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A common assumption employed in most previous works on evolutionary game dynamics is that every
individual player has full knowledge about and full access to the complete set of available strategies. In realistic
social, economical, and political systems, diversity in the knowledge, experience, and background among the
individuals can be expected. Games in which the players do not have an identical strategy set are hypergames.
Studies of hypergame dynamics have been scarce, especially those on networks. We investigate evolutionary
hypergame dynamics on regular lattices using a prototypical model of three available strategies, in which the
strategy set of each player contains two of the three strategies. Our computations reveal that more complex
dynamical phases emerge from the system than those from the traditional evolutionary game dynamics with
full knowledge of the complete set of available strategies, which include single-strategy absorption phases, a
cyclic competition (“rock-paper-scissors”) type of phase, and an uncertain phase in which the dominant strategy
adopted by the population is unpredictable. Exploiting the pair interaction and mean-field approximations,
we obtain a qualitative understanding of the emergence of the single strategy and uncertain phases. We find
the striking phenomenon of strategy revival associated with the cyclic competition phase and provide a qualitative
explanation. Our work demonstrates that the diversity in the individuals’ strategy set can play an important role
in the evolution of strategy distribution in the system. From the point of view of control, the emergence of
the complex phases offers the possibility for harnessing evolutionary game dynamics through small changes in
individuals’ probability of strategy adoption.
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I. INTRODUCTION

Evolutionary games are a powerful mathematical and
computational paradigm to gain qualitative and quantitative
insights into a variety of phenomena in diverse disciplines
such as biology, ecology, economics, and social and political
sciences [1–4]. A key success of evolutionary game theory
is the discovery of the general principles that govern the
emergence and evolution of cooperation, a phenomenon that
seems to contradict the principle of natural selection, which
provides a convincing explanation of its ubiquity in both
the animal world and human society [5–11]. In particular,
in most previous works on evolutionary game dynamics,
an assumption is that each and every player participating
in the game has full knowledge about and access to the
complete set of possible strategies [12–17]. A typically stud-
ied game setting is the following: a number of agents interact
with one another via some kind of network topology (e.g., reg-
ular or complex), and each agent can take on one strategy from
a predefined strategy set determined according to the typical
individual behaviors observed from real-world systems, lead-
ing to classic games such as the Prisoner’s dilemma games
(PDGs) [6], the snowdrift games (SGs) [18], and the public
goods games (PGGs) [19]. Such a game system typically
contains two strategies: cooperation and defection, where the
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latter is a selfish action that usually generates immediate
higher payoff [2]. A remarkable achievement of evolutionary
game theory is that it resolves this paradox in a counterintu-
itive but completely reasonable way. In fact, previous works
have uncovered a variety of cooperation-facilitating mecha-
nisms such as reputation and punishment [20], random diffu-
sion [21], memory effect [22], network reciprocity [12,23],
random noise [10,24,25], success-driven migration [26],
asymmetric cost [27], teaching ability [11], and social or
financial diversity [28–30]. In addition to game dynamics
with two strategies (i.e., cooperation and defection), there are
also games with three or more strategies, such as the “rock-
paper-scissors” (RPS) types of games where any strategy
has a cyclic advantage over another [31–47] and extensions
[48–56]. Studies of such game dynamics have led to great
insights into species coexistence and biodiversity in com-
plex ecosystems. Theoretically, methodologies from statistical
physics have been used to understand complex spatiotemporal
game dynamics [1,24,25,34,57,58].

In spite of its widespread use in previous works on evo-
lutionary game dynamics, the assumption that every agent
(game player) in the system has the same strategy set may
be idealized. In reality, due to the diversity in the knowledge
background and personal experience, it is only natural to as-
sume heterogeneity in individuals’ available strategy sets. It is
also possible that an individual’s strategies are affected by his
or her emotions and external factors. In addition, individuals
playing a game may have quite different understandings of
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other’s strategies. When the game players do not possess an
identical strategy set because not everyone has full knowledge
about the complete set of available strategies, the underly-
ing game is called hypergame, a term coined by Bennett
in 1977 [59]. In general, hypergame takes into account the
realistic situation where players’ understandings and choices
of the game strategies can be different. As a result, hypergame
dynamics are capable of modeling competitions and conflicts
in the real world more closely, leading to better and more
realistic solutions than the classic game dynamics [60–62].
During a hypergame, an agent has his or her own knowledge
base to make judgment of the environment and determines
which strategy to use. The true payoff gained by the agent
is determined by his or her current strategy versus the actual
strategies in the system. In fact, the player’s choice of action
reflects the way he or she perceives the reality and the game
outcome, which is usually not accurate. The inaccuracy in
the perception can affect the evolutionary dynamics of co-
operation in a fundamental way and may lead to different
phenomena than predicted by classical evolutionary game
dynamics in previous works.

In this paper, we study hypergame from the perspective of
network dynamics. In spite of its importance, there has been
little previous study of evolutionary hypergame dynamics.
Because of the system complexity induced by the uncertain-
ties in individual agent’s understanding and choice of the
game strategies, we seek to construct the simplest possible
class of prototypical models that retain the essential features
of hypergame dynamics to uncover the underlying generic
behaviors. In particular, we consider the system setting where
there are three possible strategies in the system. To every
agent in the system, two of the three strategies are available.
During the dynamical evolution, at any given time an agent
can use either one of the two available strategies with certain
probabilities. The probability of adopting a strategy is thus a
key (bifurcation) parameter in our model. Our computations
reveal that, as the bifurcation parameter is changed, our parsi-
monious model generates distinct and more complex dynam-
ical phases than those from the classical evolutionary game
models. In particular, there are deterministic single-strategy-
absorption phases, a “rock-paper-scissors”–type phase, and
a phase of high uncertainty in which the dominant strategy
adopted by the population is unpredictable. We obtain an
qualitative understanding of the emergence of the multiple
dynamical phases by exploiting the pair approximation and
solving the mean-field master equation. A striking finding is
the phenomenon of strategy revival: The population adopting
a specific strategy can decrease and approach zero but it
can revive and dominate at a later time. While qualitatively
this can be explained based on cyclic competitions among
three strategies, to develop a quantitative understanding is an
open issue. From the network control perspective, our finding
that a slight change in the bifurcation parameter can com-
pletely overturn the relative advantage between the strategies
suggests that the complex game dynamics can be harnessed
through small perturbations to the parameter.

II. EVOLUTIONARY HYPERGAME MODEL

To construct a parsimonious model of evolutionary hy-
pergame dynamics, we begin with the generalized prisoner’s

dilemma game (gPDG) with three strategies: cooperation (C),
defection (D), and loneliness (L). If an agent adopts the L

strategy, then he or she does not actually participate in the
game but nonetheless is guaranteed to receive a low payoff.
For simplicity, we use the prisoner’s dilemma game model
introduced by Nowak and May [63], which captures the
essential feature of hypergame. The payoff matrix M is given
by

⎛
⎜⎜⎜⎝

C D L

C 1 0 0

D b 0 0

L σ σ σ

⎞
⎟⎟⎟⎠. (1)

Because agents have a different understanding of the com-
petition environment, during the hypergame, each agent is
able to distinguish and adopt only two of the three strate-
gies. For each agent, the resource is constrained, so the two
strategies have weights that sum up to unity. There are thus
three types of agents in the model: agents having available
strategies (1) C and D, (2) D and L, and (3) L and C, respec-
tively. For each of the three combinations, the probability of
adopting the first strategy is ρ while that adopting the second
strategy is 1 − ρ. For each agent, the strategy set is thus
restrictively mixed because there is a missing strategy. For
the whole system, there are then three distinct such strategies.
Mathematically, the three strategies can be represented by the
following three vectors:

S (1) =

⎛
⎜⎝

ρ

1 − ρ

0

⎞
⎟⎠, S (2) =

⎛
⎜⎝

0

ρ

1 − ρ

⎞
⎟⎠,

S (3) =

⎛
⎜⎝

1 − ρ

0

ρ

⎞
⎟⎠, (2)

where rows 1, 2, and 3 indicate the adoption probabilities of
strategies C, D, and L, respectively.

In the simulations, agents are placed on a square lattice
with periodic boundary conditions. At each time step, each
agent plays gPDG with its nearest neighbors. The total payoff
gained is the sum of the payoffs from playing the game with
all its neighbors, which is given by

Un =
∑
m

unm =
∑
n,m

Sn
T MSm, (3)

where Un denotes the total payoff of agent at lattice node
n, unm is the payoff obtained by agent n while playing the
game with agent at lattice node m, M is the payoff matrix
in Eq. (1), and Sn and Sm are the strategy vectors of the two
agents, respectively. After obtaining the payoff, agent n with
strategy Sn is replaced by agent m with the probability given
by the Fermi rule [29]:

PSn−→Sm
= 1

1 + exp[(Um − Un)/κ]
, (4)

where κ measures the stochastic uncertainties (noise) charac-
terizing irrational choices.
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In each dynamical realization, initially N agents with
the three types of strategies are randomly distributed in the
square lattice with equal probability, i.e., F1 = F2 = F3 =
1/3, where Fx is defined in Eq. (5). The system evolves in
time until an equilibrium is reached. To be concrete, we set
the game parameters as b = 1.02, κ = 0.1, and σ = 0.25.
We check to ensure that reasonably different choices of the
parameters lead to qualitatively identical behaviors from the
simulations. The adoption probability ρ is a key parameter
in the system, which is chosen as the control or bifurcation
parameter.

III. NUMERICAL RESULTS

A. The equilibrium state

The equilibrium frequency of the restrictively mixed strat-
egy S (x) (x = 1, 2, 3) on a square lattice of N nodes is given
by

Fx =

N∑
n=1

I (Sn, S
(x) )

N
, (5)

where Sn denotes the strategy of agent at lattice node n

and I [Sn, S
(x)] is an indicator function (I [Sn, S

(x)] = 1 for
Sn = S (x) and I [Sn, S

(x)] = 0 otherwise). We use 100 random
simulation realizations to obtain the value of Fx . Figure 1
shows the frequencies F1, F2, and F3 associated with the
strategies S (1), S (2), and S (3), respectively, versus the parame-
ter ρ. In different regions of ρ value, the frequencies exhibit
dramatically different behaviors. Specifically, for ρ � 0, S (1)

dominates the entire population, while the frequencies of
S (2) and S (3) are essentially zero. As ρ is increased, a sharp
reduction in F1 occurs, leading to an increase in the values
of both F2 and F3. At this point, the system enters into a
state in which strategies coexist with similar frequency values.
When ρ reaches the value of about 0.3, the value of F1

becomes effectively zero, while those of F2 and F3 alternate.
For ρ ≈ 0.4, F2 peaks, indicating that S (2) now dominates
the system. With a small increment in the value of ρ, S (1)

becomes dominant, after which the system remains in the
S (1)-absorption state for a large range of the ρ value until
about ρ ≈ 0.94 when the gradual increase and decrease in
the values of F2 and F1, respectively, drive the system into
an S (2)-absorption state at ρ = 1. We thus see that, as ρ is
changed, the system shows highly complex behaviors with
distinct evolutionary patterns. For example, one strategy may
have superior advantage over the others in some parameter
region but may lose appeals completely in other regions. The
phase transitions associated with most of the dramatic changes
in the system dynamics are abrupt. This numerical finding
indicates that hypergame dynamics can be much richer than
conventional game dynamics with pure strategies.

For convenience, we use different colors to denote the four
regions with qualitatively different behaviors (i.e., different
phases), as shown in Fig. 1. From the model setting, we see
that each of the three strategy vectors can get infinitesimally
close to another for ρ → 0 or ρ → 1: S (1)|ρ→0 → S (2)|ρ→1,
S (2)|ρ→0 → S (3)|ρ→1, and S (3)|ρ→0 → S (1)|ρ→1, providing an
explanation for the similarities in the behaviors of F1, F2,

FIG. 1. Dependence of agent frequency on the bifurcation pa-
rameter. The system is a 70 × 70 square lattice with periodic bound-
aries. The number of agents is N = 4900. The red (medium gray),
green (light gray) and blue (dark gray) curves show the frequencies
F1, F2, and F3 of the three agents versus the bifurcation parameter ρ,
respectively. For different values of ρ, the system evolves into a final
equilibrium state in different time T . In particular, for 0 � ρ � 0.03,
0.26 � ρ � 0.3, 0.935 � ρ � 0.95, and 0.995 � ρ � 1, we have
T = 5 × 105. For 0.3 < ρ < 0.42, the system approaches a final
state for T < 104. For other values of ρ, the system needs T = 104

time steps to approach the final state. The values of F1, F2, and
F3 shown are the results of averaging over 100 ensembles (random
realizations) for most values of ρ except for 0.3 < ρ < 0.42, where
500 ensembles are used because of the relatively strong statistical
fluctuations in this parameter interval. Depending on the behavior of
the equilibrium strategy frequencies, the whole parameter interval
can be divided into four regions: (1) 0 < ρ � 0.03 and 0.95 �
ρ < 1 (region 1), (2) 0.03 � ρ � 0.3 (region 2), (3) 0.3 � ρ � 0.4
(region 3), and (4) 0.4 � ρ � 0.95 (region 4).

and F3 for ρ → 0 and ρ → 1. For this reason, the regions
corresponding to ρ → 0 and ρ → 1 are marked with the same
color.

B. Transient behaviors

The transient behaviors that the system exhibits before
approaching the equilibrium reveal more about the hypergame
dynamics than the equilibrium itself. For example, in region 1
(0 < ρ � 0.03 and 0.95 � ρ < 1), there are two restrictively
mixed strategies: S (1) and S (3) on the right side of ρ = 0 [or
S (2) and S (1) on the left side of ρ = 1], where the strategy
with a stronger defective weight gains evolutionary advantage
over the one with more cooperative weight while the third
strategy disappears long before the equilibrium is reached,
as shown in Fig. 2(a). This is due to that, when the value of
ρ is near zero or unity, the restrictively mixed strategies are
similar to the pure strategies in traditional game dynamics,
where the defective strategy dominate on networks with a
homogeneous topology due to fluctuations and the finite-size
effect. In this case, the third strategy has little chance to lead
to high payoff and would be eliminated quickly, so the final
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FIG. 2. Transient behaviors associated with hypergame dynam-
ics. [(a)–(d)] Transient behaviors in the evolution of the restrictively
mixed strategies for ρ = 0.001 (in region 1), ρ = 0.2 (in region 2),
ρ = 0.31 (in region 3), and ρ = 0.7 (in region 4), respectively. The
red (medium gray), green (light gray), and blue (dark gray) curves
represent the fractions of S1, S2, and S3, respectively, where T is the
number of evolution time steps. The results from all four panels are
from a single realization of the system. The system parameters are
the same as those in Fig. 1.

state is the coexistence of two restrictively mixed strategies. In
region 2 (0.03 � ρ � 0.3), the final state is the coexistence of
all three restrictively mixed strategies. In this case, no strategy
can be eliminated, as shown in Fig. 2(b). The rapid increase
in the frequency of S (2) for ρ close to 0.1 indicates that a
slight increment in ρ can reactivate the strategy S (2) and a
small amount of defection can lead to a substantial increase in
the evolutionary fitness. As the value of ρ approaches 0.3, the
strategy S (2) becomes relatively dominant, while the strategies
S (1) and S (3) approach extinction, as shown in Fig. 2(c). As
ρ passes through a certain threshold value, the system enters
into region 3 (0.3 � ρ � 0.4), in which the transient behavior
can be complicated but the equilibrium falls into only one of
two states: the S (2) or the S (3) absorption state. This means
that a single strategy always wins, either S (2) or S (3). The
frequencies of S (2) and S (3) shown in Fig. 1 are ensemble
averaged values of the number of agents in the S (2) and S (3)

absorption states, respectively, where a single realization leads
to a state with only one strategy: S (2) or S (3). Strikingly,
before the equilibrium is reached, S (1) and S (3) enter into a
nearly extinction state, where their frequencies are so low that
random fluctuations can eliminate one of them. However, if
S (1) becomes extinct, S (3) will take over the entire system.
Figure 2(c) also shows the dramatic change in the frequency
of S (3). The coexistence of the three strategies lasts longer for
a larger network, so S (1) and S (3) are more resilient to random
fluctuations. In region 4 (0.4 � ρ � 0.95), S (1) take over after
it wins the competition with S (2), while S (3) survives only
in the first few time steps. The final state is one dominated
by S (1).

FIG. 3. Actual fractions of cooperation, defection, and loneli-
ness. These fractions are denoted by rC , rD , rL, respectively, which
depend on the value of ρ in a somewhat complicated manner. How-
ever, there are parameter regions in which cooperation dominates,
e.g., 0.5 � ρ � 0.95. Simulation parameters are the same as those in
Fig. 1.

C. Fraction of cooperation

The fraction of cooperation is a more intuitive characteriz-
ing quantity of the system dynamics. Figure 3 shows the actual
fractions of cooperation, defection, and loneliness versus ρ.
While the dependence of the fraction of cooperation on ρ is

FIG. 4. Snapshots of typical lattice configuration for different
ρ values. [(a)–(d)] Snapshots of self-organizing patterns on the
lattice associated with equilibrium coexistence of S (1) [red (medium
gray)], S (2) [green (light gray)], and S (3) [blue (dark gray)] for
ρ = 0.01, 0.35, 0.65, and 0.99, respectively. Other parameters are
b = 1.02, σ = 0.25, and K = 0.1. The lattice size is 400 × 400.
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FIG. 5. Strategy revival. [(a), (f), (g), (h), and (i)] For ρ = 0.35, the patterns of S (1) [red (medium gray)], S (2) [green (light gray)], S (3) [blue
(dark gray)] on the square lattice of size 400 × 400. [(b)–(e)] Magnification of the patterns at different time. Other parameters are the same as
in Fig. 4.

complicated, there are parameter regions in which cooperation
dominates, e.g., 0.5 � ρ � 0.95, For ρ ≈ 0.95, the fraction of
cooperation is nearly 1.

D. Evolution pattern on lattice and strategy revival

To further understand the coexistence of strategies for
values of ρ in distinct dynamical regimes, we compute the
patterns of the equilibrium coexistence states on the lattice,
as shown in Fig. 4. In region 1, on the right side of ρ = 0,
before an equilibrium state is reached, a typical pattern is that
S (3) forms small but relatively stable clusters with irregular
boundaries distributed evenly on the lattice. In between the
clusters is S (1), as shown in Fig. 4(a). A similar phenomenon
occurs on the near left of ρ = 1 for strategies S (2) and S (1). In
region 2, S (1) and S (3) form large clusters with regular bound-
aries, while S (2) acts as the background of those clusters, as
shown in Fig. 4(b). Frequent strategy transitions occur on the
boundaries. For example, on the boundary between S (1) and
S (2), the probability of S (1) transforming into S (2) is higher
than that of the transformation in the opposite direction. On
the boundary between S (2) and S (3), S (3) is more likely to
replace S (2), and on the boundary between S (1) and S (3),
S (1) is more likely to exclude S (3). This interaction pattern
is effectively that of a cyclic (RPS) game. Closer to region
3, the frequencies of S (1) and S (3) in the equilibrium states
decrease continuously, indicating the possible occurrence of a
region in which only S (2) exists as ρ is increased. However,
this cannot occur for the reason that, in region 3, the existence
of S (3) is robust, as shown in Fig. 4(b). In particular, in this

parameter region, for a long period of time, the transient
evolution patterns of the three strategies are similar to those
associated with the RPS-like game in which all three strategies
coexist. Surprisingly, after a long time evolution, S (1) or S (3)

can suddenly disappear as their frequencies approach zero,
which breaks the symmetry: if S (1) becomes extinct first, S (3)

would eventually take over the entire network since S (3) is
more likely to replace S (2). Likewise, if S (3) disappears before
S (1), the S (2) absorption state will finally be realized, since
there is a higher probability for S (2) to exclude S (1). The
emergence of distinct equilibrium states, namely the S (2) or
the S (3) absorption state, depends on which strategy [S (1) or
S (3)] becomes extinct first. In region 4, there is no clustering
behavior, and S (1) takes over the entire lattice rapidly. (See
supplementary videos [64] for a vivid presentation of the
different evolution processes.)

Figure 5 shows a concrete example of the striking phe-
nomenon of strategy revival: S (3) takes over the entire lattice
system even when it has become almost extinct at a time
(in region 3). In particular, Fig. 5(a) shows that the system
can reach a state in which there is only a single S (3) cluster
of extremely small size in contact with a small size S (1)

cluster. Figures 5(d)–5(f) show the evolution pattern after the
state in Fig. 5(c) has been reached. We see that the smaller
S (1) cluster first collapses into several components and the
part still in contact with S (3) disappears, leaving a cluster
of S (3) surrounded by S (2) only, while the other S (1) regions
are surrounded by S (2). The S (1) and S (3) clusters become
well separated, leading to the dominance of S (3): S (1) would
eventually be replaced by the surrounding S (2). When no S (1)
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FIG. 6. Persistence of strategy revival in small-world networks.
[(a)–(c)] The small-world networks are generated by randomly
rewiring 1%, 1.5%, 2% of the links of the square lattice, respectively.
In all cases, there is strategy revival, in spite of an increase in the time
that it takes for it to occur. This time can be reduced by increasing
the average degree of the network, as shown in (d) for 〈k〉 = 8. The
network size for (a)–(d) is 160 000. The value of the parameter ρ is
0.35 for (a)–(c) and 0.325 for (d). All other parameters are the same
as in Fig. 5.

is left, no matter how few S (3) holders there are, they will
exclude all the S (2) holders and overturn the whole square
lattice into the S (3) absorption state. Without the separation,
S (3) would be completely excluded by S (1) at certain time. In
this case, when there are only S (1) and S (2) left, S (2) will take
over by excluding all S (1). This is the mechanism by which
the S (2) absorption state is generated.

Figure 6 shows that the phenomenon of strategy revival
can also occur in networks with a more complex structure
than a regular lattice. In particular, the networks in Figs. 6(a)–
6(c) are constructed from a regular square lattice with three
different percentages of link rewiring to generate long range
random links—they are small-world networks. There is strat-
egy revival in all three networks, in spite of the increase in
the time for the system to reach the state in which the strategy
S (1) is extinct and eventually replaced by the strategy S (3). The
time can be reduced by increasing the average degree of the
network, as exemplified in Fig. 6(d).

To better visualize the spatiotemporal evolution of patterns,
we provide four supplementary movies [64].

E. Emergence of a dominant state

Figure 7 shows the frequencies of the three restrictively
mixed strategies versus the control parameter ρ. There exist
parameter regions where one of the strategies dominates. For
0.32 � ρ � 0.4, the dominant strategy can be either S (2) or
S (3). The frequencies also depend on the system size. For
small systems, the frequency values for S (2) and S (3) (green
and blue curves) oscillate about the value of 0.5 as ρ is varied
in the interval. There are three distinct points of ρ at which the

FIG. 7. Frequency of a dominant state. The frequency values
for the system to exhibit an S2 or an S3 dominant state. All data
points are the result of averaging over 500 statistical ensembles. The
red (medium gray), green (light gray), and blue (dark gray) curves
represent S1, S2, and S3, respectively. [(a)–(d)] The frequencies of
S2 and S3 for a 70 × 70, 200 × 200, 250 × 250, and 400 × 400
lattice, respectively. Periodic boundary conditions are used.

two probabilities are equal. As the system size is increased,
there exists only one such value of ρ. For example, for ρ ∈
[0.32, 0.36], the probability for S (3) to be dominant increases
with system size. For ρ ∈ [0.36, 0.4], S (2) will dominate for
relatively large systems.

IV. THEORY

A. Modeling of interaction configurations and pair
approximation on interaction motifs

Methods of theoretical analysis of the evolutionary dy-
namics on square lattice include the mean-field theory [24]
in combination with pair approximation [58,65,66] and the
master equation [67]. To develop a theoretical understanding
of complex dynamical behaviors as exemplified in Figs. 1–4,
we take the mean-field and pair approximation approach. To
enumerate the possible pairwise interactions, we assume that
each strategy exists in the clusters of the agents adopting
that strategy (Fig. 4), so the interactions (strategy transitions)
occur only at the boundaries of the clusters between different
strategies. Figure 8(a) shows the typical configurations of pair
interactions on a square lattice, where the two focal nodes are
surrounded by six other nodes, and each of the eight nodes
can adopt any of the three strategies. However, the boundaries
between the clusters of different strategies typically contain
two distinct strategies only, which can be empirically verified
via the statistics of the strategy distribution configurations of
the eight-node motif.

For two clusters with regularly shaped boundaries, there
are altogether six typical configurations of strategies on the
eight-node motif, as shown in Fig. 8(b). The focal node on
the left and its left neighbor can be assumed to have the same
strategy, as they belong to the same cluster. The upper and
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FIG. 8. Boundary structure of clusters and agents in an eight-node motif. In (a), the red (dark gray), green (light gray), and blue (medium
gray) nodes represent the target agent, the opponent node, and the neighbors of this pair of nodes, respectively. (b) The cluster boundary
structure, where there are two types of agents. The upper part of the panel appears on the boundary of the large cluster, while others arise on
the boundary of the small cluster. The boundaries of the various clusters typically contain two types of agents. The red and green nodes in
(b) represent two types of agents.

lower neighbors of the focal node can have the same strategy
or the strategy of the other focal node on the right, which is
different from that of the left focal node. Similarly, the focal
node on the right and its right neighbor are in the same cluster
and thus have the same strategy, while its upper and lower
neighbor can choose to have either of the two strategies freely.
Due to the fact that the payoff of each focal node depends
only on the number of its neighbors in each type of two
strategies, symmetric configurations are regarded as the same.
Consequently, there are only six distinct cases, which are
denoted as configurations (1–6) in Fig. 8(b). For boundaries
with an irregular shape, the left (or right) neighbor of the left
(or right) focal node on the motif may have a different strategy.
Accordingly, there are three additional configurations, de-
noted as cases (7–9) in Fig. 8(b). Given two distinct strategies,
S (x) and S (y), the payoffs of the two focal nodes in each of
the nine configurations can be calculated. Furthermore, under
the assumption that the nine configurations occur with equal
probability, the average payoff of each focal node can be
obtained, leading to the probability PS (x)→S (y) of a focal node
to replaced by its opponent focal node, namely, the probability
for the strategy of a focal node to be excluded by that of the
other focal node.

To gain insights, we study the statistical distributions of
distinct strategy configurations, with results shown in Fig. 9.
The coding scheme of the six-neighbor structures is shown in
Table I. We see that the green dots occur most frequently at the
cluster boundaries, indicating that the boundaries are mostly
between two types of agents. The most frequently occurring
boundary structures are those shown Fig 8(b). From Fig. 4,
we see that there are more small clusters for ρ = 0.01 or
ρ = 0.99 than for ρ = 0.35. The six large cluster boundary
structures appear more often for ρ = 0.35. For ρ = 0.01, the
frequencies of S (1) and S (3) are larger than that of S (2). There

are many more boundary points between S (1) and S (3) than
any other combinations of agent pairs. Based on the two types
of agent boundaries and the nine kinds of cluster boundaries,
we can exploit the mean-field theory (below) to calculate the
theoretical transfer probability for any type of agents and
predict their frequencies.

The various probabilities of strategy adoptions can be
calculated by resorting to the pairwise interaction
approximation. For each of the nine strategy distribution
configurations on the eight-node interaction motif in
Fig. 8, the payoffs of the two focal nodes with strategies
S (x) and S (y) are U (1)

x = (uxx + uxy ) + 2uxx , U (1)
y =

(uyy + uyx ) + 2uyy , U (2)
x = (uxx + uxy ) + 2uxx , U (2)

y =
(uyy + uyx ) + uyx + uyy , U (3)

x = (uxx + uxy ) + uxx + uxy ,
U (3)

y = (uyy + uyx ) + uyx + uyy , U (4)
x = (uxx + uxy ) +

uxx + uxy , U (4)
y = (uyy + uyx ) + 2uyy , U (5)

x = (uxx +
uxy ) + 2uxx , U (5)

y = (uyy + uyx ) + 2uyx , U (6)
x =

(uxx + uxy ) + 2uxy , U (6)
y = (uyy + uyx ) + 2uyy , U (7)

x =
(uxx + uxy ) + uxx + uxy , U (7)

y = (uyy + uyx ) + 2uyx ,
U (8)

x = (uxx + uxy ) + 2uxy , U (8)
y = (uyy + uyx ) + uyx + uyy ,

U (9)
x = (uxx + uxy ) + 2uxy , and U (9)

y = (uyy + uyx ) + 2uyx ,

TABLE I. Indexing scheme for the six neighbor structures.

Index of structure 1 2 3 4 5 6

1 S1 S1 S1 S1 S1 S1
2 S1 S1 S1 S1 S1 S2
3 S1 S1 S1 S1 S1 S3
4 S1 S1 S1 S1 S2 S1
... ... ... ... ... ... ...
729 S3 S3 S3 S3 S3 S3
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FIG. 9. Statistical distribution of distinct strategy configurations. [(a)–(i)] Counts of every neighboring structure from simulation data,
where the red (medium gray), green (light gray), and blue (dark gray) dots represent the cases where there is only one type, two types, and
three types of agents within the six neighbors [Fig. 8(a)], respectively. The values of the parameter ρ are ρ = 0.01 for (a)–(c), ρ = 0.35 for
(d)–(f), and ρ = 0.99 for (g)–(i). The distinct boundary structures are target agent S (1) versus opponent agent S (2) [(a), (d), and (g)], S (1) versus
S (3) [(b), (e), and (h)], and S (2) versus S (3) [(c), (f), and (i)]. For each panel, the structure index is an encoding of the six neighbors in Fig. 8(a),
where are 729 such combinations. All data points are the result of taking the average between time steps 251 and 300. The lattice size is
400 × 400.

where (x, y) = 1, 2, 3 but x �= y. The quantities uxx , uxy , uyx ,
and uyy denote the payoffs of one focal node with strategies
S (x), S (x), S (y), S (y) against an opponent node with strategies
S (x), S (y), S (x), and S (y), respectively. The quantity U (i)

x (or
U (i)

y ) stands for the total payoff obtained by the focal node
with strategy S (x) (or S (y)) in configuration i in the games
with its four opponents. Accordingly, the probability for a
focal node with strategy S (x) to be replaced by its opponent
focal node with strategy S (y) can be calculated as

PS (x)→S (y) = 1

1 + exp[(〈Uy〉 − 〈Ux〉)/K]
, (6)

where 〈Ux〉 = 1/9
∑9

i=1 U (i)
x and 〈Uy〉 = 1/9

∑9
i=1 U (i)

y .
The pairwise interaction based picture suggests that the

replacement probability PS (x)→S (y) can in fact be regarded as
an approximation of the strategy transformation probability

on the square lattice. Figure 10(a) shows the interdependence
between PS (x)→S (y) and ρ, where x, y ∈ [1, 2, 3]. We see that,
for ρ < 0.4 (regions 1, 2, and 3), the values of PS (1)→S (2) ,
PS (3)→S (1) , and PS (2)→S (3) are all above 0.5, indicating the
following RPS mechanism: S (2) excludes S (1), S (1) drives out
S (3), and S (3) precludes S (2). For 0.495 < ρ < 0.96, we have
PS (1)→S (2) < 0.5, which means PS (2)→S (1) > 0.5, so S (1) actu-
ally ousts S (2) in this case. Since PS (3)→S (1) ≈ 1, S (1) eliminates
both S (2) and S (3), and this explains the dominance of S (1)

in region 4. Our pair approximation method thus provides an
understanding of the qualitative behavior of the system in a
wide parameter range through local interactions.

B. Mean-field theory

From a pairwise interaction based microscopic analysis of
the replacement probability, the behaviors of the hypergame
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FIG. 10. Predictions of mean field or pair approximation theory.
The replacement probability between any two types of agents and
the frequency of every type of agents as predicted theoretically,
where the latter is calculated from the mean-field theory based on
the former. (a) Theoretically predicted replacement probability based
on the nine boundary structures in Fig. 8(b). Each point is the
average value of the replacement probability from the nine boundary
configurations. The green (light gray), red (medium gray), and blue
(dark gray) curves are the probabilities of state S (1) replaced by S (2),
of S (3) replaced by S (1), and of S (2) replaced by S (3), respectively.
(b) The mean-field predicted frequency of every types of agents,
where the red (medium gray), green (light gray), and blue (dark
gray) curves are the frequencies of S (1), S (2), and S (3) type of agents,
respectively, and every point is the average value of the last 500 time
steps of total 10 000 mean-field simulation steps. The incremental
step in ρ is 0.005.

dynamics on a global scale can be understood quantitatively.
In terms of the mean-field theory, the frequencies of the three
strategies in the system are governed by the following master
equation

dF1

dt
= [PS (2)→S (1) − PS (1)→S (2) ]F1F2

+ [PS (3)→S (1) − PS (1)→S (3) ]F1F3,

dF2

dt
= [PS (1)→S (2) − PS (2)→S (1) ]F1F2

+ [PS (3)→S (2) − PS (2)→S (3) ]F2F3,

F3 = 1 − F1 − F2, (7)

where F1, F2, F3 are the frequencies of S (1), S (2), and S (3),
respectively. The numerical solution of the master equation
group gives estimates of the frequencies of the three strate-
gies. A comparison between Figs. 1 and 10(b) reveals that
our mean-field calculation captures the essential dynamical
behavior of the system in a wide range of parameter ρ (regions
2 and 4 as well as the right side of region 1). For ρ < 0.445,
the behaviors of F1, F2, and F3 from the mean-field theory
coincide with the behavior of the real system in region 2,
the RPS-like state, almost exactly. For 0.445 < ρ < 0.495,
the dominant behavior of S (2) is similar to that in the ending
part of region 3. For 0.495 < ρ < 0.96, the dominance of
S (1) is well reproduced by the theory. For ρ > 0.96, the
numerically observed advantage of S (2) is reproduced. The
transition points between the various regions are determined
by the points where the probabilities PS (x)→S (y) cross the line
of PS (x)→S (y) = 0.5 in Fig. 10(a) as ρ increases, due to the flip
over of the “predator-prey” relation between S (x) and S (y).

Our mean-field theory fails to predict the behaviors in re-
gion 3, where the equilibrium state can be the absorption state
of two strategies. There are two reasons for this: extremely
long transient time and finite-size effect. First, to predict
which strategy would take over according to the evolution
pattern even after a very long simulation time (a typical
transient time is 0.5 × 106 time steps) is not feasible, since
it is not possible to determine which strategy would die first
when the number of critical time steps determining the fate
of a strategy is negligibly small. Our numerical simulations
show that, even if the frequency of one strategy, S (1) or S (3),
approaches zero, revival at later time can occur with a high
probability. Toward the right end of region 2, F1 and F3 are
close to zero and, as ρ is increased, there comes a point
at which one of frequencies actually becomes zero so that
the system enters into region 3. Second, calculations with
different lattice sizes reveal that the absorption state emerges
earlier in smaller lattices, and the critical ρ value separating
regions 2 and 3 increases with the lattice size. This implies
that a finite-size effect plays the role of eliminating S (1) or
S (3) to generate the one-strategy dominant state. Fluctuation
effects are more severe in smaller lattices, so S (1) may become
extinct or S (1) and S (3) clusters may be separated spatially with
a higher probability.

V. DISCUSSION

In most existing works on evolutionary game dynamics
on networks, a basic assumption is that the set of possible
strategies is common to all players in the system [12–17]. This
assumption is reasonable for a variety of real-world phenom-
ena and, in certain cases, makes possible a deep mathematical
understanding of the game dynamics. The consideration mo-
tivating our work is that, in the real world, there can be situa-
tions where this assumption is not accurate. For example, in a
social network, the individuals can have different backgrounds
of knowledge, financial status, and experience. It is then
conceivable that the strategy sets available to different players
may not be identical. To investigate hypergame dynamics on
networks is technically quite difficult, and such studies are
still rare in the literature. We are led to consider the simplest
setting of three available strategies with any player’s access
to two (restrictively mixed strategies). Even for the relatively
simple setting, a mathematical treatment is not feasible: We
thus rely on a combination of numerical computations and
physical reasoning based on the pairwise interaction and
mean-field approximations to gain insights into evolutionary
hypergame dynamics on regular networks.

We find a variety of dynamical behaviors and equilibrium
states, including states in which most players use one strategy
(one dominant strategy) and those where players use multiple
strategies (coexisting strategies). There are parameter regions
in which the equilibrium frequencies of the strategies are
completely predictable (e.g., regions 1, 2, and 4 in Fig. 2), but
there is also a region of unpredictability (region 3). We also
uncover equilibrium states characteristic of those from cyclic
competition dynamics, e.g., RPS-like states. A striking phe-
nomenon is that, a nearly extinct strategy can revive and dom-
inate the whole system. Qualitatively, this may be understood
as a consequence of the unpredictability: in a parameter region

042305-9



JIANG, CHEN, HUANG, AND LAI PHYSICAL REVIEW E 98, 042305 (2018)

where prediction of the system’s asymptotic state is ruled out,
there can be transitions from the RPS-like state. In particular,
starting from an RPS state, if the advantage of one strategy
keeps growing and wins more and more agents, the living
space of the other two strategies would be suppressed. At a
certain point, the coverage of the two weak strategies would
be so low that random fluctuations would remove one of them.
If the remaining strategy is a prey of the strong strategy, the
system would be dominated by the strong one. However, if the
remaining strategy of the two weak ones is the prey of the ex-
tinct one, then regardless of its weakness, it would eventually
overturn the entire population. A quantitative understanding
of this phenomenon is lacking at the present.

We also find that, in hypergame of the prisoner’s dilemma
type, self-organization of cooperation can be promoted. For
example, as the parameter ρ is increased, the probability of
cooperation can increase monotonically and reaches the value
of close to unity (Fig. 3). Comparing with the traditional pris-
oners dilemma game with loneliness [34], in our hypergame,
it is not necessary for voluntary participation to create a cyclic
dominance of strategies to promote cooperation.

Our work demonstrates that the diversity in the individuals’
understanding of the environmental strategies can play an

important role in the evolution of strategy distribution on a
global scale, and it can generate behaviors that are fundamen-
tally different from those from the traditional explicit-strategy
game dynamics. The basic parameter ρ in our model, the
probability of adopting a strategy, is key to generating the
various complex dynamical behaviors. This parameter in fact
measures the fraction of each pure strategy within the restric-
tively mixed strategy, whose changes drive the system into
dramatically different equilibrium states. Our study reveals
that a slight change in the fraction may completely overturn
the relative advantage between the strategies, suggesting that
the game dynamics can be manipulated through small changes
in the parameter. This opens a door to controlling evolutionary
hypergame dynamics.
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