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Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics
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Revealing the structure and dynamics of complex networked systems from observed data is a problem of
current interest. Is it possible to develop a completely data-driven framework to decipher the network structure
and different types of dynamical processes on complex networks? We develop a model named sparse dynamical
Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes.
The SDBM attains its topology according to that of the original system and is capable of simulating the original
binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering
algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model
and real world complex networks, that the equivalent SDBM can recover the network structure of the original
system and simulates its dynamical behavior with high precision.
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I. INTRODUCTION

A central issue in complexity science and engineering is sys-
tems identification and dynamical behavior prediction based on
experimental or observational data. For a complex networked
system, often the network structure and the nodal dynamical
processes are unknown but only time series measured from
various nodes in the network can be obtained. The challenging
task is to infer the detailed network topology and the nodal
dynamical processes from the available data. This line of
pursuit started in biomedical science for problems such as
identification of gene regulatory networks from expression
data in systems biology [1–4] and uncovering various func-
tional networks in the human brain from activation data in
neuroscience [5–8]. The inverse problem has also been an
area of research in statistical physics where, for example, the
inverse Ising problem in static [9–13] and kinetic [14–20]
situations has attracted continuous interest. Recent years have
witnessed the emergence and growth of a subfield of research
in complex networks: data based network identification (or
reverse engineering of complex networks) [21–35]. In these
works, the success of mapping out the entire network structure
and estimating the nodal dynamical equations partly relies on
taking advantage of the particular properties of the system
dynamics in terms of the specific types and rules. For exam-
ple, depending on the detailed dynamical processes such as
continuous-time oscillations [26,30–33,36,37], evolutionary
games [27], or epidemic spreading [28], appropriate mathe-
matical frameworks uniquely tailored at the specific underlying
dynamical process can be formulated to solve the inverse
problem.

In this paper, we address the following challenging ques-
tion: Is it possible to develop a completely data-driven frame-
work for extracting the network topology and identifying
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the dynamical processes, without the need to know a priori
the specific types of network dynamics? An answer to this
question would be of significant value not only to complexity
science and engineering, but also to modern data science where
the goal is to unearth the hidden structural information and
to predict the future evolution of the system. We introduce
a Boltzmann machine for complex networked systems with
pairwise interactions and demonstrate that such a “machine”
can indeed be developed for a large number of distinct types of
binary network dynamical processes. Our approach will be a
combination of numerical computation and physical reasoning.
Since we are yet able to develop a rigorous mathematical
framework, this work should be regarded as an initial attempt
towards the development of a general framework for network
reconstruction and dynamics prediction.

The key principle underlying our work is the following. In
spite of the difference among the types of binary dynamics in
terms of, e.g., the interaction patterns and state updating rules,
there are two common features shared by many dynamical
processes on complex networks: (1) they are stochastic, first-
order Markovian processes, i.e., only the current state of the
system determines its immediate future; and (2) the nodal
interactions are local, i.e., a node typically interacts with its
neighboring nodes, not all the nodes in the network. The
two features are characteristic of a Markov network (or a
Markov random field) [38,39]. In particular, a Markov network
is an undirected and weighted probabilistic graphical model
that is effective for determining the complex probabilistic
interdependencies in situations where the directionality in the
interaction between the connected nodes cannot be naturally
assigned, in contrast to the directed Bayesian networks [38,39].
In this work, however, we demonstrate that we can make
a proper modification to the undirected Markov network to
accommodate networked systems with a directed topology.
Note that a Markov network has two types of parameters: a
nodal bias parameter that controls its preference of the state
choice and a weight parameter characterizing the interaction
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strength of each undirected link. In our work, the weight
parameter of an incoming (or outgoing) link is defined to
characterize the interaction from (or to) a neighboring node
in a directed network.

For a network of N nodes with xj being the state of
node j (j = 1, . . . ,N), the joint probability distribution of
the state variables X = (x1,x2, . . . ,xN )T is given by P (X) =∏

C φ(XC)/
∑

X

∏
C φ(XC), whereφ(XC) is the potential func-

tion for a well-connected network clique C, and the summation
in the denominator is over all possible system state X. If
this joint probability distribution is available, all conditional
probability interdependencies can be obtained. The way to
define a clique and to determine its potential function plays
a key role in the Markov network’s representation power of
modeling the interdependencies within a particular system.

To be concrete, in this work we pursue the possibility of
modeling the conditional probability interdependencies of a
variety of binary dynamical processes on complex networked
systems via a properly modified Ising-Markov network with
its potential function having the form of the Boltzmann factor,
exp(−E), where E is the energy determined by the local states
and their interactions along with the network parameters (the
incoming link weights and node biases) in a log-linear form
[40]. This is effectively a sparse Boltzmann machine [40]
that allows directed connections adopted to complex network
topologies without hidden units. (Note that hidden units usually
play a crucial role in ordinary Boltzmann machines [40].)
We introduce a temporal evolution mechanism as a persistent
sampling process for such a machine based on the conditional
probabilities obtained via the joint probability, and generate a
Markov chain of persistently sampled state configurations to
form the state transition time series for each node. We call our
model a sparse dynamical Boltzmann machine (SDBM).

For a binary dynamical process on complex networks,
such as epidemic spreading or evolutionary game dynamics,
the state of each node at the next time step is determined
by the probability conditioned on the current states of its
neighbors (and its own state in some cases). There is freedom to
manipulate the conditional probabilities that dictate the system
behavior in the immediate future through the adjustment of its
parameter values, i.e., the weights and biases. A basic question
is then, for an SDBM, is it possible to properly choose these
parameters so that the conditional probabilities so produced
are approximately identical to those of the network dynamical
process with each given observed system state configuration? If
the answer is affirmative, the SDBM can serve as a dynamics
approximator of the original system, and the approximated
conditional probabilities possess predictive power for the
system state at the next time step. When such an SDBM is found
for many types of dynamical process on complex networks of
various directed and undirected topologies, it effectively serves
as a dynamics approximator.

When an approximator has been found for the dynamics on a
complex network, the topology of the SDBM is an approximate
representation of the original network, providing a solution
to the problem of network structure reconstruction. Previous
works on the inverse static or kinetic Ising problems led to
methods of reconstruction for Ising dynamics by maximizing
the data likelihood (or pseudolikelihood) function via various
gradient descent approaches [9–20]. Instead of adopting these

methods, as a part of our methodology to extract the network
structure, we articulate a compressive sensing [41–46] based
approach, whose working power has been demonstrated for a
variety of non-Ising type of dynamics on complex networks
[26–29,47–49]. By incorporating the K-means clustering al-
gorithm into the sparse solution obtained from compressive
sensing, we demonstrate that nearly perfect reconstruction of
the complex network topology can be achieved. Using 14 dif-
ferent types of dynamical processes on complex networks, we
find that, if the time series data generated by these dynamical
processes are assumed to be from its equivalent SDBMs, the
reconstruction framework is capable of recovering the under-
lying network structure for each type of original dynamics
with essentially zero error. This represents solid and concrete
evidence that SDBM is capable of serving as a structural
estimator for complex networks with directed and undirected
interactions. In addition to being able to precisely reconstruct
the network topology, the SDBM also allows the link weights
and nodal biases to be calculated with high accuracy. An
appealing feature of our method is that it is fully automated
and does not require any subjective parameter choice.

Section II provides a general formulation of SDBM as
a structural estimator with a focus on undirected networks.
The use of compressive sensing and the implementation of
K-means algorithm are described. A parameter estimation
scheme and a degree guided solution strategy are introduced.
The issue of estimating link weights and nodal bias is
addressed. Section III presents reconstruction results for a
variety of model and real networks coupled with 14 different
types of dynamical processes. Section IV contains a general
discussion of the SDBM method. A number of side issues
together with certain details of the real networks are placed in
the Appendices.

II. METHOD FORMULATION

A. SDBM as a structural estimator
for undirected complex networks

1. Sparse dynamical Boltzmann machine and compressive sensing

An SDBM with symmetric link weights is effectively a
classical Markov network. For an SDBM of size N , the
probability that the system is in a particular binary state
configuration XN×1 = (x1,x2, . . . ,xN )T is given by

P (X) = exp(−EX)∑
X exp(−EX)

, (1)

where EX is the total energy of the network in X:

EX = XT · W · X =
∑
i �=j

wij xixj +
N∑

i=1

bixi, (2)

xi and xj are binary variables (0 or 1) characterizing the states
of nodes i and j , respectively, and W is a weighted matrix
with its off diagonal elements wij = wji (i,j = 1, . . . ,N, i �=
j ) specifying the weight associated with the link between
nodes i and j . The ith diagonal element of W is the bias
parameter bi for node i (i = 1, . . . ,N), which determines node
i’s preference to state 0 or 1. The total energy EX includes
the interaction energies (the sum of all wijxixj terms) and
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the nodes’ self-energies (the various bixi terms). The partition
function of the system is given by

Z =
∑

X

exp(−EX), (3)

where the summation is over all possible X configurations.
The state of node i at the next time step is determined by the
states of all other nodes at the present time step XR

i through
the following conditional probability:

P
{
xi(t + 1) = 1

∣∣XR
i (t)

} = P
{
xi(t + 1) = 1,XR

i (t)
}

P
{
xi(t + 1) = 1,XR

i (t)
} + P

{
xi(t + 1) = 0,XR

i (t)
} , (4)

where the two joint probabilities are given by

P
{
xi(t + 1) = 1,XR

i (t)
} = 1

Z exp

⎡
⎣−

N∑
j=1,j �=i

wij xj (t) − bi −
N∑

s=1,s �=i

N∑
j=1,j �=i

wsj xs(t)xj (t) −
N∑

s=1,s �=i

bsxs(t)

⎤
⎦,

P
{
xi(t + 1) = 0,XR

i (t)
} = 1

Z exp

⎡
⎣−

N∑
s=1,s �=i

N∑
j=1,j �=i

wsj xs(t)xj (t) −
N∑

s=1,s �=i

bsxs(t)

⎤
⎦.

A Markov network defined in this fashion is in fact the kinetic Ising model [14–20]. With the joint probabilities, the conditional
probability in Eq. (4) becomes

P
{
xi(t + 1) = 1

∣∣XR
i (t)

} = 1

1 + exp
[∑N

j=1,j �=i wij xj (t) + bi

] . (5)

We thus have

ln

(
1

P
{
xi(t + 1) = 1

∣∣XR
i (t)

} − 1

)
=

N∑
j=1,j �=i

wij xj (t) + bi.

Letting Qi(t) ≡ (P {xi(t + 1) = 1|XR
i (t)})−1 − 1, we have

ln Qi(t) = (x1(t), . . . , xi−1(t), xi+1(t), . . . , xN (t), 1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wi1
...

wi(i−1)

wi(i+1)
...

wiN

bi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

For M distinct time steps t1,t2, . . . ,tM , we obtain the following matrix form:

⎛
⎜⎜⎝

ln Qi(t1)
ln Qi(t2)

...
ln Qi(tM )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x1(t1), . . . , xi−1(t1), xi+1(t1), . . . , xN (t1), 1
x1(t2), . . . , xi−1(t2), xi+1(t2), . . . , xN (t2), 1

...
...

...
...

...
...

...
x1(tM ), . . . , xi−1(tM ), xi+1(tM ), . . . , xN (tM ), 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wi1
...

wi(i−1)

wi(i+1)
...

wiN

bi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

which can be written concisely as

YM×1 = �M×N · VN×1, (8)

where the vector YM×1 ∈ RM contains the values of ln Qi(t)
for M different time steps, the M × N matrix �M×N is
determined by the states of all the nodes except i, and the first
(N − 1) components of the vector VN×1 ∈ RN are the link
weights between node i and all other nodes in the network, as
illustrated in Fig. 1, with its last entry being node i’s intrinsic
bias.

Since the conditional probability P {xi(t + 1) = 1|XR
i (t)}

depends solely on the state configuration of i’s nearest
neighbors, or i’s Markov blanket [38,39] at time t , as shown
in Fig. 1(b), identical configurations at other time steps imply
identical conditional probabilities. Thus, given time series data
of the dynamical process, the conditional probability can be
estimated according to the law of large numbers by averaging
over the states of i at all the time steps prior to the neighboring
state configurations becoming identical. Note, however,
that this probability needs to be conditioned on the state

032317-3



YU-ZHONG CHEN AND YING-CHENG LAI PHYSICAL REVIEW E 97, 032317 (2018)

configuration of the entire system except node i, i.e., on XR
i (t),

and the average of xi is calculated over all the time steps tm + 1
satisfying XR

i (t) = XR
i (tm). This means that there can be a

dramatic increase in the configuration size, i.e., from ki (the de-
gree of node i) to N − 1 (the size of the vector XR

i ), which can
make the number of exactly identical configurations too small

to give any meaningful statistics. To overcome this difficulty,
we allow a small amount of dissimilarity between XR

i (t) and
XR

i (tm) by introducing a tolerance parameter � (0 � � � 0.5)
to confine the corresponding Hamming distances normalized
by N . In particular, we assume XR

i (t) ≈ XR
i (tm) if the relative

difference between them is not larger than �. This averaging
process leads to

⎛
⎜⎜⎝

ln qi(t1)
ln qi(t2)

...
ln qi(tM )

⎞
⎟⎟⎠ ≈

⎛
⎜⎜⎝

〈x1(t1)〉, . . . , 〈xi−1(t1)〉, 〈xi+1(t1)〉, . . . , 〈xN (t1)〉, 1
〈x1(t2)〉, . . . , 〈xi−1(t2)〉, 〈xi+1(t2)〉, . . . , 〈xN (t2)〉, 1

...
...

...
...

...
...

...
〈xi(tM )〉, . . . , 〈xi−1(tM )〉, 〈xi+1(tM )〉, . . . , 〈xN (tM )〉, 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wi1
...

wi(i−1)

wi(i+1)
...

wiN

bi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

where qi(t) ≡ 〈xi(t1 + 1)〉−1 − 1, with 〈. . . 〉 standing for the
averaging over all instants of time at which the condition
XR

i (t) = XR
i (tm) is met (see Appendix B for detailed derivation

of this approximation). A schematic illustration of the whole

FIG. 1. A schematic illustration of structural reconstruction using
SDBM for undirected complex networks. (a) Reconstruction of the
local connection structure of the red node in a network of 20 nodes.
The connections of the network are assumed to be unknown, so the
red node can potentially be connected with any other node, as shown
by the orange dashed links. Executing compressive sensing [(c)] and
the K-means clustering (Fig. 2) for this node based on time series
leads to its true connection structure, marked by the red links. The
link weights and the nodal bias are represented by the vector VN×1 in
(c). (b) All true connections of the network are recovered through
the process in (a) for each node. The Markov blanket of the red
node in (a) consists of all its nearest neighbors, indicated by the
nodes with dashed red circles. (c) A schematic illustration of the
compressive sensing framework for structural reconstruction as in
Eq. (9).

process is presented in Fig. 1, with Eq. (9) shown graphically
in Fig. 1(c).

Further explanation of our approximations and their con-
sequences is as follows. We first introduce the dissimilarity
tolerance parameter � where, in order to obtain a sufficient
number of similar system configurations, reasonably large
values of � are necessary. While this procedure tends to induce
dissimilar configurations, a large number of them have little
effect on the estimation accuracy. This is because the true
conditional probability to be estimated depends only on the
configuration of a node’s nearest neighbors, not that of the
entire network. In terms of the mean field approximation, the
degree of any node is always much smaller than the network
size. Thus, for node i with degree ki in a network of size N , the
probability that a flipped node is not a nearest neighbor of i is
(N − ki)/N . Since there can be at most �N flipped nodes, the
probability that none of them belong to the nearest neighbors of
i is given by [(N − ki)/N]�N . To be concrete, we set � = 35%.
(Our extensive calculations show, however, that the results are
robust for � values ranging from 25% to 40%.) Thus, in a
representative case, if the number of similar configurations is
L = 7000, for the typical ratio ki/N = 0.05 the number of
“good” configurations is L[(N − ki)/N ]�N ≈ 1160, which is
generally sufficient for accurate estimation of the probability.

For a complex network, the degree of a typical node is small
compared with the network size. For node i, the link weights
are nonzero only for the connections with the immediate
neighbors. The vector VN×1 is thus typically sparse with ma-
jority of its elements being zero. The sparsity property renders
applicable compressive sensing [41–46], through which an N

dimensional sparse vector can be reconstructed via a set of
M measurements, for M 	 N . By minimizing the L1 norm
of VN×1, i.e., ‖VN×1‖1 = ∑N

j=1,j �=i |wij | + |bi |, subject to the
constraint YM×1 = �M×N · VN×1, we can reconstruct VN×1

to obtain the connection weights between node i and all other
nodes in the network. One tempts to hope that, applying the
procedure to each node would lead to the complete weighted
adjacency matrix W. However, for compressive sensing to
be effective, a suitable clustering algorithm is necessary for
distinguishing the existent from nonexistent links.
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2. Necessity of K-means algorithm and implementation

In previous works on reconstruction of complex networks
based on stochastic dynamical correlations [36,37] or com-
pressive sensing [27,28], the existent (real) links can be distin-
guished from the nonexistent links by setting a single threshold
value of certain quantitative measure. The success relies on the
fact that the dynamics at various nodes are of the same type,
and the reconstruction algorithm is tailored toward the specific
type of dynamical process. Our task is significantly more
challenging as the goal is to develop a system (or a machine)
to replicate a diverse array of dynamical processes based on
data for networks with pairwise interactions. For compressive
sensing based reconstruction, the computational criteria to
distinguish existent from nonexistent links differ substantially
for different types of dynamics in terms of quantities such as the
solution magnitude, peak value distribution, and background
noise intensity. As a result, a more elaborate and sophisticated
procedure is required for determining the threshold for each
particular case, suggesting that a straightforward application
of compressive sensing cannot lead to a general reconstruction
algorithm. One may also regard the solutions of the existent
links as a kind of extreme events [50–52] superimposed on
top of the random background, but it is difficult to devise a
general criterion to determine if a peak in the distribution of
the quantitative measure represents the correct extreme event
corresponding to an actual link.

Through extensive testing, we find that a previously de-
veloped unsupervised clustering measure, K means [38,39],
possesses the desired traits that can be exploited, in combi-
nation with compressive sensing, to develop a reconstruction
machine with pairwise interactions. K means can serve as a
base for a highly effective structural estimator for various types
of dynamics on networks of distinct topologies. Depending
on the specific combination of the network topology and
dynamics, the reconstruction accuracies vary to certain extent
but are acceptable. Since the compressive sensing operation is
node specific, the solutions obtained separately from different
nodes may give conflicting information as to whether there
is an actual link between the two nodes, requiring a proper
resolution scheme. We develop such a scheme based on node
degree consistency. Our reconstruction machine thus contains
three main components: compressive sensing, K means, and
conflict resolution. We shall demonstrate in Sec. III that the
machine can separate the true positive solutions from the noisy
background with high success rate, for all combinations of the
nodal dynamics and the network topology tested.

Concretely, K means is one of the simplest and most
popular clustering algorithms, which has been used widely
for unsupervised clustering tasks [38]. It provides each data
example an assignment to a cluster within which the data
examples are relatively close (or similar) while being distant
from the ones in other clusters. The main steps for solving
a typical two-dimensional (2D) data clustering problem via
K means are schematically illustrated in Fig. 2. (Note that
compressive sensing solutions of the link weights wij are
one-dimensional data points, which form two clusters in 1D,
corresponding to the existent and nonexistent links, respec-
tively. The use of 2D illustration is for better visualization.)
For each vector VN×1 obtained from averaging over multiple

applications of compressive sensing, picking out the elements
corresponding to the existent links from the nonexistent ones
with their fluctuating element values is equivalent to a one-
dimensional clustering problem with two target clusters, which
is one dimension lower than the case shown in Fig. 2. When
implementing the K-means algorithm, we choose the initial
cluster center positions for the two clusters as the maximum
and minimum values of the vector elements with the bias bi

excluded. This is justified because the compressive sensing
solution of bi can have an overwhelmingly high absolute value,
which does not provide any structural information but can
severely disrupt the clustering process. Due to the sparsity
of complex networks, the cluster with a smaller number of
components is regarded as containing the solutions of the
existent links, and the components of the other one correspond
to the nonexistent links.

3. Conflict resolution for undirected complex networks

For network reconstruction, our SDBM method is essen-
tially a “local” method as it identifies the links for each node.
Because of the sparsity condition as required by compressive
sensing, large errors can arise for the hub nodes. A relatively
large error is thus indication that the underlying node is a
hub. The errors, however, do not pose a serious difficulty
in reconstructing the whole network, as the links associated
with a hub can be inferred and reconciled from the links
of the other nodes that the hub is connected with. More
specifically, since the links are bidirectional, the node on
each side provides a weighted solution of the same link. The
two solutions may be quite different, giving contradictory
indication of the existence of the link and resulting in an
asymmetric adjacency matrix. For majority types of dynamical
processes on complex networks, compressive sensing almost
always gives higher prediction accuracy for lower degree nodes
due to their connection sparsity, which holds true especially
for nodes with their degrees smaller than the network average.
Based on this fact, when encountering contradictory solutions,
we determine the link existence by examining the lower
degree side if the degree value is equal to or smaller than the
network average. For cases where the degrees of both sides
are larger than the network average, the false negative rates are
often high. This is because compressive sensing tends to give
oversimplified results such as inducing a more than necessary
level of sparsity to the solution or causing large fluctuations
with the nonexistent links so they are mixed up with the
existent ones. As a result, contradictory solutions are treated
as positive (existent) solutions. For some types of dynamics,
the SDBM dynamics and link-update voter dynamics, or
dynamics on real world networks, treating all contradictory
solutions this way, regardless of degree values, can improve
the reconstruction precision, albeit only slightly in some
cases.

B. Parameter estimation scheme and degree guided solution
substitution operation

1. Parameter estimation

From the reconstructed network structure, any node i’s
ki immediate neighbors, m1, m2, . . ., mki

, and their state
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FIG. 2. A schematic illustration of the K-means algorithm for two-dimensional data clustering. (a) The data points (solid blue circles) to
be clustered in a 2D feature space. (b) For random locations of the cluster centers (aqua, green, and red hollow circles), each data point can be
associated with the closest center. (c) The 2D space is divided into three regions through three decision boundaries (black dashed lines). (d)
Each center moves to the centroid of the data points currently assigned to it (movements shown by the black arrows). (e) The updated cluster
assignments of the data points are obtained according to the new center locations. The steps in (c) and (d) are repeated until convergence is
achieved. (f) The final cluster assignments.

configuration XMB
i = (xm1 ,xm2 , . . . ,xmki

)T, can be identified.
Since the probability that i’s state is 1 at the next time step

depends only on i’s immediate neighbors, XR
i (t) in Eq. (5) can

be simplified as XMB
i (t), and Eq. (5) can be written as

P
{
xi(t + 1) = 1

∣∣XR
i (t)

} = P
{
xi(t + 1) = 1

∣∣XMB
i (t)

} = 1

1 + exp
[∑ki

m=1 wimxm(t) + bi

] . (10)

Accordingly, Eq. (9) can be simplified as

YMB
(ki+1)×1 = �MB

(ki+1)×(ki+1) · VMB
(ki+1)×1,

i.e.,

⎛
⎜⎜⎝

ln qi(t1)
ln qi(t2)

...
ln qi(tki+1)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

〈
xm1 (t1)

〉
,

〈
xm2 (t1)

〉
, . . . ,

〈
xmki

(t1)
〉
, 1〈

xm1 (t2)
〉
,

〈
xm2 (t2)

〉
, . . . ,

〈
xmki

(t2)
〉
, 1

...
...

...
...〈

xm1 (tki+1)
〉
,

〈
xm1 (tki+1)

〉
, . . . ,

〈
xmki

(tki+1)
〉
, 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

wim1

wim2

...
wimki

bi

⎞
⎟⎟⎟⎟⎟⎠, (11)

where the ki + 1 linear equations uniquely solve

wim1 , . . . ,wimki
and bi simply via

VMB
(ki+1)×1 = [ �MB

(ki+1)×(ki+1)

]−1 · YMB
(ki+1)×1.

Our parameter estimation formulation is illustrated schemati-
cally in Fig. 3(a).

For a particular neighboring state configuration of node i,
XMB

i (t), its occurring frequency determines the precision in

the estimation of P {xi(t + 1)|XMB
i (t)} � 〈xi(t + 1)〉, which

in turn determines the solution precision of Eq. (11). The
occurrence of different neighboring state configurations for
the same node may differ dramatically. Furthermore, the
accuracy in estimating the probability P {xi(t + 1)|XMB

i (t)}
depends on the node degree due to the increasing difficulty in
finding exactly the same configurations for larger degree nodes.
Overcoming the estimation difficulty is a highly nontrivial
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FIG. 3. A schematic illustration of SDBM parameter estimation for undirected complex networks. (a) For the SDBM of the same system
in Figs. 1(a) and 1(b), the corresponding parameter estimation framework as in Eq. (11). The connections of the network have already been
reconstructed, so the entries in Eq. (11) can be obtained from a node’s Markov blanket [Fig. 1(b)]. The calculation is implemented for each
node in the system. (b) The values of the link weights and the nodal biases (different colors) for the corresponding SDBM are calculated via
the parameter estimation scheme in (a) and the degree guided solution substitution operation (Fig. 4).

problem. Exploiting the available data further, we develop a
degree guided solution-substitution operation to cope with this
difficulty, where sufficient estimation precision is guaranteed
for most cases. An SDBM with estimated parameters is
schematically shown in Fig. 3(b).

2. Link weights and nodal bias estimation

For each node i, we rank the occurrences of all the
existing configurations of its neighbor’s states. Among the top
ones, ki + 1 are selected to ensure that the coefficient matrix

�MB
(ki+1)×(ki+1) on the right-hand side of Eq. (11) has full rank

so that the solutions wim1 ,wim2 , . . . ,wimki
,bi are unique (the

selected configurations are not necessarily on the exact top
since the real top ki + 1 ones may not provide a full-rank
coefficient matrix).

Due to insufficient number of samples or some particular
features of a specific dynamical process 〈xi(t + 1)〉, the statisti-
cal estimation of P {xi(t + 1)|XMB

i (t)} [or P {xi(t + 1)|XR
i (t)}],

can be 0 or 1, which respectively makes 1/〈xi(t + 1)〉 or
ln[1 − 1/〈xi(t + 1)〉] in Eqs. (9) and (11) diverge. Without

FIG. 4. An example of degree guided solution-substitution operation and final equation group construction for undirected networks. Target
node 1, the node whose local connecting topology is to be inferred, has only two neighbors, nodes 2 and 3. Without loss of generality, we
set k3 < k1 = 2 < k2 so that the link weight between nodes 1 and 3, w13, is already obtained. The quantity P MB

s = ln[1/〈x1(t + 1)〉s − 1]
[s = 1, . . . ,4, as there are 2k1 = 4 possible (x2,x3) configurations in total] denotes the estimated probability for x1 = 1 under configuration s at
the next time step. The occurring probabilities of the corresponding (x2,x3) configurations are listed as percentages in the left column of each
panel. (a) All four (x2,x3) configurations are shown by the first two columns of the 4 × 3 matrix in the equation. (b) The contribution of the
known w13 and the configurations of x3 as marked in (a) are moved to the left-hand side of the equation. (c) In order to solve for (w12,b1)T,
the two most precise P MB

s values (s = 2 and 4) corresponding to the most frequent (x2,x3) configurations from (b) are chosen to build a linear
2-equation group. However, the 2 × 2 matrix on the right-hand side does not have full rank and, hence, this equation group is ill defined (d)
Configurations s = 1 and 2 are selected to construct a 2-equation group with a full-rank 2 × 2 matrix on the right-hand side and relatively
precise probability estimations, and this equation group is used to solve (w12,b1)T.
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TABLE I. Description of the 14 dynamical processes on model networks and the conditional probabilities. The quantity P 0→1
i or P 1→0

i is
the probability that the state of node i (of degree ki) becomes 1 at the next time step when its current state is 0, or vice versa, conditioned on
its current neighboring state configuration. The number of i’s neighbors in state 1 is ni .

Category Dynamics type P 0→1
i P 1→0

i

I SDBM 1
1+exp[

∑N
j=1,j �=i wij xj (t)+bi ]

exp[
∑N

j=1,j �=i wij xj (t)+bi ]

1+exp[
∑N

j=1,j �=i wij xj (t)+bi ]

II Ising-Glauber [53] 1
1+exp[ 2J

κ (ki−2ni )]

exp[ 2J
κ (ki−2ni )]

1+exp[ 2J
κ (ki−2ni )]

SQ-SG [54] 1
1+exp[(rki−ni )/κ]

exp[(rki−ni )/κ]
1+exp[(rki−ni )/κ]

SQ-PDG [54] 1
1+exp[(b−1)(ki−ni )/κ]

exp[(b−1)(ki−ni )/κ]
1+exp[(b−1)(ki−ni )/κ]

III Minority game [55–59] ki−ni

ki

ni

ki

Voter [60,61] ni

ki

ki−ni

ki

Majority vote [60,61]

{
Q if ni < ki/2
1/2 if ni = ki/2
1 − Q if ni > ki/2

{
1 − Q if ni < ki/2
1/2 if ni = ki/2
Q if ni > ki/2

IV Link-update voter [62,63] ni

〈k〉
ki−ni

〈k〉
Language model[64,65] S( ni

ki
)α (1 − S)( ki−ni

ki
)α

Kirman [66,67] c1 + dni c2 + d(ki − ni)

V CP [68,69] ni

ki
λi μi

SIS [70–73] 1 − (1 − λi)ni μi

VI SG [74] * *
PDG [75,76] * *

loss of generality, we set 〈xi(t + 1)〉 = ε [or 〈xi(t + 1)〉 =
1 − ε] if 〈xi(t + 1)〉 = 0 (or 1), where ε is a small positive
constant.

For node i of degree ki , the total number of possible
neighboring state configurations is 2ki , so large degree nodes
have significantly more configurations. The process may then
regard every particular type of configuration as useful and ac-
cordingly lead to inaccurate estimate of P {xi(t + 1)|XMB

i (t)}.
Our computations reveal that properly setting a tolerance in the
Hamming distance that allows similar but not exactly identical
configurations to be treated as the same XMB

i (t) can improve
the estimation performance. For a particular neighboring state
configuration with too fewer identical matches in the observed
data, configurations with difference in one or more digits
in the Hamming distance are used instead, until a sufficient
number of matches are found. For nodes of degrees larger
than, say 15, the Hamming distance tolerances within 2
or 3 usually lead to a reasonable number of matches for
estimating P {xi(t + 1)|XMB

i (t)}. Extensive calculation shows
that the small inaccuracy has little effect on the reconstruction
accuracy.

3. Degree guided solution substitution operation

For node i’s neighbors, the occurring frequency of a partic-
ular state configuration is generally higher for smaller values
of ki . Accordingly, the probability estimation conditioned on
this configuration can be more accurate for smaller values of ki .
More precise conditional probabilities in turn lead to a higher
estimation accuracy of link weights and node biases. Similar
to resolving solution contradiction in structural reconstruction,
for a pair of linked nodes, i and j of different degrees, wij

solved from the equation group of node i is likely to be more
accurate than wji obtained via node j , if ki < kj , even ideally

they should have the identical values. As a result, using the so-
lution obtained from a lower degree node as the value of the link
weight provides a better estimation. We run the calculation for
all nodes in the network one by one in a degree-increasing order
so that the link weights of the smallest degree nodes are ac-
quired earlier than for other nodes. For the larger degree nodes,
the link weights shared with the smaller degree nodes are sub-
stituted by the previously obtained values, which are treated as
known constants instead of variables waiting to be solved. This
operation effectively removes the contribution of the lower de-
gree neighbors from the equation and so reduces the number of
unknown variables. A reduced equation group in a form similar
to Eq. (11) can be built up based on the most frequently oc-
curring state configurations of the remaining neighbors. When
the full-rank condition is met, maximum possible precision of
the remaining unknown link weights can be achieved. Conse-
quently, with the substitution operation, the ki link weights of
node i, which can be inaccurate if solved from the original (ki +
1)-equation group, can be estimated with the maximum possi-
ble accuracy. An example of this substitution operation and the
final equation group construction process is shown in Fig. 4.

Our calculations show that the application of the degree
guided solution-substitution operation can significantly
increase the accuracy in the estimation of the link weights and
node biases. For undirected complex networks, this operation
makes the SDBM a reliable approximator of the original
network dynamics. For example, as will be described, for
some dynamical processes described in Table I, the estimation
errors are dominantly distributed at zero. For processes in
other categories, aside from the dominant peak at zero, there
exist multiple small peaks at nonzero error values. These
small side peaks are a consequence of the model complexity
of the Markov networks.
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FIG. 5. Solution examples of compressive sensing and K-means clustering results. Presented are the reconstruction results for a single
node, the target node, for different networks and dynamical processes. Each panel is for a specific network structure and a specific type of
dynamical process, where the actual and null links associated with the target node are indicated. The compressive sensing solutions (green
squares) are compared, elementwise, with the true values of the original connection vectors (dark purple triangles), where the x axis is the index
of nodes with different degree values for different network topologies and dynamics types. The target nodes and the correctly detected existent
connections via the K means are marked as light blue and light purple bars, respectively. The false negative and the false positive estimations
are marked as red and gray bars, respectively. For all cases, the measurement amount is M = 0.4N . The restriction on the Hamming distances
is set to be � = 0.35 for all examples, and a small change in � would not affect the qualitative results. (a) A node with the smallest degree k = 2
in a BA scale-free network of size N = 100 and average degree 〈k〉 = 4 with SDBM dynamics. (b) The node of the largest degree k = 18 in
the same network. (c) A node of degree k = 8 in an ER random network of size N = 100 and average degree 〈k〉 = 4 with SDBM dynamics.
(d) The node with the largest degree k = 19 in a BA scale-free network of size N = 100 and average degree 〈k〉 = 4 with prisoner’s dilemma
game (PDG) dynamics. (e) A node of degree k = 11 in a real world social network of size N = 67 subject to CP dynamics. (f) A node of degree
k = 10 in a real world electrical circuit network of size N = 122 with language model dynamics. In (d)–(f), the element values of the original
connection vector are set to unity since no true weight values are given. For cases (a), (b), (c), and (f), there are no false negative detections,
i.e., all existent links have been successfully detected. For cases (a), (c), and (e), there are no false positive detections, i.e., no nonexistent links
are mistaken as existent ones. A detailed description of the dynamical processes is given in Table I.

III. RESULTS

A. Structural estimation: An illustrative example

Table I lists the 14 dynamical processes on model networks
and the underlying conditional probabilities. The implemen-
tation of these processes on complex networks is detailed
in Appendix C. For each type of dynamics, 10 different
network realizations are generated for both Barabasi-Albert
(BA) scale-free and Erdös-Rényi (ER) random topologies. For
any node in a particular network realization, the corresponding
connection weight vector VN×1 is obtained by averaging
over 100 compressive sensing implementations. The elements
corresponding to the existent nodes are distinguished from
the nonexistent links by feeding the averaged VN×1 into
the K-means algorithm. The unweighted adjacency matrix
is then obtained. In practice, for very large networks, longer

time series and higher computational resource are required
due to the exponential increase in the number of system
configurations, but theoretically there is no upper bound in the
network size. The data amount is characterized by the number
of measurements M normalized by N .

To gain insights, we test the structural estimation method
for an SDBM itself [Figs. 5(a)–5(c)] and three different
types of dynamical processes [Figs. 5(d)–5(f)] by feeding
the time series data into the framework and comparing the
reconstructed SDBM with the original machine. The time
instants t1,t2, . . . ,tM needed to construct Eq. (9) are chosen
randomly from T time instants in total. For each node,
compressive sensing is implemented a multiple of times to
obtain the averaged relevant quantities. As shown in Fig. 5, the
averaged solutions from the compressive sensing algorithm
appear as sharp peaks at places that correspond to the existent
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FIG. 6. Structural estimation success rates and parameter estimation errors versus the normalized data amount. For SDBM dynamics on (a)
ER random and (b) BA scale-free networks, the success rates of detection of existent links and identification of nonexistent links, 1 − R1

e (green
circles) and 1 − R0

e (white circles), respectively, versus the normalized data amount M/N with error bars. The absolute values of the errors in
estimating the link weights and the nodal biases for the existent links (purple squares) and nonexistent links (white squares) are also shown.
Most data points have quite small error bars, indicating the performance stability of our method. High performance structural and parameter
estimations are achieved insofar as M/N exceeds about 10%.

links, despite the large differences among the values. This
means that, while most existent links can be predicted against
the null links, the accuracy of the solution so obtained is
not sufficient for the actual element values of VN×1 to be
determined. For the null links, the corresponding solutions
generally appear as a noisy background. For the ideal case
where wij is zero, the background noise can be quite large
especially for the large degree nodes, as shown in Figs. 5(b)
and 5(d). Further calculations indicate that averaging a larger
number of simulation runs can suppress the background noise
to certain extent, but it cannot be eliminated and may become
quite significant for various types of dynamics.

B. Performance of SDBM for undirected networks

Our working hypothesis is that, for a networked system with
a certain type of nodal dynamics, there exists an equivalent
SDBM. Reconstructing the structure of the SDBM would
simultaneously give the topology of the original networked
dynamical system. Accordingly, the time series data generated
from the original system can be used to reveal its underlying
interaction structures through the corresponding SDBM. In
particular, we directly feed the original time series into the
framework of compressive sensing and K means for SDBM to
generate the network structure, and test whether the structure
generated by the SDBM based reconstruction represents that
of the original network. The similarity can be quantified by the
error rates of the existent and nonexistent links.

Figure 6 demonstrates the performance of network struc-
tural estimation for SDBM dynamics on random and scale-free
networks in terms of the data amount for SDBMs built up for
systems with different original topologies. We define R1

e and

R0
e as the estimation error rates for the existent and nonexistent

links, namely, the false positive and the false negative rates,
respectively. We see that, for a wide range of the values of
M/N , the success rates of the existent and nonexistent links,
1 − R1

e and 1 − R0
e , respectively, are nearly 100% for ho-

mogeneous network topology. For heterogeneous (scale-free)
networks, the success rate 1 − R1

e tends to be slightly lower
than 100%, due to the violation of the sparsity condition for hub
nodes, leading to the difficulty in distinguishing the peaks in
the distribution of the compressive sensing solutions from the
noisy background. For M/N = 1, the success rates are reduced
slightly, due to the nonzero dissimilarity tolerance � that
introduces a linear dependence between different equations
into Eq. (9). The reason is that, in a compressive sensing
problem, the M measurements are required to be linearly
independent of each other. However, if M is too large, linear
independence between each pair of measurements may be lost,
due to the finite length of the available time series. Since
each measurement in Eq. (9) is from the average of many
configurations that are similar but not exactly identical, for a
large value of the tolerance parameter �, some configurations
can be similar in more than one measurement and appear
in multiple equations, destroying the linear independence
between those measurements. Thus, increasing the value of M

would compromise the linear independence of the equations,
leading to poor reconstruction performance. Our calculation
shows that this situation does not arise unless M is quite close
toN . SinceM must be smaller thanN and the solution sought is
sparse, the algorithm can indeed be regarded as a compressive
sensing problem. Empirically, for computational efficiency, M
is chosen below 0.5N (e.g., is M = 0.4N ), which makes our
SDBM framework free of any subjective parameters.
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TABLE II. Reconstruction error rates for undirected networks. For the same dynamical processes in Table I, the error rates (in percentages)
in uncovering the existent and nonexistent links R1

e and R0
e , respectively. ER random and BA scale-free networks of size N = 100 and average

degree 〈k〉 = 4 are used as the underlying network supporting the various dynamical processes. The normalized number of measurements used
in compressive sensing is M/N = 0.4 for all cases. All results for comparison (in parentheses) except one for the CP dynamics, which are
available from the current literature, are from Ref. [35]. The comparison results for CP are from Ref. [28].

Category Dynamics type R0
e /R

1
e (%, ER) R0

e /R
1
e (%, BA)

I SDBM 0.0 / 0.1 0.1 / 3.4
II Ising-Glauber [53] 0.0/0.0 (0.0/0.0) 0.0/0.0 (0.3/0.8)

SQ-SG [54] 0.0 / 0.0 0.0 / 3.2
SQ-PDG [54] 0.0 / 0.0 0.3 / 3.3

III Minority game [55–59] 0.0 / 0.6 0.0 / 0.2
Voter [60,61] 0.0/0.0 (0.0/0.0) 0.0/0.0 (0.2/0.6)
Majority vote [60,61] 0.0/0.0 (0.0/0.0) 0.0/0.1 (0.1/0.3)

IV Link-update voter [62,63] 0.0 / 0.0 1.8 / 3.6
Language model [64,65] 0.0/0.0 (0.0/0.0) 0.0/0.4 (1.6/3.3)
Kirman [66,67] 0.0/2.3 (0.0/0.0) 0.0/3.8 (7.0/14.2)

V CP [68,69] 0.0/1.4 (0.1/0.0) 0.0/0.4 (0.3/0.0)
SIS [70–73] 0.3/5.2 (0.2/0.5) 0.1/15.6 (2.3/1.4)

VI SG [74] 0.0 / 1.7 0.0 / 9.4
PDG [75,76] 0.1/9.6 (0.0/0.0) 0.1/9.8 (0.7/1.6)

Table II shows the performance in terms of the percentage
error rates R0

e and R1
e . The 14 types of dynamical processes are

taken from the fields of evolutionary game theory, opinion dy-
namics, and spreading processes, covering a number of focused
research topics in complex networks. Strikingly, for all the dy-
namics with diverse properties, we find that, for each and every
dynamics-network combination, zero or nearly zero error rates
are obtained for both the existent and nonexistent links, reveal-
ing a strong similarity between the original networks and the
ones generated from SDBM, regardless of the type of dynam-
ics. The nonzero error rates in Table II come mainly from the
high degree nodes. Consequently, as indicated in Table II, the
reconstruction accuracy for networks of homogeneous topol-
ogy is generally higher than that for heterogeneous networks.

For certain types of evolutionary game dynamics, espe-
cially for the snowdrift game (SG) [74] and the prisoner’s
dilemma game (PDG) [75,76] with the Fermi updating rule
[76], information about the state configuration of the second
nearest neighbors is required to calculate the payoffs of the
first nearest neighbors. In such a system, the next move of
a target node is determined by comparing its payoff with
those of its neighbors. This implies that, using solely the state
configuration information of the Markov blanket, without the
aid of the payoff information that requires the state information
of the second nearest neighbors, is insufficient to determine the
state of the target node into the immediate future, rendering
inapplicable our SDBM based reconstruction. Contrary to this
intuition, we find that for both SG and PDG, high reconstruc-
tion accuracy can be achieved, as shown in Table II. Recall
that our reconstruction method is formulated based on the
independence assumption of Markov networks, i.e., in order
to reconstruct the local structure of a target node, it should
be completely independent of the rest of the system when the
configuration of its Markov blanket is given. The results in
Table II indicate that our SDBM based algorithm performs
better than anticipated in terms of the reconstruction accuracy.
In fact, the independence assumption can be made to hold by

adopting a self-questioning (SQ) based updating rule. In this
case, excellent reconstruction accuracy is obtained, as shown
in Table II.

For evolutionary game dynamics (e.g., PDG and SG) and
binary dynamical processes (e.g., CP and SIS), there were
previous methods based on compressive sensing for network
reconstruction [27,28]. In terms of the false positive and
negative rates, our SDBM method in general does not offer
better results. The reason is that the reconstruction task is
still essentially based on compressive sensing. Thus, from the
standpoint of inferring network structures, our SDBM method
is not advantageous as compared with the previous methods.
However, the SDBM method is applicable to wider classes of
network dynamical processes. An additional appealing feature
of the SDBM method lies in its ability to create a “replica” of
the underlying networked dynamical system based solely on
data. This may have potential applications in complex systems
identification and prediction.

The structural estimation results reported so far are based
on model network topologies. Real world complex networks
have also been used to test our framework, with results
exemplified in Figs. 5(e) and 5(f) (see also Appendices D
and E). For various combinations of the network topology
and dynamical process, high reconstruction accuracy is
achieved, where for a number of cases the error rates are
essentially zero. There are a few special cases where the errors
are relatively large, corresponding to situations where the
globally frozen or oscillating states dominate the dynamical
process so that too few linearly independent measurements can
be obtained. Overall, the equivalent SDBM correspondence
holds and our reconstruction scheme for real world networks is
effective.

C. Dynamics approximator for undirected complex networks

In Table I, the complex network dynamics is categorized
in terms of the specific probabilities P 0→1

i and P 1→0
i . In
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FIG. 7. Distributions of the conditional probability estimation errors for various complex network dynamics. The distributions of δ =
|P {xi(t + 1) = 1|XR

i (t)} − P est[xi(t + 1) = 1|XR
i (t)]| for the dynamical processes in categories I to V from Table I for ER random (green bars)

and BA scale-free (blue bars) networks, where P est[xi(t + 1) = 1|XR
i (t)] denotes the conditional probability estimated from the corresponding

SDBM approximator through the original state configuration times series, where 1 � i � N and 1 � t � T .

particular, category I is for the SDBM dynamics and category
II contains dynamical processes with P 0→1

i and P 1→0
i having

a mathematical form similar to that of the SDBM. For category
III, the forms of P 0→1

i and P 1→0
i for the three types of

dynamics are quite different. Despite the differences among the
dynamical processes in the three categories, they share a key
property, i.e., P 0→1

i + P 1→0
i = 1, which plays a critical role

in implementing the parameter estimation algorithm. For the
processes in categories IV and V, we have P 0→1

i + P 1→0
i �= 1,

where P 1→0
i is a time-invariant constant for the nodal dynamics

in category V.
We first test our parameter estimation scheme using the

state time series generated by the SDBM, which can be
validated through a direct comparison of the estimated pa-
rameter values with their true values, as exemplified in
Figs. 5(a)–5(c). However, since the parameters only affect the
system collectively (not individually) in the form of the product
summation [Eq. (5)] and our goal is to assess the predictive
power, we introduce an alternative validation scheme. For
each particular system configuration, the acceptable parameter
estimation results would serve as a base to generate another
SDBM with identical conditional probabilities for each node
at each time step, as compared with those of the original system.
(A visual comparison between the conditional probabilities of
the original system and that generated via the reconstructed
SDBM is presented in Appendix F.) Figure 7(a) shows the

error distributions of the estimated conditional probability
time series, where an overwhelmingly sharp peak occurs at
0, indicating an excellent agreement between the estimated
and the true parameter values.

For typical dynamical processes on complex networks, our
goal is to find the equivalent SDBMs whose true parameter
values are not available. In this case, the performance of the
parameter estimation scheme can be assessed through the
reconstructed conditional probabilities. Based on the recovered
network structure, the time series of the network dynamics
are fed into the parameter estimation scheme, and the link
weights and the nodal biases are obtained to form a system
obeying the SDBM dynamics. Corresponding to the categories
in Table I, the distributions of the estimation errors between the
original conditional probability P {xi(t + 1) = 1|XR

i (t)} and
the one generated by the newly constructed SDBM are shown
in Fig. 7, where Figs 7(a)–7(f) show the error distributions
corresponding to the six types of dynamics in categories II
and III in Table I, respectively. In each case, a sharp peak
at zero dominates the distribution, indicating the equivalence
of the reconstructed SDBM to the original dynamics. Given
a particular type of complex network dynamics, the SDBM
resulting from our structural and parameter estimation frame-
work is indeed equivalent to the original dynamical system.
The limited amount of data obtained from the original system
renders important state prediction of the system, a task that
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can be accomplished by taking advantage of the equivalence
of the SDBM to the original system in the sense that the SDBM
produces approximately equal state transition probabilities
in the immediate future, given the current system config-
uration. The SDBM thus possesses a significant predictive
power for the original system. Regardless of the type of the
dynamical process, insofar it satisfies the relation P 0→1

i +
P 1→0

i = 1, the reconstructed SDBM can serve as a dynamics
approximator.

For an SDBM, the relation P 1→1
i = 1 − P 1→0

i = P 0→1
i

holds in general. However, for the dynamical processes in
categories IV and V, we have P 1→1

i �= 1 − P 1→0
i = P 0→1

i

so that a single SDBM is not sufficient to fully characterize
the dynamical evolution. Our solution is to construct two
SDBMs, A and B, each associated with one of the two cases:
xi(t) = 0 and xi(t) = 1, respectively. The link weights wA

ij

(or wB
ij ) and the nodal bias bA

i (or bB
i ) for node i in SDBM

A (or B) are computed for all the time steps t satisfying
xi(t) = 0 [or xi(t) = 1], leading to P {xi(t + 1) = 1|XR

i (t)}
for xi(t) = 0 [or xi(t) = 1] from SDBM A (or B). Using
this strategy, the dominant peaks at zero persist in the error
distributions for the dynamical processes in category IV, as
shown in Figs. 7(g)–7(j). For the epidemic spreading dynamics
(CP and SIS) in category V, the fixed value of P 1→0

i for
each node i can be acquired through P 1→0

i � 〈xi(t1 + 1)〉t1 ,
where 〈xi(t1 + 1)〉t1 stands for the average of xi(t1 + 1) over
all values of t1 satisfying xi(t1) = 1. Through this approach,
SDBM B is in fact a network without links but with each
node’s bias satisfying μi = exp(bi)/[1 + exp(bi)], where μi

is node i’s recovery rate. Figures 7(k) and 7(l) show the
error distributions of the conditional probability recovery for
the spreading processes, where we see that the errors are
essentially zero. If the method of solving SDBM B in category
IV is adopted to the dynamical processes in other categories,
i.e., without any prior knowledge about P 1→0

i , the resulted
SDBM would have nearly identical link weight values with
respect to SDBM A (in categories I–III) or have close-to-zero
link weights and μi � exp(bi)/[1 + exp(bi)] for category V,
despite that their conditional probability recovery errors may
be slightly larger than those in Fig. 7. The persistent occurrence
of a dominant peak at zero in the error distribution suggests
the power of combined SDBMs as a dynamics approximator,
regardless of the specifics of the transition probability. When
limited prior knowledge about P 1→0

i is available, SDBM B
can be simplified or even removed without compromising
the estimation accuracy. In general, the approximator has a
significant short-term predictive power for arbitrary types of
dynamics on complex networks.

The conditional probability recovery error is called the
“training error” since it is obtained from the same data set
used to build (or “train”) the approximator, and the data
points generated from the same system that have not been
used in the training process can be exploited to validate or
test the actual performance of the trained model [38], which
in our case is the approximator. As a result, the time series
generated from the original complex network system after
the approximator is built can be used as the test data set.
(Absence of hyperparameters in the reconstruction process
means that cross validation is unnecessary.) In most cases,

the training errors are generally smaller than the test errors
since the training data set is already well fitted by the model
(the approximator) in the training process, while the test data
are new and may be out of the fitting range of the current
model. Feeding the state configurations of the test data set into
the approximator, we calculate the corresponding conditional
probabilities using Eq. (5) and compare them to the true
values. The results reveal a clear advantage of the approximator
built from our scheme, i.e., the training and test errors are
nearly identical, indicating the absence of any overfitting
issues [38].

D. Extension to directed complex networks

Our SDBM methodology for undirected networks can be
adapted to directed networks because of its nodewise imple-
mentation scheme. In a directed network, the link weights
between nodes i and j , wij and wji , do not have equal values. In
fact, these are weights of the two links in the opposite directions
between the same pair of nodes. The weights solved by Eqs. (9)
and (11) correspond to all the links pointing to node i and all
pointing from i’s nearest neighbors. By estimating the values of
the inward link weights for each node in the network, we obtain
a directed SDBM as a structural estimator and dynamics ap-
proximator of the underlying directed network. The structural
and parameter estimation processes are illustrated in Figs. 8(a)
and 8(b). Since the conflict resolution scheme designed for
undirected networks applies to symmetric links only, it is not
adopted for directed networks. The structural estimation results
are presented in Table III. In most cases, we observe only small
changes in the precision as compared with the undirected case.
For some types of dynamics, R0

e increases slightly, indicating
that the main challenge of reconstructing directed networks
is to reduce the false positives. Nonetheless, in general, the

FIG. 8. A schematic illustration of reconstruction of network
structure and parameter estimation for directed complex networks.
(a) Reconstruction of the local inward connection structure of the
blue, red, pink, and green nodes in a directed network of 13 nodes.
Among these four nodes, there are bidirectional links between the
blue and the red nodes and between the red and the green nodes.
Links between other pairs of nodes are directional, if they exist.
Executing compressive sensing and K-means clustering for each of
the four nodes identifies its true incoming links, marked by the links
with the same color of the node and pointing inward. (b) For the
SDBM of the system in (a), the parameter estimation framework is
implemented for the black node, and its incoming links are marked
with different colors, indicating different values in general. The
calculation is repeated for every node in the system.
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TABLE III. Reconstruction error rates for directed networks.
For the same dynamical processes in Table I, the error rates (in
percentages) in uncovering the existent and nonexistent links R1

e and
R0

e , respectively. ER random and BA scale-free networks of size
N = 100 and average degree 〈k〉 = 4 are used as the underlying
network supporting the various dynamical processes. The normalized
number of measurements used in compressive sensing is M/N = 0.4
for all cases.

R0
e / R0

e /

Category Dynamics type R1
e (%, ER) R1

e (%, BA)

I SDBM 0.0 / 0.1 0.2 / 7.11
II Ising-Glauber [53] 0.0 / 0.0 0.0 / 0.0

SQ-SG [54] 0.0 / 0.0 0.0 / 1.3
SQ-PDG [54] 0.5 / 1.2 0.7 / 2.5

III Minority game [55–59] 0.0 / 1.6 0.0 / 0.0
Voter [60,61] 0.0 / 0.0 0.3 / 0.5
Majority vote [60,61] 0.0 / 0.0 0.0 / 0.1

IV Link-update voter [62,63] 0.1 / 1.1 0.6 / 2.0
Language model [64,65] 0.2 / 3.6 0.0 / 0.0
Kirman [66,67] 0.0 / 0.0 0.1 / 2.5

V CP [68,69] 0.0 / 2.1 0.0 / 2.5
SIS [70–73] 1.6 / 4.5 1.2 / 14.2

VI SG [74] 0.1 / 0.9 0.1 / 13.5
PDG [75,76] 0.2 / 4.4 0.3 / 11.7

results demonstrate the effectiveness of the SDBM method for
directed complex networks.

For a node (say i) in an undirected network, if the procedure
yields an incoming link from node j , then j must necessarily
have an outgoing link to i, with wij ≈ wji (except for a
few hub nodes, where the local sparsity condition is violated
with relatively large reconstruction errors). This property of
approximately symmetric interactions, however, does not hold
for most nodes in a directed network. This provides a practical
strategy to distinguish an undirected from a directed network
when the symmetry of the network topology is unknown
a priori: if most of the reconstructed links are symmetric
(asymmetric), there is a high likelihood that the underlying
network is undirected (directed). Ambiguities can arise for
the links associated with the hub nodes, for which the SDBM
method would fail. Since real complex networks are typically
sparse, the hub nodes are relatively few, and we expect that our
method is still capable of providing an approximate picture of
the interaction patterns as to whether majority of the links are
undirected or directed.

IV. DISCUSSION

Reconstructing complex dynamical systems from data is
a frontier field in network science and engineering with
significant applications. We focus on binary dynamical pro-
cesses and ask the following question: Is it possible to build
a “machine” to reconstruct, from data only, the underlying
complex networked dynamical system and to make predic-
tions? While this paper does not provide a mathematically
rigorous solution, significant and (in some cases) striking
results are obtained, which give strong credence that such a

machine is possible. In particular, we combine compressive
sensing and clustering algorithm to construct a general class
of network structural estimators and dynamics approximators.
For networks with symmetric or asymmetric interactions,
universality is fundamentally possible due to the fact that many
dynamical processes on complex networks are of the Markov
type and the interactions among the nodes are local. As a result,
utilizing basic tools from statistical physics, we can build up
an energy based Markov-network-like model (e.g., an SDBM)
to construct a estimator and approximator for different types of
complex network structures and dynamics. For a large number
of representative dynamical processes studied in this paper,
we demonstrate that such a SDBM can be reconstructed based
on compressive sensing and the scheme of K means using
data only, without requiring any extra information about the
network structure or the dynamical process. The working of the
SDBM is demonstrated using a large number of combinations
of the network structure and dynamics, including many real
world networks and classic evolutionary game dynamics. An
SDBM with its parameters given by the equations constructed
from the time series along with the estimated network structure
is able to reproduce the conditional probabilities quantitatively
and, accordingly, it is capable of predicting the state configu-
ration at least in a short term. We demonstrate that, for certain
types of binary dynamics, the approximator can reproduce the
dynamical process statistically, indicating the potential of its
serving as a generative model for long-term prediction in such
cases (Appendix G).

While we assume binary dynamics, in principle the
methodology can be applied to other types of dynami-
cal processes. In particular, Eq. (4) can be readily ex-
tended to the conditional probability of each possible
state value λj , i.e., P {xi(t + 1) = λj |XR

i (t)} = P {xi(t + 1) =
λj ,XR

i (t)}/∑
s P {xi(t + 1) = λs,XR

i (t)}. A potential diffi-
culty is that the configuration space of the system states grows
exponentially with the number of choices of λj so that, given a
finite amount of data, the number of time instances correspond-
ing to each particular configuration decreases exponentially,
leading to a significant reduction in the estimation precision of
the conditional probability. For network structural reconstruc-
tion, in principle there is no theoretical limitation. A practical
limitation is that, due to the exponential growth of the number
of possible configurations as the network size is increased,
the required computations would increase dramatically. In
our study, the largest network tested is a real world circuit
network of 512 nodes. Dealing with networks of more than
a few thousand nodes would be computationally extremely
demanding at present. The sparsity condition as required by
compressive sensing poses another practical limitation. In
fact, performance on networks with high average degree is
poor. Another limitation is that complete information (data)
from all system components is needed. How to deal with
systems where only partial information is available is an open
issue.

Our effort represents an initial attempt to realize a general
estimator and approximator, and the performance of our
method is quite competitive in comparison with the exist-
ing reconstruction schemes designed for specific types of
dynamics (on undirected networks) (see Table II). In realis-
tic applications, the data obtained may be discontinuous or
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incomplete. In such cases, the short-term predictive power
possessed by the estimator and approximator can be exploited
to overcome the difficulty of missing data, as the Markov
network nature of the SDBM makes backward inference pos-
sible so that the system configurations during the time periods
of missing data may be inferred. When long-term prediction
is possible, the approximator has the critical capability of
simulating the system behavior and predicting the chance
that the system state enters into a global absorption phase,
which may find significant applications such as disaster early
warning. Another interesting reverse-engineering problem lies
in the mapping between the original dynamics and the cor-
responding parameter value distribution of the reconstructed
SDBM. That is, a certain parameter distribution of the SDBM
may indicate a specific type of the original dynamics. As
such, the correspondence can be used for precisely identifying
nonlinear and complex networked dynamical systems. It is
also possible to assess the relative importance of the nodes
and links in a complex network based on their corresponding
biases and weights in the reconstructed SDBM for controlling
the network dynamics. These advantages justify our idea
of developing a machine for data-based reverse engineer-
ing of complex networked dynamical systems, calling for
future efforts in this emerging direction to further develop
and perfect the network structural estimator and dynamics
approximator.
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APPENDIX A: MODEL COMPLEXITY
AND REPRESENTATION POWER

For dynamical processes in categories I and II, the transition
probabilities P 0→1

i all have the form 1/[1 + exp(Ani + Bki)],
where A and B are constants, and ni denotes the number of
node i’s neighbors whose states are 1. We have

[1 + exp(Ani + Bki)]
−1

=
{

1 + exp

[
ki∑

m=1

wimxm(t) + bi

]}−1

,

which gives

ki∑
m=1

Axm(t) + Bki =
ki∑

m=1

wimxm(t) + bi. (A1)

In the ideal case where an absolutely accurate estimate of
P {xi(t + 1) = 1|XR

i (t)} can be obtained, Eq. (A1) holds for

any possible neighboring state configurations. We thus have
wim = A and bi = Bki , and the probabilities conditioned on
these configurations sharing the same values of ni in the
approximator are all equal to P 0→1

i . This means that, in theory,
the conditional probabilities can be reconstructed with zero
errors. In fact, a one-to-one mapping between the coefficients
indicates that the model complexity of the SDBM provides the
approximator with sufficient representation power to model
the dynamics processes in categories I and II. Practically, since
the statistical estimations of P {xi(t + 1) = 1|XR

i (t)} may not
be absolutely identical under different neighboring configura-
tions with the same values of ni due to random fluctuations, we
have wim ≈ A so that the conditional probabilities generated
by the approximator may differ from each other slightly and
also from the true probability P 0→1

i . As a result, random
recovery errors can occur.
For dynamical processes in categories other than I and II,
the simple coefficient-mapping relation between the corre-
sponding xm(t) terms on the two sides of Eq. (A1) become
nonlinear, due to the fact that the specific forms of P 0→1

i

differ substantially from that of the SDBM. In this case,
each particular neighboring state configuration produces a
distinct equation. There are 2ki equations in total, while the
number of unknown variables to be solved is only ki + 1
(wim for m = 1, . . . ,ki and bi). For ki � 2, there are thus
more equations than the number of unknown variables. As a
result, the representation power of the SDBM approximator
is limited by its finite model complexity so that, even in
principle, the approximator may not be able to fully describe
the original dynamical process. In our framework, we calculate
the Markov link weights and the node biases according to the
ki + 1 most frequently appeared neighboring state configura-
tions. A consequence is that imprecise conditional probability
estimations can arise for the configurations with relatively
lower occurring frequency, giving rise to the nonzero peaks
in the error distribution in Fig. 7. However, interestingly,
with respect to the precision of the conditional probabilities
produced by the approximator, the SDBM parameters do
not show a significantly strong preference towards the most
frequently occurring configurations. In practice, the estimated
conditional probabilities for the majority of the less frequently
occurring configurations also fall within a close range of
the true values. This phenomenon suggests the power of the
approximator to work beyond the limit set by its theoretical
model complexity. This is the main reason for the emergence
and persistence of the dominant peak at zero in the error
distribution.

APPENDIX B: JUSTIFICATION
FOR THE APPROXIMATION 〈ln Q〉 ≈ ln q

The approximation 〈ln Q〉 ≈ ln q is used in the main
text when deriving Eq. (9) from (7). For simplicity, we
write P {xi(t + 1) = 1,XR

i (t)} as p1 in the following deriva-
tion. For one particular state configuration (measurement) in
Eq. (7), we randomly shuffle all its similar configurations
and partition them into l buckets of the same size. Letting
ln(1/p̃1

j − 1) denote the estimation of ln Q in bucket j , we
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have

〈ln Q〉 = 7

〈
ln

(
1

p1
− 1

)〉
=

∑l
j=1 ln

(
1
/
p̃1

j − 1
)

l

= ln l

√√√√ l∏
j=1

(
1

p̃1
j

− 1

)
� ln

⎡
⎣1

l

l∑
j=1

(
1

p̃1
j

− 1

)⎤
⎦

= ln

[〈
1

p1

〉
− 1

]
, (B1)

where the equality holds if all the summation elements have
equal values, so the geometrical and algebraic means are the
same. When there are a sufficiently large number of similar
configurations in each bucket, we have

p̃1
1 ≈ p̃1

2 ≈ p̃1
3 ≈ . . . ≈ p̃1

l ≈ 〈x(t + 1)〉 (B2)

and thus
1

p̃1
1

≈ 1

p̃1
2

≈ 1

p̃1
3

≈ . . . ≈ 1

p̃1
l

≈ 1

〈x(t + 1)〉 , (B3)

so that the equal sign in Eq. (B1) holds. Accordingly, we
have 〈ln Q〉 ≈ ln[〈 1

p1 〉 − 1]. Using supplemental Eqs. (B2) and
(B3), we obtain〈

1

p1

〉
= 1

l

l∑
j=1

1

p1
j

≈ 1

〈x(t + 1)〉 . (B4)

Consequently, we have ln Q ≈ 〈ln Q〉 ≈ ln q.
This approximation can be further justified empirically. We

have calculated ln q versus 〈ln Q〉 for a wide range of the
bucket size and found that, for different bucket size, the distri-
butions all concentrate on the diagonal line with insignificant
variances, indicating the effectiveness and accuracy of our
approximation. Similar results have been obtained, regardless
of network topology and dynamics property. We note that a
similar approximation method was used by Shen et al. in their
work of reconstruction of propagation networks from binary
data [28].

APPENDIX C: IMPLEMENTATION DETAILS OF 14
DYNAMICAL PROCESSES ON COMPLEX NETWORKS

All types of network dynamical processes studied in the
main text, except for PDG and SG, are implemented in the
following way. At each time step t , the probabilities for node
i to have a state xi(t + 1) = 1 and 0 at the next time step
conditioned on the state configuration of i’s neighbors, i.e.,
P 0→1

i and P 1→0
i , are calculated according to Table I in the main

text. If xi(t) = 0 (or 1), then it is switched to state xi(t + 1) = 1
(or 0) with the probability P 0→1

i (or P 1→0
i ) or remains at 0 (or

1) with the probability 1 − P 0→1
i (or 1 − P 1→0

i ).
Listed below is a detailed description of the dynamical

processes and the parameter settings. (Reasonable changes
in parameter values do not affect the reconstruction perfor-
mance.)

SDBM. The dynamics is described in detail in the main
text. The network parameters (link weights and node biases)
are uniformly chosen between 0.3 and 0.7 in our calculation.

Ising-Glauber. Opinion dynamics models often adopt
the classic Ising model of ferromagnetic spins [53]. The

temperature parameter κ characterizes the level of “rational-
ity” of the individuals, which represents the uncertainties in
accepting the opinion. The coupling strength parameter J

(or the ferromagnetic-interaction parameter) characterizes the
intensity of the interaction between the connected nodes. The
simulation parameters are κ = 1 and J = 0.1.

Majority vote. The majority-vote model [60,61] is a
nonequilibrium spin model. Spins tend to align with the
neighborhood majority under the influence of noise with
parameter Q quantifying the probability of misalignment. In
our simulations, we set Q = 0.3.

Minority game. In the minority game model [55–59], each
individual chooses the strategy adopted by the minority of its
neighbors with a higher probability than that for the majority.
The probability for node i to be 1 at the next time step is
proportional to the number of its 0-state neighbors, ki − ni .
We then have P 0→1

i = (ki − ni)/ki and P 1→0
i = ni/ki .

Voter and link-update voter. In the voter model [60,82],
each node i adopts the state of one of its randomly selected
neighbors. If i is currently inactive (state 0), while there are ni

neighbors in the active state (state 1), it becomes active with the
probability P 0→1

i = ni/ki . An active node i becomes inactive
with the probability P 1→0

i = (ki − ni)/ki . The voter model is
similar to the minority game model but with the definition of
P 0→1

i and P 1→0
i swapped. The link-update voter model is a

variant of the voter model [62,63].
Language model. In the language model [64,65], the 0

and 1 states stand for an individual’s two primary choices
of the language. The probability of switching language is
proportional to the fraction of the speakers in its neighborhood,
raised to the power α and multiplied by the status parameter s

or 1 − s of the respective language. In our simulations, we use
α = 0.5 and s = 0.6.

Kirman ant colony model. In the model [66,67], to choose
between stock market trading strategies, nodes move from
the nonadopted state (state 0) to the adopted state (state 1)
with the probability P 0→1

i = c1 + dni , where c1 represents the
individual strategy, which is independent of the influence of its
neighbors. The parameter d quantifies the herding behavior,
whereby a nonadopted-state individual copies the strategy of
their ni adopted-state neighbors. A node i with ni of its ki

neighbors in the adopted state has ki − ni neighbors in the
nonadopted state. Due to the herding effect, the probability
for the transition from an adopted state to a nonadopted
state is P 1→0

i = c2 + d(ki − ni). In our simulations, we set
c1 = c2 = 0.1 and d = 10/N , where N is the network size.

SIS and CP. In the susceptible-infected-susceptible (SIS)
disease-spread model [70,72,83], an infected individual trans-
mits disease to node i in its neighborhood with the probability
λi . If a susceptible node i has ni infected neighbors, the
probability that it will be infected is P 0→1

i . The recovery
rate P 1→0

i = μi is kept constant for node i. When simulating
the SIS model, all infected neighbors of node i affect i. In
particular, for each infected neighbor, a random number is
drawn and checked if it is smaller than λi , and i gets infected
if any of the random numbers are smaller than λi . We thus
have P 0→1

i = 1 − (1 − λ)ni , where the second term gives the
chance for i to remain susceptible.

For the contact process (CP) model [68,69], at a time step,
each node i randomly selects one of its ki neighbors and checks
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TABLE IV. Description of the nine real world networks used in
our study (N , number of nodes; L, number of edges).

Type Index Name N L Description

Trust 1 College student [77,78] 32 96 Social network
2 Prison inmate [77,78] 67 182 Social network

4 Protein-1 [78] 95 213 Protein network
Protein 5 Protein-2 [78] 53 123 Protein network

6 Protein-3 [78] 99 212 Protein network

12 Seagrass [79] 49 226 Food web
Food web 13 Grassland [80] 88 137 Food web

14 Ythan [80] 135 601 Food web

Circuits 3 s208a [81] 122 189 Logic circuit

whether it is an infected node. If yes, it will transmit the disease
to i with the probability λi . Since the chance of getting an
infected node selected is ni/ki , the probability of infecting
node i at the current time step is (ni/ki)λi .

Evolutionary game models: SG, SQ-SG, PDG, and SQ-
PDG. The implementation of evolutionary game dynamics,
PDG [75,76,84,85] and SG [74], is slightly more complicated.
In the PDG model, the following two processes occur at
each time step. (1) Game playing and payoffs. Each agent
plays the classical prisoner’s dilemma game (PDG) with all
its nearest neighbors, and the total payoff is the sum of the
payoffs gained in its two-player games with all the connected
agents. Each player may choose either to cooperate, C, or
to defect, D, in a single encounter. If both players choose
C, both will get payoff R. If one defects while the other
cooperates, D gets T , while C gets S. If both defect, both
get P , where T > R > P > S. The PDG parameters in our
work are chosen to be R = 1, T = b > 1, and S = P =
0 [75]. (2) Strategy updating. At each time step, agent i

randomly chooses a neighbor j and imitates j ’s strategy with

the probability Pi→j = {1 + exp [−(Uj − Ui)/κ]}−1, where
Ui and Uj are the payoffs for agents i and j , and κ is the
level of agents’ “rationality” representing the uncertainties in
assessing the best strategy. The only difference between PDG
and SG is the choice of the game parameter values. In SG, the
parameters are chosen to be R = 1, T = 1 + r , S = 1 − r ,
and P = 0, where 0 < r < 1. The probability that node i

chooses to be cooperative or defective at the next time step
requires information about its neighbors’ states and payoffs
at the current time step. This violates the interdependency
assumption underlying a Markov network. It is thus difficult
to analytically calculate the probabilities P 0→1

i and P 1→0
i .

We find, however, that the structure of this non-Markov net-
work can be successfully reconstructed by SDBM, a Markov
network.

A self-questioning mechanism [54] can be introduced to
ensure the interdependency properties of the Markov net-
works for PDG and SG. At the strategy updating stage, we
define the probability that a cooperative node i chooses a
defective strategy at the next time step to be P 0→1

i = {1 +
exp [−(UC

i − UD
i )/κ]}−1, where UC

i and UD
i are the payoffs

obtained while adopting the cooperative and defective strate-
gies, respectively. The probability of choosing a cooperative
strategy is P 1→0

i = 1 − P 0→1
i . For PDG, we have UC

i = ki −
ni and UD

i = b(ki − ni). For SG, we have UC
i = (ki − ni) +

(1 − r)ni and UD
i = (1 + r)(ki − ni), where ni denotes the

number of defective neighbors. In our simulations, nodal states
0 and 1 denote cooperation and defection, respectively, and we
set b = 1.2, r = 0.7, and κ = 2 for all cases of the evolutionary
game dynamics.

APPENDIX D: REAL-WORLD NETWORKS

Table IV lists the names, types, sizes of the real world
networks used for topology reconstruction in the main text.

TABLE V. Structure reconstruction error rates of 5 real world networks associated with 11 typical complex network dynamics. The
percentage error rates of the nonexistent and the existent links detection (R0

e /R
1
e , %) are listed for all combinations of the network structure

and dynamics. Each entry denotes the error rates R0
e /R1

e corresponding to a particular type of dynamics (shown in the column) for a real world
network topology (shown in the row). The result for each combination is obtained with M = 0.4N measurements used in each implementation.
For some combinations, there exists a global absorption state in which the system state configuration freezes, or a vibration state where the
system switches between only a small number of configurations. In such a case, no sufficient number of linearly independent measurements
can be obtained to implement compressive sensing. The entries associated with these cases are marked by “* / *”.

Dynamics type Social-1 Social-2 Protein-1 Protein-2 Protein-3

Ising-Glauber 0.2 / 3.8 0.0 / 0.0 0.0 / 0.0 1.0 / 0.0 0.0 / 0.0

Minority game 0.0 / 0.0 0.0 / 7.0 3.7 / 0.0 * / * * / *
Voter 0.0 / 0.0 0.0 / 4.2 3.9 / 0.8 * / * * / *
Majority vote 0.0 / 0.0 0.0 / 32.4 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0

Link-update voter 3.0 / 2.5 0.1 / 7.0 0.2 / 0.0 0.0 / 0.0 2.7 / 0.0
Language model 0.2 / 0.0 0.0 / 0.0 0.1 / 0.0 2.1 / 0.0 * / *
Kirman 0.0 / 0.0 0.5 / 34.5 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0

CP 0.2 / 0.0 0.0 / 7.0 0.0 / 0.0 * / * * / *
SIS 4.7 / 2.5 0.0 / 14.1 0.4 / 0.0 * / * * / *

SG 0.9 / 5.0 0.5 / 2.8 1.8 / 0.0 1.6 / 0.0 * / *
PDG 0.5 / 0.0 0.9 / 4.2 2.4 / 0.0 3.3 / 0.0 13.9 / 16.0
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TABLE VI. Structure reconstruction error rates of 4 additional
real world networks associated with 11 types of complex network
dynamics. Table legends are the same as for Table V.

Dynamics type Food web-1 Food web-2 Food web-3 Circuit

Ising-Glauber * / * 0.0 / 0.0 * / * 0.0 / 0.0

Minority game 0.1 / 0.0 1.0 / 0.0 0.4 / 0.3 0.8 / 0.0
Voter 0.1 / 0.0 0.7 / 0.0 0.6 / 1.7 2.0 / 0.0
Majority vote 0.4 / 0.0 0.0 / 0.0 1.5 / 0.0 0.0 / 0.0

Link-update voter 1.1 / 0.0 15.7 / 0.0 * / * * / *
Language model 0.2 / 0.0 0.3 / 0.0 0.0 / 4.4 0.0 / 0.1
Kirman * / * 0.0 / 2.2 * / * 0.0 / 0.0

CP 0.4 / 0.5 0.0 / 0.7 5.3 / 1.5 0.0 / 0.0
SIS 1.3 / 9.4 4.7 / 8.0 17.3 / 17.3 * / *

SG 2.1 / 16.1 8.4 / 25.6 6.2 / 23.0 8.3 / 4.8
PDG 2.8 / 7.6 8.4 / 19.0 8.8 / 15.3 23.0 / 14.3

APPENDIX E: RECONSTRUCTION ACCURACY
FOR REAL WORLD NETWORKS

Tables V and VI list the reconstruction accuracy for a num-
ber of real world networks with various dynamical processes.

APPENDIX F: VISUAL COMPARISON BETWEEN
THE CONDITIONAL PROBABILITIES

Figures 9(a)–9(d) present a visual comparison between
the conditional probabilities P {xi(t + 1) = 1|XR

i (t)} of the
original SDBM and of the estimated SDBM calculated from
Eq. (5) in the main text. We see that the two time series of
P {xi(t + 1) = 1|XR

i (t)} are visually indistinguishable.

APPENDIX G: SDBM AS A GENERATIVE MODEL
FOR DIFFERENT TYPES OF DYNAMICS

In real world applications, it is often the case that little
information about the details of the dynamical processes is
available, i.e., the time series data can be regarded as from
a “black box.” Say the data generation mechanism can be
uncovered based solely on the observed data, i.e., the black-box
dynamics is simulated to reproduce the “pseudo”-time series
bearing the same statistical properties of the original data.
The model is deemed generative in the sense that it has the
same data generating mechanism as that of the original system.
Such a generative model captures the essential dynamical and
statistical properties of the original system, which can be ex-
ploited for long-term statistical prediction through simulation.
Here, we investigate the potential for the SDBM approximator
to serve as a generative model of the original dynamics. A
basic requirement is that the long-term conditional probability
recovery error accumulated at each immediate time step does
not drive the model behavior significantly off the trajectory
generated by the original dynamical process. Due to the
stochastic nature of the original dynamical system and its
approximator, starting from a particular state configuration,
reproducing similar conditional probabilities in the immediate
future does not guarantee a similar state configuration. In fact,
the deviation in the configuration at the next time step may
lead to further and larger deviations, and so on.

Figure 10 shows three examples: two positive cases where
the prediction is reasonable and one negative case where the
task fails. For those examples, the approximator is initialized
from a random configuration and runs for the same amount of
time as the original time series. In the positive cases (SQ-SG
and SIS), the conditional probability time series generated
by the approximator are visually similar to the original data,

FIG. 9. Comparison between the conditional probabilities of the original system and that generated via the reconstructed SDBM.
(a) Conditional probability P {xi(t + 1) = 1|XR

i (t)} versus time t for the original system with SDBM dynamics for a BA scale-free network and
(b) the conditional probability from the reconstructed approximator using the configuration time series of the original system, where 1 � i � N

(the y axis) and 1 � t � T (the x axis). Time series of the conditional probability P {xi(t + 1) = 1|XR
i (t)} from the original system with SIS

dynamics for a BA scale-free network (c) and from the reconstructed approximator (d).
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FIG. 10. Comparison between the conditional probabilities of the original system and the approximator using the self-generated state
configuration time series. (a), (d), (b), (e), and (c), (f): the conditional probability P {xi(t + 1) = 1|XR

i (t)} time series generated from the
original state configuration time series (upper panel) and from the SDBM approximator using the state configuration time series generated by
itself (lower panel) for SQ-SG, SIS, and voter dynamics on ER random networks, respectively. (g)–(i) The mean and standard deviations of
p = P {xi(t + 1) = 1|XR

i (t)} for each node i for all time steps for SQ-SG (g), SIS (h), and voter dynamics (i), respectively, on ER random
networks, calculated from the original system (red circles) and the approximator (blue squares), where 1 � i � N (the x axis).

indicating that the observed data are qualitatively and quanti-
tatively reproduced by the approximator. In addition, for each
node, its conditional probability value P {xi(t + 1) = 1|XR

i (t)}
can be treated as a random variable p, whose distributions
in the true system should be similar to that produced by the
approximator if it can indeed serve as a generative model.

To characterize the similarity in the distributions, one could
use some standard statistical measures such as the Kullback-
Leibler divergence [86], the Jensen-Shannon divergence [87],
the Bhattacharyya distance [88], or the Hellinger distance [89].
However, we find that the performance of these metrics is not
stable. It is more effective to directly compare each node’s 〈p〉
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and 	p values from the original data and the approximator,
e.g., for the three examples shown in Figs. 10(c), 10(f), and
10(i). The result is that, except for a few nodes, the values
of 〈p〉 and 	p obtained from the data and SDBM agree with
each other for the two positive cases, but there is a substantial
difference for the negative case. Our calculation also shows
that there are cases where the approximator reproduces similar
values of 〈p〉 and 	p for a substantial fraction of the nodes
in the network, but with deviations for the remaining nodes.
We conclude that the SDBM approximator can serve as a
generative model for some systems. Improvement is necessary
to generalize the generative power of SDBM.

We have also carried out a comparison study between the
conditional probabilities of the original system and of the
approximator using its self-generated state configuration time
series for all types of dynamics studied except for the non-
Markovian classic PDG and SG, whose conditional probability
time series are difficult to compute. We find that in about
half of the cases, namely, SDBM itself, Ising-Glauber, SQ-SG,
SQ-PDG, the Kirman model, CP, and SIS, the reconstructed
SDBM approximators are capable of serving as a generative
model of the original time series data, so the reconstructed
SDBMs can be used to simulate the long-term behavior of the
corresponding original systems.
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