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Enhancing network synchronization by phase modulation

Huawei Fan,1 Ying-Cheng Lai,1,2 and Xingang Wang1,*

1School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China
2School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA

(Received 23 June 2018; published 20 July 2018)

Due to time delays in signal transmission and processing, phase lags are inevitable in realistic complex oscillator
networks. Conventional wisdom is that phase lags are detrimental to network synchronization. Here we show that
judiciously chosen phase lag modulations can result in significantly enhanced network synchronization. We justify
our strategy of phase modulation, demonstrate its power in facilitating and enhancing network synchronization
with synthetic and empirical network models, and provide an analytic understanding of the underlying mechanism.
Our work provides an alternative approach to synchronization optimization in complex networks, with insights
into control of complex nonlinear networks.
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I. INTRODUCTION

The function and operation of realistic complex systems
rely on the coherent motion of their constituent dynamical
elements, generating a continuous interest in the synchroniza-
tion behaviors of coupled oscillators [1–5]. In the study of
oscillator synchronization, an issue of theoretical and practical
significance is how to achieve global synchronization in a
large-scale networked system at reduced coupling cost [3–5].
In the past, a number of strategies were proposed and studied
to address the problem of synchronization optimization in
coupled oscillator network systems [6–11]. For example,
the small-world and scale-free features in engineering and
natural systems [12,13] have been exploited to achieve optimal
synchronization in complex networks [14–19].

A paradigm in the study of network synchronization is
the Kuramoto model [1], in which an ensemble of phase
oscillators with distributed natural frequencies are coupled in a
nonlinear fashion and can be locked in phase when the mutual
coupling parameter exceeds a critical value. The Kuramoto
model and its generalized forms capture the essence of the
collective dynamics of many realistic systems [20–23] and
have been exploited as a standard model for testifying to the
efficiency of various synchronization optimization strategies
[11,12,15–19,24–29]. In terms of optimization, the existing
synchronization strategies can be classified into two major
categories: one based on adjusting the network structure and
another seeking or arranging optimal locations for oscillators.
Strategies based on network structural perturbations are ap-
plicable to situations where the nodal dynamics are fixed but
there is flexibility in modifying the link structure such as the
addition of shortcuts [12,15]. The alternative strategy applies
to situations where the network structure cannot be altered
but it is possible to rearrange the locations of the oscillators
according to the network structure [11,18,25]. There have
been theoretical efforts in establishing the efficiency of the
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various synchronization optimization strategies. However, to
physically realize certain strategies, e.g., to supply shortcut
links in a real neuronal network or to relocate a pair of power
stations in an actual power grid, may be difficult. It remains
to be an open and challenging problem to articulate physically
reasonable strategies to optimize synchronization in complex
networks of coupled nonlinear oscillators.

Due to the limited speed of signal transmission and pro-
cessing, time delay is ubiquitous in real world systems. For a
network of coupled oscillators, a time delay represents a phase
lag in the interaction. In previous studies, time delays were gen-
erally considered detrimental to synchronization [26,27,30–
36]. When a uniform phase lag exists in the coupling, global
synchronization can be destroyed, leading to the emergence
of alternative types of collective dynamics on the network.
For example, when the value of the phase lag is about π/2,
a chimera state [34,35] can arise, in which both synchronized
and unsynchronized groups of oscillators coexist. For π phase
lag, antiphase synchronization clusters can form [37,38]. For
random phase lags, the onset of synchronization can be sig-
nificantly delayed or even disappear [31,32]. Motivated by the
ubiquity of time delay and its strong ability to alter the network
synchronization dynamics, we ask the following question of
both basic and practical significance: Is it possible to exploit
phase lag modulations for synchronization optimization? More
specifically, we ask whether it would be possible to apply judi-
ciously chosen phase lags to enhance network synchronization,
as in applications where synchronous dynamics are desired.
The main contribution of this paper is an affirmative answer to
this question.

In general, the amount of phase lag for an oscillator will
depend on its intrinsic dynamics or state, and the phase lags
cannot be expected to be uniform among the oscillators in the
network. An advantage of this approach is that phase modula-
tion does not require the adjustment of the network structure
or relocation of the oscillators. Our phase-modulation-based
strategy thus holds the promise of achieving optimal, highly
efficient synchronization in complex oscillator networks at
low cost. More specifically, we consider complex networks
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of coupled phase oscillators with fixed network structure
and oscillator arrangement. We introduce to each oscillator a
constant phase lag whose amount is determined by the natural
frequency of the oscillator. We demonstrate numerically and
argue analytically that the proposed phase-modulation scheme
is capable of dramatically improving network synchronization,
as characterized by a marked increase in the value of the
synchronization order parameter and a significant decrease
in the critical coupling strength for global synchronization.
The phase-modulation strategy is physically realizable and
practically implementable, opening an alternative approach to
investigating optimization and control of collective dynamics
in complex nonlinear networks.

In Sec. II, we describe networked systems of coupled
phase oscillators, introduce the phase-modulation strategy, and
provide numerical results on the effect of phase modulation
on synchronization. In Sec. III, we present a theoretical
analysis to explain the underlying mechanism enhancing
synchronization. In Sec. IV, we apply our phase-modulation
strategy to two empirical systems: the neuronal network of
nematode Caenorhabditis elegans and a power-grid network.
In Sec. V, we present results of optimizing synchronization
using a partial-phase-modulation scheme and compare the
performance of the phase-modulation strategy to that of two
recent optimization approaches. In Sec. VI, we summarize and
present a discussion of the main result.

II. MODEL AND PHENOMENA

Our model of networked phase oscillators reads

θ̇i = ωi + K

di

N∑
j=1

aij sin (θj − θi − αi ), (1)

where i, j = 1, . . . , N are the oscillator (node) indices, θi (t )
is the instant phase of the ith oscillator at time t , and K

is the uniform coupling strength. The natural frequency of
the ith oscillator is ωi , which follows the distribution g(ω).
The coupling relationship of the oscillators is described by the
adjacency matrix A = {aij }, with aij = aji = 1 if oscillators
i and j are directly coupled by a link; otherwise, aij = 0. The
quantity di = ∑

j aij is the number of connections associated
to oscillator i, i.e., its degree, and αi is the phase modulation
introduced to oscillator i, which depends on ωi (with a
specific form given below). Equation (1) is similar in form to
the generalized Kuramoto-Sakaguchi model, which has been
extensively studied in the literature for various synchronization
phenomena among networked oscillators [30–35,37,38].

Different from existing models where αi is uniform or
randomly distributed, we judiciously set αi based on the
information of the oscillator dynamics. The specific form of
αi and the reason behind it are the following. For an ensemble
of coupled phase oscillators whose natural frequencies follow
a given distribution, the occurrence of synchronization is
determined by two counter-balancing factors: coupling and
frequency spread [20–22]. Whereas the former tends to make
the oscillators coherent, the latter prevents this tendency. In the
presence of coupling, the effective frequency of each oscillator
is different from its natural frequency. As the coupling strength
is increased from zero, the spread of the effective frequencies

will be gradually narrowed. At the critical point of global
synchronization, the effective frequencies of the oscillators
become identical, giving rise to the synchronous motion. This
intuitive picture gives an important indication on how to
enhance synchronization by modulating phase lags in Eq. (1):
narrowing the distribution of the effective frequencies of the
oscillators by tuning αi .

Assume that the system is in the vicinity of the global syn-
chronization state: θi (t ) ≈ θj (t ) for i, j = 1, . . . , N . Equation
(1) can be approximated as

θ̇i = ω̃i + K

di

N∑
j=1

aij (θj − θi ) cos (αi ), (2)

where ω̃i = ωi − K sin αi is the modified natural frequency
of oscillator i. Requiring ω̃i = 0, we have ωi − K sin αi = 0,
which gives αi = arcsin(ωi/K ). Setting phase lags this way,
the modified natural frequencies of all the oscillators will be
identical, facilitating synchronization. To keep ω̃i = 0 for all
the oscillators, it is necessary that K � Kc ≡ ωmax be satisfied,
with ωmax = max{|ωi |} being the largest natural frequency of
the oscillators. To make αi independent of K (so that αi is
a constant value for each oscillator), we introduce the phase-
modulation scheme

αi = arcsin(βωi ), (3)

with β ∈ [0, βmax] being the modulation amplitude. Here the
quantity βmax = 1/Kc = 1/ωmax is the largest modulation am-
plitude capable of generating an identical effective frequency.
With Eq. (3), the modified natural frequencies can be rewritten
as ω̃i = ωi (1 − Kβ ).

The effects of phase modulation on synchronization can
be intuitively understood, as follows. For a fixed value of β,
as K is increased from zero, the distribution of ω̃i will be
gradually narrowed, resulting in enhanced synchronization. At
the critical point Kβ

c = 1/β, we have ω̃i = 0 for all oscillators,
signifying that global synchronization has been achieved. For
K > K

β
c , ω̃i spreads out again, deteriorating synchronization.

As β is increased from zero to βmax, the critical coupling
strength K

β
c will decrease gradually. For β = βmax, we get the

minimum critical coupling strength for global synchronization:
Kc = 1/βmax = ωmax.

To test the proposed phase-modulation scheme, we carry out
simulations using a variety of network models. In all cases, the
size of the network is N = 200 and the natural frequencies
of the oscillators follow the truncated Lorentzian distribution:
g(ω) = (δ/π )/[(ω − ω0)2 + δ2]. The central frequency, scale
parameter, and truncation frequency of the Lorentzian distribu-
tion are ω0 = 0, δ = 1, and ωmax = 2.0, respectively. Network
synchronization is characterized by the order parameter

R =
〈∣∣∣∣∣

N∑
j=1

eiθj

∣∣∣∣∣
〉
,

where | · | and 〈·〉 denote, respectively, the module and time
averaged functions, and R ∈ [0, 1], with R = 0 and 1 corre-
sponding to completely incoherent and global synchronization
states, respectively. Figures 1(a)–1(d) show, for globally con-
nected, random [39], scale-free [13], and small-world networks
[12], respectively, the order parameter R versus the coupling
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FIG. 1. The impact of phase modulation on synchronization in different network models. For (a) globally connected (GN), (b) random
(RN), (c) scale-free (SFN), and (d) small-world (SWN) networks, the order parameter R versus the coupling strength K with or without
phase modulation and noise perturbations: (β, μ) = (0, 0) (black squares), (β, μ) = (βmax, μ) = (0.5, 0) (red circles), (β, μ) = (0.5, 0.5)
(blue triangles). The network size is N = 200. The average degree of the networks in (b)–(d) is 〈k〉 = 16. The rewiring probability for the
small-world networks is 0.1. In all network models, the critical value of the coupling parameter is Kc = 1/βmax = ωmax = 2.0, which agrees
with the theoretical prediction. Each data point is the result of averaging over 20 statistical realizations.

parameter K for different values of the modulation amplitude
β. We see that, when phase modulation is applied, the values of
the order parameters are consistently larger than those without
phase modulation, and transition to global synchronization
characterized by R = 1 occurs for much smaller values of
K . It is noted that, with phase modulation, the critical value
of the coupling parameter at which R reaches unity is Kc =
ωmax = 2.0, regardless of the network structure. (This property
is rooted in the normalized coupling strategy we have adopted
in the model.) As K is increased further, the value of R tends
to reduce slightly.

To assess the robustness of the phase-modulation strategy
in facilitating and enhancing network synchronization, we per-
turb the phase lags by introducing independent and identically
distributed random noise: αi = α0i + μWi , where α0i is the
phase lag given by Eq. (3), Wi is a random number uniformly
distributed in the interval [−1, 1], and μ is the noise amplitude.
Figure 1 shows that, while random noise tends to reduce the
value of the order parameter and thus weaken synchronization,
the negative effect on synchronization is insignificant, suggest-
ing the robustness of the phase-modulation-based strategy to
noise perturbations.

To gain further insights into the role of phase modulation in
network synchronization, we examine the variations of the ef-
fective frequencies, ωeff

i = (1/T )
∫ t+T

t
θ̇i (τ ) dτ , with respect

to K , where θ̇i (τ ) stands for the instantaneous frequency

of oscillator i. Figure 2(a) shows the numerical results for
the model of a globally connected network. We see that, as
K is increased from zero, the distribution of the effective
frequencies is gradually narrowed. As the critical coupling
strength Kc is reached, all effective frequencies converge
to a single value. Figure 2(b) shows the variations of the
phase difference, �θi = θi − ψ , where ψ is the average phase
defined by the relation eiψ = ∑

j eiθj /R. We see that the phase
differences are random for K < Kc, become zero at Kc, and
exhibit a systematic delayed behavior as K is increased through
Kc. This phenomenon is consistent with the numerical results
in Fig. 1, where R exhibits a slightly decreasing trend as the
value of K is increased through Kc. For models other than the
globally connected network, we obtain essentially the same
results.

The results in Figs. 1 and 2 reveal the following physical
picture about the transition to synchronization in the presence
of phase modulation. As the value of K is increased from zero,
the difference between the modulated natural frequencies [i.e.,
ω̃i in Eq. (3)] gradually decreases, resulting in the convergence
of the effective frequencies [Fig. 2(a)] and an increase in the
value of the order parameter (Fig. 1). At K = Kc, we have ω̃i =
0 for all the oscillators and, due to the strong coupling strength,
the phases of the oscillators are nearly identical, leading to the
highest level of synchronization (R ≈ 1). As the value of K is
increased from Kc, ω̃i become nonidentical again. However,
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FIG. 2. Behaviors of frequency and phase in the presence of phase
modulation. For the model of the globally connected network in
Fig. 1(a), the distribution of (a) the effective frequency ωeff

i and (b) the
phase difference �θ taken at t = 1 × 103 versus the coupling strength
K . In (a), all the effective frequencies converge to zero at K = Kc. In
(b), the phase differences first converge for K < Kc and then diverge
for K > Kc. At the critical point K = Kc, all the phase differences
vanish.

since the value of K is large, the oscillators are still locked in
frequency [Fig. 2(a)] but with scattered phases [Fig. 2(b)]. It
is the scattered phases which lead to the decrease of R in the
parameter region K > Kc (Fig. 1).

III. THEORETICAL ANALYSIS

We use the Ott-Antonsen ansatz [16] to obtain an an-
alytic understanding of the mechanism underlying phase-
modulation-enhanced synchronization. For the model of glob-
ally connected network [Figs. 1(a) and 2], the dynamics of the
phase oscillators can be rewritten as

θ̇i = ωi + [K/(2i)][(re−iθi − c.c.) cos αi

− i(re−iθi + c.c.) sin αi], (4)

where c.c. stands for the complex conjugate and r = Reiψ .
In the thermodynamic limit N → ∞, the state of the system
at time t can be described by a probability density function
f [ω(α), θ, t] ≡ f (ω, θ, t ), whose evolution is governed by
the continuity equation

∂f/∂t + ∂

{[
ω + K

2i
(re−iθi − c.c.)h2(ω)

− K

2
(re−iθi + c.c.)h1(ω)

]
f

}/
∂θ = 0, (5)

where h2(ω) =
√

1 − β2ω2 = cos α ∈ (0, 1) and h1(ω) =
βω = sin α ∈ (−1, 1). The complex order parameter can be
expressed as r = ∫ 2π

0 dθ
∫ ∞
∞ dωf (ω, θ, t )eiθ .

Expanding f (ω, θ, t ) as a Fourier series in θ , we have

f = g(ω)

2π

[
1 +

∞∑
n=1

fn(ω, t )einθ +
−1∑

n=−∞
f ∗

n (ω, t )einθ

]
. (6)

Utilizing the Ott-Antonsen ansatz [16], fn(ω, t ) = a(ω, t )n,
for |a(ω, t )| � 1, we obtain

∂a

∂t
+ iωa + K

2
(ra2 − r∗)h2(ω) − K

2
(ira2 + ir∗)h1(ω) = 0

(7)

and

r∗ =
∫ ∞

−∞
dωa(ω, t )g(ω). (8)

We use the Lorentzian distribution for the natural frequen-
cies: g(ω) = 1/(i2π )[(ω − ω0 − iδ)−1 − (ω − ω0 + iδ)−1].
To evaluate the integral that gives r∗, we analytically continue
ω to the complex ω-plane and carry out contour integration
[16], where the analyticity of α holds in the lower half plane
of the complex variable ω. For large negative values of Im(ω),
Eq. (7) can be approximated as ∂a/∂t = Im(ω)a, so we have
a → 0 for Im(ω) → −∞. Following the setting of numerical
simulations, we have ω0 = 0 and δ = 1 for the Lorentzian
distribution. The pole of the lower half plane is ω = −i. We
thus obtain r = a∗(−i, t ). Substituting this expression into
Eq. (7), we get the following nonlinear equation for the order
parameter:

∂R

∂t
+

[
1 − K

2
(
√

1 + β2 + β )

]
R + K

2
(
√

1 + β2 − β )R3 = 0,

(9)

which is the Bernoulli equation with a proper solution given
by

R(t )

R0
=

{
1 +

(
R2

0

R(0)2
− 1

)
e2t[1− K

2 (
√

1+β2+β )]

}−1/2

, (10)

where

R0 =
∣∣∣∣

√
1 + β2 − β√

1 + β2 + β − 2
K

∣∣∣∣
− 1

2

.

We see that for K < K0 = 2/(
√

1 + β2 + β ), R(t ) tends to
zero exponentially with time. For K > K0, R(t ) approaches
asymptotically a finite value R0, where K0 is the critical
coupling at which the value of R begins to increase from zero,
i.e., onset of synchronization [17,19]. Setting R0 = 1, we can
obtain the critical coupling strength for global synchronization
as K

β
c = 1/β, which agrees with the heuristic argument in

Sec. II.
Figure 3 shows the theoretically predicted value of R from

Eq. (10) versus K for different values of β. We observe two
features. First, prior to the onset of global synchronization
(K < Kc), the value of the order parameter R increases
monotonically with β. Second, as the value of β is increased
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FIG. 3. Theoretically predicted values of the order parameter
in the presence of phase modulation. For the model of a globally
connected network, the order parameter R calculated from the
analytic prediction in Eq. (10) versus the coupling parameter K for
different amplitudes of phase modulation: β = 0 (black), β = 0.1
(red), β = 0.2 (blue), and β = 0.3 (green). With phase modulation,
R reaches unity at a finite value of the coupling strength: Kc =
1/β. However, without phase modulation, this occurs for Kc → ∞
(black).

from zero, the critical coupling strength for global synchro-
nization gradually decreases. Specifically, Eq. (10) predicts
that, without phase modulation (β = 0), the onset of global
synchronization occurs at infinite coupling strength (Kc →
∞), whereas with phase modulation, this happens at a finite
value: Kc = 1/β. The theoretical prediction agrees well with
the numerical results in Figs. 1 and 2.

While Eq. (10) predicts that the R values can be greater
than unity, they are not physically meaningful. As depicted in
Fig. 2(b), once K exceeds the critical value Kc, phase lags
among the oscillators will set in, causing R to decrease from
unity. The seeming contradiction between the theoretical and
numerical results for K > Kc can be explained, as follows.
Substituting a = |a|eiϕ into Eq. (7), we get

∂|a|/∂t + (K/2)(|a|2 − 1)Re(re−iϕ )h2(ω)

+ (K/2)(|a|2 + 1)Im(re−iϕ )h1(ω) = 0, (11)

which indicates that, quite different from the case without
phase modulation [16], ∂|a|/∂t �= 0 for |a| = 1. This means
that a trajectory of Eq. (7) originated from some initial
condition satisfying |a| < 1 may cross the unit circle in the
complex a plane. Since r = a∗(−i, t ), the situation of R > 1
can occur. In fact, for |a| > 1, the Ott-Antonsen ansatz is no
longer valid [16], making the analytic prediction for this regime
physically meaningless.

IV. APPLICATIONS

We demonstrate the enhancement of synchronization by
the strategy of phase modulation in two realistic systems.
The first example is the neuronal network of the nematode
C. elegans [40], in which phase lags in coupling interaction
can be modulated using methods such as drug delivery [41].
The structure of the neuronal network is shown in Fig. 4(a),
which consists of N = 297 nodes and 2148 links. Following
Refs. [42,43], we represent the dynamics of isolated neurons by

nonidentical phase oscillators and investigate their collective
behavior using the generalized Kuramoto model, Eq. (1). We
adopt the Lorentzian distribution for the natural frequencies
and set αi = arcsin (βωi ). The numerical results with and with-
out phase modulation are presented in Fig. 4(b). We see that
phase modulation can dramatically facilitate synchronization.
In particular, without phase modulation, global synchroniza-
tion occurs at Kc ≈ 8, whereas with phase modulation, this
occurs at Kc = 1/β ≈ 3.3.

The second example is the RTS-96 power grid, whose
structure is shown in Fig. 4(c), which has N = 73 nodes and
214 links. To be realistic, we divide the nodes into two groups,
generators and loads, and model their dynamics by the generic
swing equations [44,45]

Miθ̈i + Diθ̇i = ωi + K

di

N∑
j=1

aij sin (θj − θi − αi ), i ∈ V1,

Dlθ̇l = ωl + K

dl

N∑
j=1

alj sin (θj − θl − αl ), l ∈ V2,

(12)

where V1 and V2 denote the sets of generator and load
nodes, respectively, Mi is the inertial coefficient for gen-
erator node i, and Di is the viscous damping coefficient.
Adopting the Lorentzian frequency distribution and setting
αi = arcsin (βωi ), we obtain the variation of R versus K

with and without phase modulation, as shown in Fig. 4(d).
(In simulations, we increase K adiabatically from zero so
as to avoid the problem of multiple coexisting attractors
[46].) We see that, with phase modulation, synchronization
is both facilitated and enhanced. In particular, without phase
modulation, global synchronization is not reached even for
K = 16, whereas even with weak phase modulation (β =
0.1), global synchronization occurs at Kc ≈ 10. For a real-
istic power grid, phase modulation can be realized by ad-
justing the power angles between the exciting and terminal
voltages [47].

V. PARTIAL PHASE MODULATION SCHEME
AND COMPARISON WITH TWO RECENT

OPTIMIZATION APPROACHES

Our study has focused on the case where phase modulation
is introduced to each oscillator in the network; this is not neces-
sary in practical applications. In fact, network synchronization
can still be significantly enhanced if phase modulation is
introduced to only a fraction of the oscillators. To demonstrate
this, we use the globally connected network in Fig. 1(a) and
introduce phase modulation to only p = 20% of the oscillators,
with the targeting oscillators selected in descending order
of the oscillator natural frequency. The numerical results
are presented in Fig. 5(a). We see that, comparing with the
case without phase modulation, synchronization with partial
phase modulation is significantly enhanced. As the fraction
p of modulated oscillators is increased, the synchronization
performance approaches that with global phase modulation—
the upper limit.
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FIG. 4. Synchronization optimization by phase modulation in realistic networks. (a) The structure of the neuronal network of the nematode
C. elegans. (b) For the neuronal network, R versus K when phase modulation is absent (β = 0, black squares) and present (β = 0.3, red circles).
(c) The structure of the RTS-96 power grid. Blue squares and red nodes denote, respectively, generators and loads. (d) For the power-grid network,
the variation of synchronization order parameter, R, with respect to the coupling strength, K , for the cases where phase modulation is absent
(β = 0, black squares) and present (β = 0.1, red circles). For both networks, the natural frequency of the nodes follows the Lorentz distribution,
with the truncation frequency max{|ω|} = 2.0, the location parameter ω0 = 0, and the scale parameter δ = 1. Results in (b) and (d) are averaged
over 20 frequency realizations.

Our work is related to but distinct from two recent studies:
explosive synchronization [18] and J -function-based synchro-
nization optimization [11]. In explosive synchronization, it is
the counter-balance between heterogeneous network structure
and nonidentical nodal dynamics which results in a first-order
transition to synchronization [22], whereas in our present
work heterogeneity in the nodal dynamics is balanced by
phase lags. Different from explosive synchronization, our
phase-modulation strategy does not require any resetting of
the oscillator frequencies and, in terms of synchronization
optimization, outperforms the frequency-weighted strategy
adopted in explosive synchronization. For instance, for the
model of a globally connected network (with the same cou-
pling scheme and frequency distribution used in our present
work), the critical forward coupling strength in explosive
synchronization is always larger than [28] Kc = 2.0, while
through phase modulation the critical coupling strength for
global synchronization is universally Kc = 2.0 for all network
models (Fig. 1). The J -function method, on the other hand, is
a synchronization-optimization-oriented function [11] aiming

to improve synchronization in complex networks of coupled
phase oscillators. The J function, which combines the informa-
tion of network structure (i.e., the eigenvectors of the network
coupling matrix) and oscillator dynamics (e.g., the natural
frequencies of the oscillator), provides an efficient numerical
approach to finding the optimal configuration of oscillators
in large networks. Using the model of a scale-free network
in Fig. 1(c), we compare the synchronization performance of
the J -function-based and phase-modulation-based strategies.
(In searching for the optimal configuration, we iterate the
J function 1 × 106 times, following the method proposed
in Ref. [11]. To make the comparison on an equal footing,
we adopt the same ensemble of natural frequencies for the
oscillators.) The results are presented in Fig. 5. We see that the
performance of the J -function-based strategy is lower than
that of the phase-modulation-based strategy. As the scheme
of normalized coupling strength is concerned [Eq. (2)], the
optimal configuration has almost the same synchronization
performance as that of the random configuration, as shown
in Fig. 5(b).
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FIG. 5. Effect of partial phase modulation. (a) For the model of a
globally connected network in Fig. 1(a), order parameter R versus the
coupling strength K for partial phase modulation (blue triangles) in
which phase lags are introduced to only p = 20% of the oscillators.
(b) For the model of a scale-free network in Fig. 1(b), R versus K for
phase modulation and J -function-based synchronization strategies.
In both panels, the results without (β = 0, black squares) and with
(β = 0.5, red circles) global phase modulation are also included for
comparison.

VI. DISCUSSION

To summarize, we have proposed a phase-modulation-
based strategy for facilitating and enhancing synchronization
in complex networks and demonstrated its efficiency using a

variety of network models as well as two realistic networks.
The strategy should be distinguished from the existing methods
of synchronization optimization in that it does not require
any adjustment of the network structure or the locations
of the oscillators. More importantly, our work demonstrates
that time delays, in contrast to the conventional wisdom that
they are detrimental to synchronization, can actually benefit
synchronization. As time delays are ubiquitous in natural
systems and phase lags can be implemented in practice, our
strategy is physically realizable for realistic complex systems
such as infrastructure and biological networks. Our study
provides an alternative approach to optimizing synchronization
in complex networks of coupled nonlinear oscillators, with
potential applications in the design of low-cost, highly efficient
synchronization solutions. The finding that synchronization
can be improved by partial phase modulation provides useful
insights into the control of dynamics in complex nonlinear
systems—a challenging problem in nonlinear science and
complex systems at present.

That synchronization performance can be improved by
introducing phase lags to a fraction of all oscillators has
implications for the problem of controlling complex nonlinear
networks. In an early study, phase modulation was proposed for
harnessing chaos in low-dimensional nonlinear systems, e.g.,
the chaotic Duffing oscillator [48]. What we have achieved
here is to extend the idea of phase control to optimizing
synchronization in complex spatiotemporal systems consisting
of an ensemble of oscillators. As phase lags are ubiquitous and
can be modulated in realistic systems, we hope that the strategy
will find applications in controlling and optimizing complex
infrastructure and biological systems, e.g., the power grid and
neuronal networks.
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