) shows, for T1 = T2 = T , �T1 =
�T2 ≡ �T , and λ1 = λ2 ≡ λ, the dependence of R(∞) on
λ for different values of �T . In the absence of synergistic
interactions, i.e., when the adoptions of behaviors 1 and 2 have
no effect on each other, neither behavior can spread globally
and either behavior can only be adopted by a small fraction of
the nodes in the network. For �T > 0 (i.e., �T = 1,2), the
nodes that have adopted behavior 1 (2) only need additional
T − �T pieces of information to adopt behavior 2 (1). As a
result, the mutually cooperative spreading of behaviors 1 and
2 leads to a wide adoption of both behaviors. Increasing the
synergistic interaction strength makes the dynamical correla-
tion between the two layers stronger. The discontinuous phase
is more clear when the network size is enlarged. However,
the improvement in decreasing the deviation of the critical
threshold is less, as shown in Fig. 6(b). In this regime, the
deviation is mainly because the theoretical method cannot
capture the strong dynamical correlation between layers.

B. General multiplex networks

We consider more general network topology for the net-
work layers in the multiplex system, such as ER-ER, SF-SF,
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FIG. 7. Synergistic behavior spreading on a multiplex networked
system with heterogeneous network layers. For T1 < T2, (a) R2(∞)
versus λ2, where T1 = 1, T2 = 4, �T1 = 0, and �T2 = 2. (b) The
fraction of recovered nodes R(∞) versus λ. The parameters are T1 =
T2 = 3, �T1 = �T2 = �T , λ1 = λ2 = λ, and R1(∞) = R2(∞) =
R(∞). The symbols are simulation results and the solid lines are
theoretical prediction. Other parameters are γ1 = γ2 = 1.

ER-SF, and SF-ER. We use the standard configuration model
[45] to construct SF networks with the degree distribution
P (k) = �k−γ , where γ = 3 is the degree exponent and the
coefficient is � = 1/

∑kmax
kmin

k−γ with the minimum degree
kmin = 3 and maximum degree kmax∼N1/(γ−1). The average
degrees of SF and ER networks are set as 〈k〉 = 10, and the
network size is N = 5 × 104. For T1 < T2, e.g., T1 = 1 and
T2 = 4, we fix the final adoption size of behavior 1 and vary
the type of network in layer a.

To facilitate comparison, we set λ1 = 0.12 when layer a is
an ER network and λ1 = 0.113 if network a is SF, so that the
final adoption sizes of behavior 1 for both cases are approxi-
mately 0.44. As shown in Fig. 7(a), the network type in layer a

over which behavior 1 spreads has little effect on the spread of
behavior 2. For the symmetric case T1 = T2, the dependence of
R(∞) on λ changes from being discontinuous to continuous as
the network becomes more heterogeneous (i.e., SF) [30], as a
strong heterogeneity makes it harder for nodes in the subcritical
state to adopt a behavior simultaneously. Regardless of the
network type, in general synergistic interactions can facilitate
adoption of both behaviors and alter the nature of the associated
phase transition.

V. DISCUSSION

To understand social contagions in the human society at
a quantitative level is of great importance in the modern
time. While the spread of a single contagion can be analyzed
through the traditional models of network spreading dynamics,
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the simultaneous presence and spreading of two or more
contagions poses a challenge due to the mutual interplay
between the underlying dynamical processes. As an initial
effort to address this problem, we articulate a spreading model
of multiple social behaviors on multiplex networks subject to
synergistic interactions. For simplicity, we consider two-layer
coupled networks and limit the number of distinct behaviors
to two: one on each layer. The manifestation of the synergistic
mechanism is that the adoption of the behavior by a node
in one layer will increase the chance for the node that is
simultaneously present in the other layer to adopt the behavior
that spreads in that layer. The concrete setting enables us to
develop an edge-based compartmental theory and a bifurcation
analysis to uncover and explain how the synergistic interactions
affects the spreading dynamics in terms of the final adoption
size and the distinct phase transitions.

There are two types of synergistic interactions: asymmetric
and symmetric. In the asymmetric case, the adoption threshold
of one behavior in one network layer is less than that of the
other behavior in the other layer. In this case, the adoption of the
behavior with the higher threshold has no effect on the adoption
of the other behavior. However, synergistic interactions can
promote the adoption of both behaviors. In fact, the interaction
strength and the information transmission rate of the behavior
with the smaller threshold value can affect the nature of the
phase transition of the behavior with the larger threshold:
a small (large) value of the transmission rate of the former
can lead to a discontinuous (continuous), first- (second-)order
phase transition in the latter. In addition, a two stage spreading
process arises: nodes adopting the small threshold behavior
in one layer are more likely to adopt the large threshold
behavior in the other layer, which stimulates the remaining
nodes in this layer to quickly adopt the behavior. In the case
of symmetric synergistic interactions, the adoption processes
in both layers can affect each other on an equal footing. In
this case, the interactions will greatly enhance the spreading
of both behaviors in their respective layers through a first-order
phase transition.

Many issues remain, such as the effect of heterogeneity in
the synergistic strengths of the individual nodes on behavioral
spreading and the impacts of degree correlation between the
network layers. In general, there are two kinds of dynamical
correlation: intralayer and interlayer. In each layer, the correla-
tion can be described by the edge-based compartmental theory.
To make a theoretical analysis feasible, we have neglected
interlayer correlation, i.e., the dynamical correlation among
nodes in distinct layers. However, in real situations, dynamical
correlation may exist between the same node in different layers,
depending on the strength of the synergistic interaction. If
the interaction strength is not too large, interlayer dynamical
correlation is weak. In this case, there is a good agreement be-
tween the theoretical prediction and the simulation results (e.g.,
Figs. 1 and 4). For relatively strong synergistic interaction (e.g.,
Fig. 6 for �T = 2), the simulation results deviate from the the-
oretical prediction. Increasing the size of network will not help
reduce the deviation, as interlayer correlation can no longer be
regarded as insignificant. A more accurate theory incorporating
interlayer correlation is thus needed for synergistic affected
information spreading in the strong interaction regime [52].
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