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In the real world there are situations where the network dynamics are transient (e.g., various spreading
processes) and the final nodal states represent the available data. Can the network topology be reconstructed
based on data that are not time series? Assuming that an ensemble of the final nodal states resulting from
statistically independent initial triggers (signals) of the spreading dynamics is available, we develop a maximum
likelihood estimation–based framework to accurately infer the interaction topology. For dynamical processes that
result in a binary final state, the framework enables network reconstruction based solely on the final nodal states.
Additional information, such as the first arrival time of each signal at each node, can improve the reconstruction
accuracy. For processes with a uniform final state, the first arrival times can be exploited to reconstruct the
network. We derive a mathematical theory for our framework and validate its performance and robustness using
various combinations of spreading dynamics and real-world network topologies.
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I. INTRODUCTION

Extensive research in the past two decades has revealed
that network structure can play a fundamental and critical
role in the collective dynamics on the network. However, in
realistic situations, the network structure and nodal dynamics
are often unknown but only limited measured time series
are available. To determine the full topology and structure
of a complex network from data has thus evolved into an
important area of research with significant applications [1].
For example, data-based network reconstruction is pertinent
to biomedical sciences such as gene regulatory networks [2],
systems biology [3], and psychology [4]. In the past there
were advances in this field [5–43], where various network
reconstruction methods were developed such as those based
on the Pearson correlation [44,45], phase synchronization
[46,47], delayed feedback control [10,25], noise-induced fluc-
tuations [17,19,31], and compressive sensing [26–28,39–43].
A common feature among many existing methods is that
measured time series of a finite duration from the system are
needed for the reconstruction task. That is, it is necessary to
have full or partial information about the dynamical trajectory
of the networked system [24,37,41] to enable reconstruction.

There are real-world situations where the nodal dynamics
are transient with a short lifetime and only the final nodal states
of the network are available. For example, after a rapid out-
break of an infectious disease, the individuals who have been
infected can be observed, and this may be the only available
information. A similar situation arises with information diffu-
sion on networks (e.g., online rumor or opinion propagation
and spreading), where the final subpopulation that received
the information is known. Likewise, for a given web page a
record of the individuals who have visited the page is often
available, but the detailed browsing history of these individuals
is usually not known. To reconstruct the network topology
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without time series, where the only available information is
the final nodal states, poses an extreme challenge in the field
of reverse engineering of complex networks.

In this paper, we develop a general framework to infer the
network topology based solely on information about the final
nodal states in the absence of any time series. Since many
diffusion processes can be conceptualized as propagation of
“signals” [48] in networks (e.g., virus, rumors, opinions, data
packets, or passengers), the final state of any node is often
binary: either it has received the signal or not. We exploit
maximum likelihood estimation (MLE) [49] to ascertain the
existence of actual links among the nodes using only the
final binary states. We develop a mathematical theory with
proved theorems to establish the framework and demonstrate
its performance using a large number of model and empirical
networks. We address the issue of robustness by numerically
assessing and mathematically analyzing the effects of random
signal disturbances. A finding is that, for dynamical processes
with a binary final state, when “extra” information is available,
such as the first arrival time of the signal at each node, the
reconstruction accuracy can be markedly improved. Even for
processes with a uniform final state, the first arrival times can
be exploited to uncover the network topology.

II. MODEL

A. Reconstruction framework

We consider a network of N nodes and M propagating
signals. For each node, a binary dynamical variable can
be defined with two states: either the node has received
a signal or not. In this work, to verify the universality of
our reconstruction framework, the propagations of signals
on networks can be simulated by the Susceptible-Infected-
Recovery (SIR) epidemic model, rumor spreading model, or
the mixture of them. The detailed descriptions of them are
presented in Sec. III A. The data or information needed for
reconstruction can then be represented by a matrix S, where
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FIG. 1. Schematic illustration of construction of global informa-
tion matrix S and local information matrix Sj extracted from S.
(a) Global information matrix S, where Sij = 1 if signal i is received
by node j (marked by black); otherwise, Sij = 0 (blank). (b) Matrix
S6 for node 6 extracted from S, which contains the rows of S with
Si6 = 1, i.e., the red boxes in (a) with element indices renumbered.
Note that S6 does not contain the column of node 6 in S. Since the
state of node 5 is opposite to that of node 6 for each signal, the
column corresponding to node 5 is also removed. (c) The final local
information matrix S6. (d) The original network with N = 8. The
eleventh signal (the sixth row of S6 in (c), highlighted by dashed red
box) is also received by nodes 1, 2, 3, and 8 (green nodes). However,
only node 3 can directly diffuse the signal to node 6 (red node). The
signals from nodes 1, 2, and 8 must reach node 3 first before arriving
at node 6. Other signals must pass through node 3 or node 4 to reach
node 6.

every element Sij assumes one of the two values: one or zero,
with the first index i specifying the signal and the second index
j labeling the node. Specifically, we have Sij = 1 if signal i has
transmitted to node j , otherwise Sij = 0. For convenience, we
call S the global information matrix. Our goal is to reconstruct
the full topology of the network according to matrix S, which
contains information about final nodal states only. Figure 1
presents a schematic illustration of this task for the concrete
case of N = 8 and M = 16.

For convenience, we use Fig. 1 to explain how the global
information matrix S can be used to infer the network structure.
From each row, we can identify the nodes that have received
the signal and the infected nodes provide limited structural
information about the whole network. Using many rows of the
matrix S, we can infer the whole network structure. Take the
first row of S as an example. It can be seen that nodes 3, 5, 7,
and 8 have received the first signal, which contains the three
existing links (3, 8), (5, 8) and (7, 8), as shown in Fig. 1(d).
Using information about the first row only is not sufficient
to infer the three links, because the row also contains the
possible links (3, 5), (3, 7), and (5, 7). Exploiting other rows
can eliminate the redundant links. For instance, from the matrix
S in Fig. 1(a), we see that the states of nodes 3 and 5 in many
rows are different, indicating lack of a link between them.

Step 1: Construction of global and local information
matrices. To reconstruct the whole network, we begin with

reconstructing the local connection topology for each node.
For each node j , we define a local information matrix Sj

characterizing the signals arriving at node j , which can be
extracted from the global information matrix S. In particular,
from S, we remove the j th column and keep only the rows
corresponding to signals actually received by node j . A
nonzero element of the matrix Sj thus has the following
meaning. Take as an example that S

j

ik = 1. This means that
signal i, which has been received by node j , also arrives at and
is received by node k. Otherwise, S

j

ik = 0. To better describe
the relation between global and local information matrices,
we present a schematic illustration in Fig. 1, where Fig. 1(a)
presents an example of the global information matrix S, and
Fig. 1(b) shows the local information matrix S6 of node 6
extracted from S. We see that S6 consists of nine rows in
S (marked by the red dotted boxes: rows 3, 5, 6, 8, 9, 11,
12, 14 and 16, which are reindexed from 1 to 9 in S6). For
Sj , columnwise we keep those corresponding to nodes whose
final states are not opposite to that of node j for each signal.
That is, for nodes whose states are exactly opposite to that of
node j for each signal, the corresponding columns in Sj are
removed. An example is the column corresponding to node
5 in S6, where for every signal, if it is received by node 6,
then it will never arrive at node 5, and vice versa, as shown in
Fig. 1(b). As a result, the column corresponding to node 5 is
removed. The final local information matrix S6 for node 6 is
shown in Fig. 1(c).

Step 2: Maximum likelihood estimation based inference of
local topology. For each node j , we need to infer its neighbors
(the nodes that are connected with node j ) based on the local
information matrix Sj . To do so, we view node j as the
recipient of the signals starting from other nodes. Because
signals can diffuse only through the links in the networks, all
signals starting from other nodes to node j should be received
by some neighbors first and are then passed onto node j . Take
the sixth row in S6 as an example [see Fig. 1(c), highlighted
by the dashed red box], the signal is received by nodes 1, 2,
3, and 8 [the green nodes in Fig. 1(d)]. However, as shown
in Fig. 1(d), signals from nodes 1, 2, and 8 cannot directly
reach node 6 (red node): they must reach node 3 first before
arriving at node 6. To quantify this process, we define P k

j as
the probability that node k can directly pass signals to node
j , namely, the signals received by node j were passed on by
node k. As a result, there is a possible connection between the
two nodes if P k

j > 0 and no such connection exists if P k
j = 0.

For each signal starting from another node to node j , at least
one of the neighbors has received the signal. We thus have∑

k P
j

k ≡ 1 for each row of Sj . The probability for node j

to receive signal i, P (Sij = 1), is determined by whether a
node k also received the signal and their directly connection
probability P k

j , namely,

P (Sij = 1) =
∑
k �=j

P
j

k × S
j

ik = Sj (i, :) · P j , (1)

where Sj (i, :) denotes the ith row of Sj and P j =
[P j

1 ,P
j

2 , . . . ,P
j

Nj
]T with Nj being the number of columns in

Sj .
If the direct connection probability is correctly predicted,

the probability of P (Sij = 1) will be large for those signals
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received by node j . Our goal is thus to find the direct con-
nection probability P j = [P j

1 ,P
j

2 , . . . ,P
j

Nj
]T to maximize the

product of the probability P (Sij = 1) that signal i is received
by node j . Letting f (P j ) = ∏

i (Sj (i, :) · P j + ε), we obtain
the direct connection probability P j = [P j

1 ,P
j

2 , . . . ,P
j

Nj
]T

using the principle of MLE:

max f (P j ), subject to

{P
j

k � 0,∑
k

P
j

k = 1,
(2)

where ε is an error tolerance parameter, which in numerical
simulations can be fixed at some arbitrarily small value (e.g.,
ε = 0.01). We also test other small values of ε (e.g., 10−4,
10−3, and 10−1) and find consistent reconstruction accuracy.

Since each factor in Eq. (2) is less than unity,
(Sj (i, :) · P j + ε) � 1, their product can be arbitrarily small,
leading to an equally small value for max f (P j ) and, conse-
quently, to a large estimation error. To overcome this difficulty,
we use the logarithmic form of max f (P j ) to write formula
(2) as

max
∑

i

ln(Sj (i, :)P j + ε),

subject to

{P
j

k � 0,∑
k

P
j

k = 1.
(3)

Equation (3) is a standard optimization problem. Its solution
P j can be used to ascertain the existence of links. In particular,
there is an edge connecting nodes k and j if P

j

k can be
distinguished from zero statistically.

Figure 2 presents a schematic illustration of our MLE-
based reconstruction method. Specifically, Fig. 2(a) shows
the connecting structure of a model network of size N = 19,
on which an epidemic spreading process has occurred. To
be concrete, we assume that the dynamics is described by
a SIR epidemic model with the following parameter values:
transmission rate β = 0.2 and recovery rate μ = 1.0. Say
that the task is to identify the neighbors of red node 11. We
generate 500 independent realizations of the dynamics, each
starting from a random initial seed of the epidemic source, i.e.,
M = 500. The global information matrix S thus has 500 rows
and 19 columns. Figure 2(b) shows the matrix S11 extracted
from S. Solving the underlying MLE optimization problem
(3), we obtain the values of P 11

k , where those values that can
be distinguished from zero are shown Fig. 2(c). For the values
in Fig. 2(c), the corresponding part of S11 is shown in the
upper right corner of Fig. 2(b). As shown in Fig. 2(d), the
MLE-based method yields correctly the neighbors of node 11.
Repeating this for every node, we can obtain the full topology
of the whole network.

B. Dimension reduction

The dimensions of the matrices S and Sj increase with N

and M , leading to a rapid increase in the number of unknown
parameters in (3) and consequently to inaccurate solutions
of the MLE optimization problem. Thus, for large networks
and/or large number of signals, it is desired to reduce the
dimensions of S and Sj . Intuitively, if a signal i is received

FIG. 2. Illustration of a MLE-based method for network recon-
struction without any dynamical trajectory or time series. (a) A
network of 19 nodes, and the task is to identify the neighbors of node
11. (b) Matrix S11 of node 11 extracted from the global information
matrix S, where S is established using 500 signals generated from
500 independent realizations of SIR epidemic process. (c) The
nonzero directional connection probability values associated with
node 11 to other nodes obtained from the solution of the optimization
problem (3). The subset of the local information matrix S11 which
corresponds to these directional links is shown in the upper right
inset of (b). (d) Inferred neighbors of node 11 from the directional
connection probability values. The results are averaged over 10
independent runs.

by too many nodes, it will have little contribution to the
reconstruction solution as it leads to indistinguishable nodal
states. For example, from formula (2), we see that, when
a signal is received by all nodes, it has no effect because
Sj (i, :) · P j + ε = 1 + ε is a fixed value. In general, the
signals received by a few nodes play a determining role in
reconstruction. To identify such signals, we set a threshold
parameter δ, where signal i is deemed useless and is removed
from the matrix Sj if the following inequality holds:

∑
k S

j

ik >

δ. If the value of δ is too small, some signals will be discarded.
However, if δ is too large, the computational time will increase.
Through tests we set δ = 20.

To reduce the dimension of Sj in the horizontal direction
(i.e., to reduce the number of columns), we prove a theorem
stipulating that the kth column is redundant and can be
removed from Sj if all the signals received by k are also
received by node l. In this case, we say that the kth node is
nested in the lth node, and the number of columns of Sj can
be drastically reduced. We state the theorem here and provide
a detailed proof in Appendix A.

Theorem 1. If column b is nested in column a, i.e.,
S

j

ia � S
j

ib (i = 1,2, . . . ,Mj ) and
∑

i S
j

ia >
∑

i S
j

ib, then one
has P

j

b = 0 from Eq. (2).
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FIG. 3. Dimension reduction based on Theorems 1 and 2. For the
Email network, the number of unknown parameter n as a function of
degree without and with dimension reduction. S0: without reduction;
S1: reduction based on Theorem 1; S2: reduction based on Theorem
2. Ten independent runs are used for statistical average.

For the special case where there are only three columns in
Sj , the following theorem provides a criterion to determine
whether information from a particular node is pertinent for the
reconstruction task (a detailed proof is given in Appendix B).

Theorem 2. Suppose the matrix Sj has three columns
only and they meet the following conditions: S

j

i1 +
S

j

i2 � S
j

i3(i = 1,2, . . . ,Mj ),
∑

i S
j

i1 >
∑

i S
j

i3, and
∑

i S
j

i2 >∑
i S

j

i3. For ε → 0, we have P
j

3 = 0 if either one of two
conditions is satisfied:

(1) n1 � n5 and n2 > n4 or
(2) n5/(n1 + n3) + n4/(n2 + n3) � 1.
While Theorem 2 holds rigorously for the case where

the matrix Sj has three columns, a heuristic argument and
numerical evidence in Appendix C and Fig. 12 indicate that, in
more general cases, the theorem can still be applied to reducing
the number of columns of Sj so as to guarantee accurate
reconstruction. To validate that the two theorems provide
an effective guideline to reduce the number of unknown
parameters (n) in (2), we compare the values of n for nodes
versus the degree in an Email network, as shown in Fig. 3. We
see that the value of n can decrease by a factor of two when Sj

is reduced according to Theorem 1 (labeled as S1). The value
of n can be further reduced when Theorem 2 is applied (labeled
as S2). In this example, the number of unknown quantities can
be reduced by a factor of seven. An empirical rule is that,
if the network size N is below 1000, we apply Theorem 1.
Otherwise, Theorem 2 can be applied, even it is not rigorous
if the number of columns is greater than 3.

III. PRELIMINARIES

A. Spreading process

The stochastic propagation of signals on a network is
treated, as follows. For the classical SIR model on a network

TABLE I. Basic topological features of four empirical networks.
N and E are the total numbers of nodes and links, respectively. The
average degree of the network is 〈k〉, C and r are the clustering
coefficient and the assortative coefficient, respectively, and H is the
degree heterogeneity defined as H = 〈k2〉/〈k〉2.

Network N E 〈k〉 C r H

Karate 34 78 4.5882 0.5879 − 0.4756 1.6933
Dolphins 62 159 5.129 0.2901 − 0.0718 1.3255
Football 115 613 10.6609 0.4032 0.1624 1.0069
Email 1133 5451 9.6222 0.2540 0.0782 1.9421

[50], each node can be in one of the three states: Susceptible
(S), Infected (I), or Recovered (R). An infected node can infect
each susceptible neighbor with transmission rate β, and the
original infected node enters the recovery state with rate μ. For
the rumor spreading process on network, each node can also
be in one of three states: ignorant (have not heard the rumor
and are susceptible to be informed), spreader (who knows and
spreads the rumor), or stifler (who knows the rumor but has
no interest in spreading it). At each time step, a spreader can
infect its each ignorant neighbor with transmission rate β or
can become a stifler with rate μ once it contacts a spreader or
a stifler neighbor. The key difference between SIR and rumor
models is that, for the former, infected nodes are recovered
nodes by themselves, while for the latter, a spreader becomes a
stifler only when it makes contact with at least a neighbor that is
a spreader or a stifler. Because of this difference, the structure
of the network has distinct effects on the stochastic process
of signal propagation. For example, for the SIR dynamics,
hub nodes can enhance spreading, but for rumor dynamics
hub nodes often act as firewalls that inhibit spreading [51,52].
For the mixed model, each signal is diffused on networks
according to the SIR or the rumor spreading process with
equal probability.

B. Data sets

We use four empirical networks to test our reconstruction
framework and to analyze the accuracy: (1) Zachary’s karate
club network, a network of friendship among the members
of a university karate club [53], (2) the Dolphins network, a
network of frequent associations between dolphins living near
Doubtful Sound, New Zealand [54], (3) the Football network,
a network of the schedule of games between American college
football teams in a single season [55], and (4) the Email
network, the e-mail network of the University at Rovira i Virgili
[56]. Detailed information about these empirical networks are
presented in Table I.

C. Performance indicators

The true positive rate TPR and the false positive rate FPR
are used to characterize the accuracy of our reconstruction
framework, which are defined as TPR = TP/(TP + FN) and
FPR = FP/(FP + TN), respectively, where TP, FN, FP, and
TN represent true positive, false negative, false positive,
and true negative, respectively. A larger value of TPR and
a smaller value of FPR indicate high accuracy [23,57]. The
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FIG. 4. Effects of the number of signals on reconstruction performance for SIR dynamics. For three types of networks: ER, SW, and BA,
TPR (left ordinate) and FPR (right ordinate) versus M . The top panels (a1–a3) are for ER networks with 〈k〉 = 4, 6 and 10, respectively, and
the bottom panels (b1–b3) are for ER, SW, and SF networks, respectively. The network size is N = 100 for all cases.

F1-score is a summary measure [58] that combines the
precision and efficiency of the algorithm, which is defined as
F1 = (2 × P × R)/(P + R), where P = TP/(TP + FP) and
R = TP/(TP + FN).

IV. MAIN RESULTS

A. Performance of reconstruction based on final nodal states

To demonstrate the general applicability of our MLE-based
reconstruction framework, we study the SIR epidemic model,
rumor model, and a mixed spreading process. In numerical
simulations, we choose the transmission rate β for the SIR
and rumor models randomly from the intervals [0,0.3] and
[0.4,0.6], respectively. The recovery rate is set to be μ = 1.0.
For the mixed model, each signal is diffused on networks
according to SIR or the rumor spreading process with equal
probability.

To characterize the accuracy of the global information ma-
trix S reconstructed from the final nodal states of the network,
the values of TPR and FPR as the functions of the number
M of signals are investigated. The results are summarized
in Figs. 4–6 for three types of model networks: Erdös-Rényi
(ER) random [59], Watts and Strogatz small-world (SW) [60],
and Barabási-Ablert scale-free (BA) networks [61], and for
SIR, rumor, and mixed spreading processes, respectively. We
see that in all cases, TPR increases with M , but the opposite

trend occurs for FPR. For sufficiently large values of M , we
have TPR = 1 and FPR = 0, indicating that the whole network
can be fully reconstructed with zero error. A comparison of
Figs. 4(a), 5(a), and 6(a) reveals that the network structure
has an effect on the reconstruction. In particular, for a fixed
(large) value of M , the ER network [Fig. 4(a)] gives the highest
accuracy, while the lowest accuracy occurs for the BA network
[Fig. 6(a)], implying that network homogeneity is beneficial to
reconstruction. The results in Figs. 4(b), 5(b), and 6(b) suggest
that the reconstruction performance tends to decrease with the
average degree of networks, indicating that more signals are
needed for networks with denser connections [41].

We further test our method using four empirical networks.
Figures 7(a)–7(d) show TPR and FPR versus M for the Karate,
Dolphins, Football, and Email networks, respectively. In each
case, SIR, rumor, and mixed spreading dynamics are tested.
We see that, regardless of the type of the spreading dynamics,
TPR increases and FPR decreases with M . For the Karate,
Dolphins, and Football networks, as M is increased, the values
of TPR and FPR converge to unity and zero, respectively, as
shown in Figs. 7(a)–7(c). However, for the Email network, the
value of TPR can reach about 90%, as shown in Fig. 7(d).

The relatively poor reconstruction performance with the
Email network can be explained, as follows. In general, we
find that the reconstruction accuracy is reduced when the
network is more dense and/or more heterogeneous. As shown
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FIG. 5. Effects of the number of signals on reconstruction performance for rumor spreading dynamics. Same as Fig. 4 except that the
dynamics is of the rumor spreading type.

in Table I, the average degree of the Email network is about
10. In addition, the degree distribution of the network is
quite heterogeneous in that there are hub nodes. The Email
network is thus relatively more dense and heterogeneous than
the other three empirical networks, leading to a relatively poor
reconstruction performance. However, the result in Fig. 8(d)
indicates that the reconstruction performance can be greatly
improved once the first arrival times are used.

B. Performance enhancement with temporal information

The results discussed so far have demonstrated reconstruc-
tion of network based solely on the final states. Intuitively,
the availability of limited temporal information can facilitate
reconstruction and improve accuracy. To demonstrate this, we
consider the concrete case where, in addition to the signal
received by each node, its first arrival time is also available.
A new data matrix ST can then be constructed, where STij

specifies the first arrival time of signal i received by node
j , otherwise, STij = 0 if signal i never reaches node j . The
task is to extract the local information matrix Sj associated
with node j from ST . If node j receives signal i at time
STij , there exists a node that received signal i during the time
interval [STij − t0,STij ] and then passed the signal on to node
j , where t0 is a transmission cycle of the disease. For example,
in the SIR model, t0 is the time interval for transition from
an infected state to a recovered state. If the value of t0 is not

known a priori, we set t0 = +∞. In general, the transmission
time is short if node j transmits signal i to a neighboring node
k. We can then obtain the matrix Sj through a parameter τ :

S
j

ik =
{

1, STij − t0 � STik � STij + τ,STij · STik �= 0

0, otherwise.

(4)

(We set τ = 1. In fact, the reconstruction performance is
slightly reduced when the value of τ is increased.) For either
SIR or rumor model with the recovery rate μ = 1, we have
t0 = 1. Equation (4) becomes

S
j

ik =
{

1, |STij − STik| � 1,STij · STik �= 0

0, otherwise.
(5)

Once the matrix Sj is constructed, the neighbors of node j

can be inferred. Figure 8 shows that better reconstruction
performance can be achieved when incorporating the first
arrival time, and the number M of signals required can be
significantly reduced. Take the Email network as an example
[Fig. 8(d)]. Without the time information, the value of TPR is
about 0.9 even with M = 100 000. However, when first arrival
time information is used, the value of TPR can exceed 0.99 for
M = 36 000.

If only partial time information is available, reconstruction
performance can still be improved. In this case, for signals
with which the first arrival times are known, the elements of
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FIG. 6. Effects of the number of signals on reconstruction performance for mixed SIR and rumor spreading dynamics. Same as Fig. 4
except that the dynamics is of the mixed type.

FIG. 7. Performance of our method for empirical networks. (a–d) For four empirical networks (Karate, Dolphins, Football, and Email,
respectively), TPR and FPR versus M . In each case, results for SIR, rumor, and mixed spreading dynamics are displayed.
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FIG. 8. Network reconstruction with first arrival time information. For four empirical networks, TPR (left ordinate) and FPR (right
ordinate) versus M when first arrival time information is incorporated into the reconstruction framework. Comparing with the case where no
such information is available, we see that TPR is increased and FPR is decreased, and fewer number of signals are required for high-accuracy
reconstruction. The network dynamics is assumed to be of the SIR type. (a) Karate network, (b) Dolphins network, (c) Football network, and
(d) Email network.

Sj can be determined through Eq. (5). For other signals for
which no such information is available, the matrix elements
can be extracted from the global information matrix S. In
general, more elements of Sj as determined from Eq. (5) leads
to higher reconstruction precision.

C. Uniform final states

For either the SIR epidemic model or the rumor spreading
model, the final nodal state for each node has two distinct
states (binary states), making it possible to reconstruct the
network based on the final states. Nevertheless, for dynamical
processes with a single or uniform final state, the framework
based solely on the final states is ineffective. An example is the
susceptible-infected (SI) epidemic process, for which all nodes
are finally infected. However, if the first arrival time of each
signal is known, the network can still be reconstructed through
the local information matrix Sj according to Eq. (4). For the SI
model, a unique feature is t0 = +∞, since no infected nodes
can be recovered. We have

S
j

ik =
{

1, 0 � STik � STij + τ,STij · STik �= 0
0, otherwise, (6)

where τ = 1. To give a concrete example, we choose the
transmission rate β randomly from the interval [0.3,0.7] and
record the first arrival time to get the information matrix ST .
The reconstruction results are shown in Fig. 9. A general

behavior similar to the cases of SIR or rumor dynamics
(Figs. 4–6) is that the reconstruction accuracy can be improved
by increasing the number of signal M . However, as shown in
Figs. 9(a1)–9(a3), network heterogeneity has little effect on
the reconstruction accuracy, which is different from the case
of binary final states. This is due to the basic fact that for the
SI dynamics, all nodes are finally infected, regardless of the
network structure. As the number of edges is increased,
the accuracy tends to decrease unless more signals are
collected, as shown in Figs. 9(b1)–9(b3).

D. Effects of random signal disturbance

We investigate how random signal disturbances affect
reconstruction. Let SN be the number of “1” in the information
matrix S. We consider two types of disturbance: (1) replacing
SN · ρ of “0” elements by “1” so that the number of false
signals (0 → 1) is larger than that of true signals and (2)
replacing SN · ρ of “1” elements by “0” so that some signals
are not collected (denoted as 1 → 0). Disturbance of the first
type can cause a pair of originally unconnected nodes to be
regarded as connected. Numerically, we assume that there is
a connection between nodes j and k when P

j

k is larger than a
small threshold, e.g., 1/N . To characterize the effects of signal
disturbances on reconstruction accuracy, we use a F1-score
index. Setting ρ = 10%, we calculate the F1-score for the
two types of disturbance for ER, SW, and BA networks. As
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FIG. 9. Network reconstruction with SI epidemic dynamics. For SI dynamics, the information matrix ST is obtained by recording the first
arrival time of each signal at each node. Shown are TPR (left vertical axis) and FPR (right vertical axis) versus the number M of signals for
three distinct types of model complex networks: ER, SW, and BA. The top panels (a1–a3) are for 〈k〉 = 4, 6, and 10, respectively, while the
bottom panels (b1–b3) correspond to ER, SW, and BA networks of fixed average degree, respectively.

shown in Fig. 10, the disturbance type “0 → 1” (A0→1) has
a destructive effect on the accuracy as the values of F1 are
close to zero. This is due to the fact that false signals can
lead to wrong prediction of nonexistent links. However, the
“1 → 0” (A1→0) type of disturbance has a small effect on the
reconstruction as the F1 assumes high values. In this case,

even if there are missing signals, the links can be predicted
for sufficiently large values of M . An implication is that
certain signals can be discarded without severely affecting
the reconstruction performance.

To mitigate the effect of random signal disturbance, we
break the information matrix into several blocks, assuming

FIG. 10. Mitigation of random signal disturbances using subblocks of signals. For fixed ρ = 10%, F1 score versus the number of signals
M: (a-c) ER, SW, and BA networks, respectively, where the symbol A0→1 (A1→0) denotes that “0” is wrongly regarded as “1” (vice versa) in
the unblocked information matrix S, and B0→1 (B1→0) is for the case of blocked matrix. Each pseudomatrix is constructed with 5000 signals.
The network size is N = 100 and the average degree is 〈k〉 = 6. The dynamical process is of the SIR type.
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FIG. 11. Mitigation of random signal disturbances using subblocks of signals: F1 score versus ρ for M = 25 000 for (a–c) ER, SW, and
BA networks, respectively. Legends and parameters are the same as for Fig. 10.

that a large number of signals are available, where each
block can be used to reconstruct a pseudonetwork and there
is an edge linking two nodes if they are deemed connected
in several pseudonetworks. For instance, we can use 5000
signals to construct each pseudonetwork and regard two nodes
as connected if the probability of being linked in different
pseudonetworks is larger than 80%. There is great flexibility
in choosing the blocks of signals and two sets of signals can
be overlapped. For example, for M = 8000, the first 5000
signals and the last 5000 signals can be chosen as two blocks.
As shown in Fig. 10, we see that this approach can lead to a
significant increase in the value of F1 even in the presence of
a large number of false signals (denoted as B0→1) or missing
signals (labeled as B1→0). In particular, F1 can approach
unity even for the case of “0 → 1.” Figure 11 demonstrates
that, for fixed M = 25 000, the value of F1 decreases
with ρ, but the method of signal blocks is still effective
at mitigating the effects of random signal disturbances on
reconstruction.

V. DISCUSSION

Inferring complex network topologies from data is a
problem of current interest. In previous works time series were
required for this reverse engineering problem [5–43]. There are
real-world applications, e.g., spreading dynamics on complex
networks, in which time series are not available, raising the
question of whether the network structure can be identified
in such circumstances. This paper provides an affirmative
answer. In particular, we develop a general framework to infer
the network topology using information about the final states
of the network only. Collecting an ensemble of binary final
states originated from independent triggers (or signals) of the
spreading dynamics and exploiting the principle of maximum
likelihood estimation, we obtain rigorous mathematical results
establishing the feasibility of accurate reconstruction of the
network. We demonstrate the working of our method and
quantify its accuracy using a large number of model and
empirical networks. For spreading processes with a uniform
final state, e.g., SI spreading dynamics, the underlying network
can still be reconstructed using certain temporal information
about the dynamical process, such as the first arrival time of

a signal at each node. At the present, our method cannot be
applied to non-Markovian dynamics due to the time memory
and social reinforcement effects [62–64].

The basic philosophy underlying our framework is the
principle of ergodicity in statistical and nonlinear physics: for
a complex system in the thermodynamical limit, the time and
ensemble averages are equivalent. That is, when time series
are not available, it is possible to use ensemble information
about the asymptotic state of the system for reconstruction. Our
work is thus a demonstration of this universal principle in the
specific context of reverse engineering of complex networks.
One issue associated with our reconstruction framework is
that the number of independent signals required for accurate
reconstruction is large. Acquiring additional information, such
as the first arrival time of a signal at each node, can reduce the
number of signals markedly without compromising accuracy.
For large networks, suitable dimension reduction procedures
can be used to ensure reconstruction accuracy. To articulate
methods to significantly reduce the ensemble size is a problem
worth further studies.
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APPENDIX A: PROOF OF THEOREM 1

Theorem 1. If S
j

ia � S
j

ib(i = 1,2, . . . ,Mj ) and
∑

i S
j

ia >∑
i S

j

ib, then one has P
j

b = 0 from Eq. (2).
Proof. Without loss of generality, we set a = 1 and b = 2.

Assume that P j = [P j
a ,P

j

b ,P
j

3 , . . . ,P
j

Nj ]
T

is the optimal solu-

tion of Eq. (2), where P
j

b = β > 0 and P
j
a = α. If we set P̃ j

a =
α + β and P̃

j

b = 0, we have that P̃ j = [P̃ j
a ,P̃

j

b ,P
j

3 , . . . ,P
j

Nj ]
T
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is also a solution of Eq. (2). We then have

f (P̃ j ) =
∏

i

⎛
⎝P̃ j

a S
j

ia + P̃
j

b S
j

ib +
Nj∑
k=3

P
j

k S
j

ik + ε

⎞
⎠

=
∏

i

⎛
⎝αS

j

ia + βS
j

ia +
Nj∑
k=3

P
j

k S
j

ik + ε

⎞
⎠

>
∏

i

⎛
⎝αS

j

ia + βS
j

ib +
Nj∑
k=3

P
j

k S
j

ik + ε

⎞
⎠

=
∏

i

⎛
⎝P j

a S
j

ia + P
j

b S
j

ib +
Nj∑
k=3

P
j

k S
j

ik + ε

⎞
⎠

= f (P j ).

The inequality indicates that P j is not the optimal solution of
Eq. (2), contradicting the original hypothesis. As a result, we
must have P

j

b = 0. �

APPENDIX B: PROOF OF THEOREM 2

Theorem 2. Suppose the matrix Sj has three columns
only which satisfy the following conditions: (1) S

j

i1+S
j

i2 �
S

j

i3(i = 1,2, . . . ,Mj ), (2)
∑

i S
j

i1 >
∑

i S
j

i3, and (3)
∑

i S
j

i2 >∑
i S

j

i3. For ε → 0, the formula (2) can be written as

max f
(
P

j

1 ,P
j

2 ,P
j

3

)
= (

P
j

1 + ε
)n1

(
P

j

2 + ε
)n2

(
P

j

1 + P
j

2 + ε
)n3

× (
P

j

1 + P
j

3 + ε
)n4

(
P

j

2 + P
j

3 + ε
)n5

× (
P

j

1 + P
j

2 + P
j

3 + ε
)n6

, (B1)

where P
j

1 + P
j

2 + P
j

3 = 1 and P
j

1 � 0,P
j

2 � 0,P
j

3 � 0. We
then have P

j

3 = 0 if one of two conditions holds: (1) n1 � n5

and n2 � n4, or (2) n5/(n1 + n3) + n4/(n2 + n3) � 1.
Proof. First, we prove P

j

1 �= 0 and P
j

2 �= 0 if P j =
[P j

1 ,P
j

2 ,P
j

3 ]
T

is the optimal solution of Eq. (2). To prove
P

j

1 �= 0, we note that, if n1 �= 0, we have P
j

1 �= 0. Otherwise,
the following equation indicates that f (0,P

j

2 ,P
j

3 ) is not the
maximum value:

f
(
0,P

j

2 ,P
j

3

)
= (ε)n1

(
P

j

2 + ε
)n2

(
P

j

1 + P
j

2 + ε
)n3

(
P

j

1 + P
j

3 + ε
)n4

× (
P

j

2 + P
j

3 + ε
)n5

(
P

j

1 + P
j

2 + P
j

3 + ε
)n6 = 0. (B2)

If n1 = 0, then Eq. (B1) can be rewritten as (for ε → 0)

max f
(
P

j

1 ,P
j

2 ,P
j

3

)
= (

P
j

2 + ε
)n2

(
P

j

1 + P
j

2 + ε
)n3

× (
P

j

1 + P
j

3 + ε
)n4

(
P

j

2 + P
j

3 + ε
)n5

, (B3)

where P
j

1 + P
j

2 + P
j

3 = 1, P
j

2 � 0, and P
j

3 � 0. Assume
P j = [0,P2,P3]T is the optimal solution of Eq. (B3),

max f
(
P

j

1 ,P
j

2 ,P
j

3

)
= f (0,P2,P3) = (P2 + ε)n2+n3 (P3 + ε)n4 , (B4)

where P2 + P3 = 1, P2 > 0 and P3 > 0 [the maximum value
of Eq. (B4) is zero for P2 = 0 or P3 = 0]. The inequality∑

i S
j

i1 >
∑

i S
j

i3 leads to n1 + n3 + n4 + n6 > n4 + n5 + n6.
As a result, we have n3 > n5 owing to n1 = 0.

Moreover, P
j

1 = P3, P
j

2 = P2 and P
j

3 = 0 imply the
conditions: P

j

1 + P
j

2 + P
j

3 = 1, P
j

2 � 0 and P
j

3 � 0. In this
case, we have P j = [P3,P2,0]T and

f (P3,P2,0) = (P2 + ε)n2+n5 (P3 + ε)n4 > (P2 + ε)n2+n3

× (P3 + ε)n4 = max f
(
P

j

1 ,P
j

2 ,P
j

3

)
, (B5)

which contradicts the original hypothesis, so we must have
P

j

1 �= 0. The conclusion P
j

2 �= 0 can be proved in a similar
manner.

Next, we show that P j

3 = 0. Note that, for n4 = 0 or n5 = 0,
Theorem 2 is a direct consequence of Theorem 1. For n4 �= 0
and n5 �= 0, Eq. (B1) can be written as

g(x,y) = (x + ε)n1 (y + ε)n2 (x + y + ε)n3 (1 − y + ε)n4

× (1 − x + ε)n5 , (B6)

where x + y � 1, x � 0, and y � 0. We thus have P
j

1 = x,
P

j

2 = y and P
j

3 = 1 − x − y. Within the bounded region x +
y � 1, x � 0 and y � 0, g(x,y) is a continuous function, so it
must have a maximum value. The possible maximum value is
obtained when the variables x and y are on the borders (x = 0
or y = 0 or x + y = 1) or are at a stationary point. Note that
that the maximum value of Eq. (B6) cannot be obtained for
P

j

1 = x = 0 or P
j

2 = y = 0.
We now prove that the maximum value of g(x,y) is achieved

for x + y = 1. [In fact, g(x,y) does not possess any stationary
point.] Letting

g′
x = 0,

gy
′ = 0,

we have

n1(x + y + ε)(1 − x + ε) + n3(x + ε)(1 − x + ε)

−n5(x + ε)(x + y + ε) = 0,

n2(x + y + ε)(1 − y + ε) + n3(y + ε)(1 − y + ε)

− n4(y + ε)(x + y + ε) = 0. (B7)

Note that the inequality
∑

i S
j

i1 >
∑

i S
j

i3 gives rise to n1 +
n3 > n5 > 0. However, the inequality

∑
i S

j

i2 >
∑

i S
j

i3 leads
to n2 + n3 > n4 > 0. From Eq. (B7), we have

(1 − x + ε) = n5(x + ε)(x + y + ε)

n1(x + y + ε) + n3(x + ε)
,

(1 − y + ε) = n4(y + ε)(x + y + ε)

n2(x + y + ε) + n3(y + ε)
. (B8)
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For n1 > n5 > 0 and n2 > n4 > 0, we obtain the following
inequality from Eq. (B8):

(1 − x + ε) � n5(x + ε)

n1
� (x + ε),

(1 − y + ε) � n4(y + ε)

n2
� (y + ε). (B9)

Combining the two inequalities, we get 1 � x + y, implying
that g(x,y) does not possess any stationary point for x + y < 1
and x � 0,y � 0. As a result, Eq. (B6) has a maximum value
for x + y = 1, namely, P

j

1 + P
j

2 = 1 and P
j

3 = 0.
From Eq. (B8), we get

(1 − x + ε) � n5(x + y + ε)

n1 + n3
,

(1 − y + ε) � n4(x + y + ε)

n2 + n3
, (B10)

which further implies the following inequality:

2 − x − y + 2ε �
(

n4

n2 + n3
+ n5

n1 + n3

)
(x + y + ε)

� x + y + ε. (B11)

Under the condition n5/(n1 + n3) + n4/(n2 + n3) � 1, in-
equality (B11) can be further simplified as: 1 + ε/2 � x + y,
which indicates that g(x,y) attains its maximum value for
x + y = 1. That is, we have P

j

1 + P
j

2 = 1 and P
j

3 = 0. �

APPENDIX C: GENERALIZATION OF THEOREM 2

The prerequisite of Theorem 2 is that there are only three
columns in Sj , so it does not apply to cases where the number

FIG. 12. Numerical test of generalization of Theorem 2. For the
Email network, we implement SIR dynamics and collect the first-
arrival times of signals. The left and right vertical axes represent TPR
and FPR, respectively. S1 and S2 denote the reductions based on
Theorem 1 and Theorem 2, respectively. The transmission rate β is
randomly chosen from the interval [0,0.3], and the recovery rate is
μ = 1.0. The results are averaged over 10 independent runs.

of columns is larger than three. Nonetheless, it is useful to test
numerically whether Theorem 2 can be generalized. Taking the
Email network as an example, we compare the reduction based
on Theorem 1 (denoted as S1) and that based on Theorem 2
(denoted as S2), as shown in Fig. 12. We find that S2 does
not reduce the accuracy even though the matrix Sj has many
columns. Consequently, we can use Theorem 2 on an empirical
basis to further reduce the number of unknown parameters in
Eq. (2).
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