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Universal data-based method for reconstructing complex networks with binary-state dynamics
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To understand, predict, and control complex networked systems, a prerequisite is to reconstruct the network
structure from observable data. Despite recent progress in network reconstruction, binary-state dynamics that are
ubiquitous in nature, technology, and society still present an outstanding challenge in this field. Here we offer a
framework for reconstructing complex networks with binary-state dynamics by developing a universal data-based
linearization approach that is applicable to systems with linear, nonlinear, discontinuous, or stochastic dynamics
governed by monotonic functions. The linearization procedure enables us to convert the network reconstruction
into a sparse signal reconstruction problem that can be resolved through convex optimization. We demonstrate
generally high reconstruction accuracy for a number of complex networks associated with distinct binary-state
dynamics from using binary data contaminated by noise and missing data. Our framework is completely data
driven, efficient, and robust, and does not require any a priori knowledge about the detailed dynamical process
on the network. The framework represents a general paradigm for reconstructing, understanding, and exploiting
complex networked systems with binary-state dynamics.
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I. INTRODUCTION

Complex networked systems consisting of units with
binary-state dynamics are common in nature, technology, and
society [1]. In such a system, each unit can be in one of the
two possible states, e.g., being active or inactive in neuronal
and gene regulatory networks [2], cooperation or defection
in networks hosting evolutionary game dynamics [3], being
susceptible or infected in epidemic spreading on social and
technological networks [4], two competing opinions in social
communities [5], etc. The interactions among the units are
complex and a state change can be triggered either determin-
istically (e.g., depending on the states of their neighbors) or
randomly. Indeed, deterministic and stochastic state changes
can account for a variety of emergent phenomena, such as the
outbreak of epidemic spreading [6], cooperation among selfish
individuals [7], oscillations in biological systems [8], power
blackout [9], financial crisis [10], and phase transitions in
natural systems [11]. A variety of models have been introduced
to gain insights into binary-state dynamics on complex
networks [12], such as the voter models for competition of
two opinions [13], stochastic propagation models for epidemic
spreading [14], models of rumor diffusion and adoption of
new technologies [15], cascading failure models [16], Ising
spin models for ferromagnetic phase transition [17], and
evolutionary games for cooperation and altruism [18]. A
general theoretical approach to dealing with networks hosting
binary state dynamics was developed recently [19] based on
pair approximation and master equations, providing a good
understanding of the effect of the network structure on the
emergent phenomena.

*wenxuwang@bnu.edu.cn

In this paper, we address the inverse problem of binary-
state dynamics on complex networks, i.e., the problem of
reconstructing the network structure and binary dynamics from
data. Deciphering the network structure from data has always
been a fundamental problem in complexity science, as the
structure can determine the type of collective dynamics on
the network [20]. More generally, for a complex networked
system, reductionism is not effective and it is necessary to re-
construct and study the system as a whole [21]. The importance
of network reconstruction has been increasingly recognized
and effective methodologies have been developed [22–34].
Of particular relevance to our work is spreading dynamics
on complex networks, where the available data are binary:
a node is either infected or healthy. In such cases, a recent
work [33] demonstrated that the propagation network structure
can be reconstructed and the sources of spreading can be
detected by exploiting compressive sensing [35–40]. However,
for binary state network dynamics, a general reconstruction
framework was lacking (prior to the present work). The
problem of reconstructing complex networks with binary-state
dynamics is extremely challenging, for the following reasons.
(i) The switching probability of a node depends on the
states of its neighbors according to a variety of functions for
different systems, which can be linear, nonlinear, piecewise,
or stochastic. If the function that governs the switching
probability is unknown, a tremendous difficulty would arise
in obtaining a solution of the reconstruction problem. (ii)
Structural information is often hidden in the binary states
of the nodes in an unknown manner and the dimension of
the solution space can be extremely high, rendering imprac-
tical (computationally prohibitive) brute-force enumeration
of all possible network configurations. (iii) The presence of
measurement noise, missing data, and stochastic effects in
the switching probability make the reconstruction task even
more challenging, calling for the development of effective
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methods that are robust against internal and external random
effects.

To meet the challenges, we develop a general and robust
framework for reconstructing complex networks based solely
on the binary states of the nodes without any knowledge
about the switching functions. Our idea is centered around
developing a general method to linearize the switching func-
tions from binary data. The data-based linearization method
is applicable to linear, nonlinear, piecewise, or stochastic
switching functions. The method allows us to convert the
network reconstruction problem into a sparse signal recon-
struction problem for local structures associated with each
node. Exploiting the natural sparsity of complex networks, we
employ the lasso [41], an L1 constrained fitting method for
statistics and data mining, to identify the neighbors of each
node in the network from sparse binary data contaminated by
noise. We establish the underlying mechanism that justifies the
linearization procedure by conducting tests using a number of
linear, nonlinear, and piecewise binary-state dynamics on a
large number of model and real complex networks. We find
universally high reconstruction accuracy even for small data
amount with noise. Because of its high accuracy, efficiency
and robustness against noise and missing data, our framework
is promising as a general solution to the inverse problem of
network reconstruction from binary-state time series, which
is key to articulating effective strategies to control complex
networks with binary state dynamics using, e.g., the recently
developed network controllability frameworks [42–47]. The
data-based linearization method is also useful for dealing with
general nonlinear systems with a wide range of applications.

II. BINARY-STATE DYNAMICS

We consider a large number of representative binary-state
processes on complex networks, which model a plethora of
physical, social, and biological phenomena [19]. In such a
dynamical process, the state of a node can be 0 (inactive) or
1 (active). In general, the process can be characterized by two
switching functions, F (m,k) and R(m,k), which determine
the probabilities for a node to change its state from 0 to 1
and vice versa, respectively. The variables in these functions,
k and m, are the degree of the node and the number of
active neighbors of the node, respectively. The switching
functions can be linear, nonlinear, piecewise, bounded, and
stochastic for characterizing and generating all kinds of binary-
sate dynamical processes occurring on complex networks.
Despite the difference among the switching functions, the
feature that a node’s switching probability depends on its
degree and its number of active neighbors is generic. Table I
lists the switching functions of different models, and the brief
descriptions of each model can be found in the Appendix.

III. RECONSTRUCTION METHOD

Our goal is to articulate a general framework to reconstruct
the network structure from binary states of nodes without
knowing a priori the specific switching functions. A key step
is to develop a universal procedure to obtain the linearization
of the switching functions from binary data. We demonstrate
that this can be accomplished by taking advantage of certain
common features of the binary-state dynamics.

TABLE I. Switching functions for various binary-state dynam-
ical processes on complex networks. The function F (m,k) is the
probability that a node switches its state from 0 to 1 while R(m,k)
represents the probability of the reverse process, where k is the degree
of the node, m is the number of neighbors of this node in the active
state 1. The models and the other parameters are described under
Methods. The parameter values used in the simulations are listed in
Supplemental Material Table S1 [48], Sec. 1.

Model F (m,k) R(m,k)

Voter [13] m
k

k−m
k

Kirman [49] c1 + dm c2 + d(k − m)

Ising Glauber [17,50] 1

1+e
β
k

(k−2m)

e
β
k

(k−2m)

1+e
β
k

(k−2m)

SIS [14] 1 − (1 − λ)m µ

Game [3] 1

α+e
β
k

[(a−c)(k−m)+(b−d)m]

1

α+e
β
k

[(c−a)(k−m)+(d−b)m]

Language [51] s( m
k

)α (1 − s)( k−m
k

)α

Threshold [52]
{

0 if m ! Mk

1 if m > Mk
0

Majority vote [53]

⎧
⎨

⎩

Q if m < k/2
1/2 if m = k/2
1 − Q if m > k/2

⎧
⎨

⎩

1 − Q if m < k/2
1/2 if m = k/2
Q if m > k/2

A. Data-based linearization of switching functions

To proceed, we note that the number of active neighbors at
time t can be expressed as

mi(t) =
N∑

j=1,j ̸=i

aij sj (t), (1)

where aij = 1 if nodes i and j are connected and aij = 0
otherwise, and sj (t) denotes the state of node j at time step
t . In general, the switching probability P 01

i (t) for node i to
change its state from 0 to 1 at time step t can be written as

P 01
i (t) = F (mi(t),ki) = F

⎛

⎝
N∑

j=1,j ̸=i

aij sj (t),ki

⎞

⎠, (2)

where F is a monotonic function characterizing different
dynamical models, e.g., those listed in Table I. In Eq. (2), all
the matrix elements aij (i,j = 1, . . . ,N) that are to be inferred
from data characterize the network structure. In general this is
a difficult problem, because in Eq. (2), only nodal state sj (t) is
measurable, whereas neither of the quantities ki and P 01

i (t) nor
the form of F is known. In fact, not knowing the function F is
the main difficulty in reconstructing the adjacency matrix {aij }.
To overcome this difficulty, we propose a merging process to
linearize F , i.e.,

F ∼ ci

N∑

j=1,j ̸=i

aij sj (t) + di, (3)

where ci and di are constants associated with node i. Insofar
as the linearization is realized, we can solve aij . The idea of
linearization is first proposed and used in Ref. [33], but the
mathematical form of F is assumed to be known in that case.
It is worth noting that the linearization approach is highly
nontrivial and is fundamentally different from that in the
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(a)

(b)

(c)

(d)

FIG. 1. Schematic illustration of data-based linearization from a merging process. (a) The original binary-state time series, where the dark
blue squares denote the 1 state and the white squares denote the 0 state. The variable s−i(t) consists of sj (t) for all j ̸= i. Only strings with
si(t) = 0 (highlighted by the green frames) contain useful information for reconstruction. We identify the time steps with si(t) = 0 and use
si(t + 1). (b) Method of choosing bases. We first construct a network where the vertices denote strings of s−i(t) with si(t) = 0 (green squares)
and the edges are weighted by the normalized Hamming distance H between the strings. We then eliminate the edges with weight smaller than
the threshold $. Setting another threshold σ , we obtain the top σ percentage vertices with large degrees (yellow squares) and remove the other
vertices together with their edges. Finally, we pick out the vertices with smaller degree (red squares) according to the number of base strings
needed for reconstruction. (c) Selection of subordinate strings from a base. We take t1 as a base t̂1 and calculate H between s−i(t1) and other
strings s−i(t) so as to sort out the time steps satisfying H [s−i(t1),s−i(·)] < $ in this set. (d) Establishing average node states. We calculate
the average value ⟨s−i(t̂)⟩ to represent the state of the data set subject to the base, and the average value ⟨si(t̂ + 1)⟩ to linearize the switching
probability P 01

i (t) [Eqs. (4)]. The average values are shown in blue. Similarly, we obtain a sequence of t̂M and the associated average values
for reconstructing network structure by employing the lasso to solve Yi = &i × Xi (see Methods for details).

standard canonical nonlinear analysis because, in our case,
the mathematical form of F is not available, which can be a
nonlinear, discrete, and piecewise function.

B. Procedure of dealing with binary-state data

We present the procedure of dealing with binary-state
data. The merging-based linearization process enables the
probability P 01

i (t) to be estimated according to the law of
large numbers, from which the solution of aij can be obtained.
In particular, as shown in Fig. 1(a), for an arbitrary node i, we
first identify all the time steps with si(t) = 0 as information
about the switching probability P 01

i (t) is contained only in
the flipping behavior from state 0. To accurately estimate the
value of P 01

i , we need to collect sufficient time strings, which
has the same state as each other. However, we almost cannot
find enough such time strings for aggregation because of the
dynamical stochasticity. Thus, we relaxed the criterion to find-
ing sufficient similar time strings. In each set of similar time
strings, we first pick a base string s−i(t̂), and then collect time
strings similar to it. Then, the key process comes to selecting
base strings that optimize the performance of reconstruction.
Figure 1(b) shows our method of selecting the optimal base
strings solely based on recorded data. Specifically, we first
construct a network whose vertices represent strings composed
of sj (t)(j ̸= i) at different time steps when si(t) = 0, and
edges are weighted by the normalized pairwise Hamming

distances among the strings. Then, we eliminate edges whose
weight is smaller than a threshold, say $. Setting another
threshold σ , we extract a subnetwork where only the top σ
proportion of vertices with largest degree are preserved, while
other vertices and their edges are removed. In this way, all
remaining strings have a sufficient number of similar strings.
Finally, we pick out M vertices with smallest degrees to
ensure that the selected base strings are sufficiently different,
where M is the number of equations in Eq. (16). The process
of selecting base strings ensures us both good estimation
for P 01

i and dissimilarity among the averaged neighborhood
states. For each chosen base string, we use the threshold
$ in the normalized Hamming distance between strings to
select a set of subordinate strings that belong to each base
string, as shown in Fig. 1(c). A subordinate string is a string
whose normalized Hamming distance to the base string is
less than the selected threshold $. Using the average of
sj (t) to represent the state of node j and the average of
si(t + 1) to estimate the switching probability P 01

i (t) of node i
according to the law of large numbers, we obtain P 01

i (t) ≈
⟨si(t̂ + 1)⟩, where t̂ denotes the time of the base string
[see Fig. 1(d)].

The whole process leads to the linearization of F with the
following data-based relationship:

⟨si(t̂ + 1)⟩ ≈ ci

N∑

j=1,j ̸=i

aij ⟨sj (t̂)⟩ + di , (4)
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(a) (b)

(c) (d)

FIG. 2. Data-based linearization procedure for nonlinear and piecewise binary-state dynamics. Linearization of the switching probability
function F (m,k) for (a) Ising model, (b) evolutionary game model, (c) threshold model, and (d) majority model. The gray lines represent
Eq. (2) with the function F (m,k) from the different models, where k is the node’s degree and m is the number of active neighbors. Data points
are the result of the linearization procedure from time series, which corresponds to Eq. (4). For the linearized function, m is obtained from∑N

j=1,j ̸=i aij ⟨sj (t̂)⟩ and the value of the function is obtained via ⟨si(t̂ + 1)⟩. For the data points, each color represents a set of subordinate strings
whose base string has m active neighbors. The colors demonstrate that bases with different m values are needed to produce a linear function
with a sufficient range of m for reconstruction, which justifies the base selection based on the normalized Hamming distance in Fig. 1. For both
nonlinear and piecewise switching functions, a linearized function in the form of Eq. (4) can be generated based entirely on data, which is the
key to reconstruction. The data points are obtained from an ER random network of N = 100 nodes and average degree ⟨k⟩ = 6.

where ⟨·⟩ is the average over all time t of the subordinate
strings within t̂ . The constant parameter ki is incorporated
into the linear coefficient ci and the intercept di . It is not
necessary to estimate the quantities ci , aij , and di in Eq. (4)
separately—it is only necessary to infer value of the product
ci × aij . In particular, if i and j are not connected, we have
ci × aij = 0, but a nonzero value of ci × aij means that there
is a link between the two nodes. As we will show, the value of
di can be obtained but this quantity plays little role in the
reconstruction.

Figure 2 shows some representative examples to validate
the linearization procedure. Four types of dynamics, including
two with continuous and nonlinear switching functions and
two with discontinuous and piecewise functions, are tested.
We see that the switching functions F for different parameter
values are linearized, enabling the network structure in the
linearized system Eq. (4) to be reconstructed by distinguishing
between zero and nonzero values of the reconstructed product
ci × aij . As compared to the original function F , the range
of m in the linearized function typically shrinks considerably
as a result of the merging process, as shown in Figs. 2(a)

and 2(b). For the discrete piecewise functions in Figs. 2(c)
and 2(d), approximately linear functions arise for different
parameter values. This is particularly striking, because even
given a switching function, it is still difficult to linearize a
piecewise function. We have achieve a data-based linearization
of nonlinear and piecewise functions without any knowledge
a priori.

C. Theoretical validation of data-based linearization

We provide an analysis for the completely data-based
linearization that gives rise to the general relationship [Eq. (4)]
from general binary-state dynamics characterized by the
switching probability [Eq. (2)],

For nodes with only one neighbor, the linear relationship
Eq. (4) can be rigorously proved. In this scenario, the number
of active neighbors is either 0 or 1. Let Pt̂ (1) denote the
proportion of strings with single active neighbors in the set
of base t̂ , and denote the proportion of strings with null active
neighbors as 1 − Pt̂ (1). Let the switching probability of null
active neighbors and single active neighbors be f (0) and f (1).
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3. Theoretical analysis of the data-based linearization. (a, b) Linearization of switching function for nodes with a single neighbor
for the game model (a) and the threshold model (b). The gray solid curves are the original switching functions, data points are the results of
data-based linearization [Eq. (4)], and the dashed lines are theoretical predictions from Eq. (7). The color of data points represents two sets of
subordinate strings whose base string has no active neighbors (m = 0) or has a single active neighbor (m = 1). For both nonlinear and piecewise
switching functions, the theoretical predictions are in exact agreement with data-based linearization, because for ki = 1 the linearization is
rigorous without any approximation. (c, d) The distribution of active neighbors m in subordinate strings subject to each base string and binomial
distributions for reconstructing node i with ki = 3 for the game model (c) and ki = 6 for the majority model (d), respectively. Each color of
curves represents a set of subordinate strings whose base string has m active neighbors. The distribution can be well described by binomial
distributions under different success probability in each trial, as exemplified by black curves. There is a good agreement between the distribution
of active neighbors in subordinate strings and binomial distributions. (e, f) The original switching function and the linearized function with
theoretical prediction based on binomial distribution for the game model (e) and the majority model (f), respectively. The color of data points
represents different sets of subordinate strings whose base string has different number of active neighbors m [the same meaning as in (c) and
(d)]. The gray curves are the original switching function in the binary-state dynamics. The black dashed lines are the theoretical prediction of
the linear relationship through Eq. (15) based on binomial distribution and Taylor linear approximation. The theoretical predictions are in good
agreement with numerical results.

Then we have

⟨si(t̂ + 1)⟩ ≈
〈
P 01

i (t)
〉
= f (0)[1 − Pt̂ (1)] + f (1)Pt̂ (1)

= [f (1) − f (0)]Pt̂ (1) + f (0) (5)

and
N∑

j=1,j ̸=i

aij ⟨sj (t̂)⟩ = Pt̂ (1). (6)

Inserting Eq. (6) into Eq. (5), we have

⟨si(t̂ + 1)⟩ ≈ [f (1) − f (0)]
N∑

j=1,j ̸=i

aij ⟨sj (t̂)⟩ + f (0), (7)

which is a linear form that is subject to Eq. (4), because both
[f (1) − f (0)] and f (0) are constants and they are determined
by the specific binary-state dynamics.

Figures 3(a) and 3(b) show two representative examples of
reconstructing the local structure of a node with one neighbor
for the evolutionary game model and the threshold model. We
see explicitly linear relationship for both models. With respect
to different number of active neighbors in the original bases,
two sets of groups are classified.

For nodes with more than one neighbor, the linear rela-
tionship can be justified and predicted based on binomial
distribution and Taylor linear approximation. For an arbitrary
node, say, node i with k neighbors, we will substantiate the
linear relationship between ⟨si(t̂ + 1)⟩ and

∑N
j=1,j ̸=i aij ⟨sj (t̂)⟩

resulting from the data-based linearization, where

⟨si(t̂ + 1)⟩ ≈
〈
P 01

i (t)
〉
=

ki∑

m=0

F (m,ki)Pt̂ (m), (8)

and

N∑

j=1,j ̸=i

aij ⟨sj (t̂)⟩ =
ki∑

m=0

mPt̂ (m), (9)

where Pt̂ (m) represents the proportion of strings with m active
neighbors among all strings that belong to the set of base t̂ . The
key to validating the linear relationship lies in the distribution
that Pt̂ (m) obeys.

Regarding the effect of the merging process as shown in
Fig. 1, we hypothesize that Pt̂ (m) follows binomial distri-
butions with different success probability pt̂ . We denote the
proportion of state 0 in data to be p0. If the strings are randomly
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chosen for each set of a base, Pt̂ (m) exactly obeys binomial
distribution with success probability p0. However, due to the
process of selecting strings that are similar to each set of a base,
the distribution will be biased toward the number of active
neighbors in the base. Despite the original complex influence
of the base and string selections based on Hamming distance,
their effects can be simply regarded as selecting a group of
strings with similar proportion of state 0 since we actually do
not know which the node’s neighbors are. This process leads
to the success probability that depends on the base string.
Figures 3(c) and 3(d) show the comparison between the actual
distribution of Pt̂ (m) obtained from numerical simulations and
the binomial distributions with different success probability in
each trial in the game and majority model, where the success
probability in each trial approximately range from 0.4 to 0.6
because p0 ≈ 0.5 in the data. We see that Pt̂ (m) can be well
approximated by binomial distributions with different param-
eter values, which indeed validates our binomial distribution
hypothesis.

Based on the binomial distribution hypothesis, we have

Pt̂ (m) = Cm
ki
pt̂

m(1 − pt̂ )
ki−m. (10)

Inserting Eq. (10) into Eq. (8) yields

⟨si(t̂ + 1)⟩ ≈
ki∑

m=0

F (m,ki)Cm
ki
pt̂

m(1 − pt̂ )
ki−m

=
ki∑

m=0

Cm
ki

m∑

l=0

[
(−1)m−lCl

mF (l,ki)
]
pt̂

m. (11)

The fact that pt̂ fluctuates around p0 allows us to apply
the Taylor series expansion around p0 to Eq. (11), leading
to

⟨si(t̂ + 1)⟩ ≈
ki∑

m=0

Cm
ki

m∑

l=0

[
(−1)m−lCl

mF (l,ki)
]
pm

0

+
ki∑

m=0

Cm
ki

m∑

l=0

[
(−1)m−lCl

mF (l,ki)
]
mpm−1

0

× (pt̂ − p0) + O(pt̂ − p0). (12)

Omitting the high-order term O(pt̂ − p0), we have

⟨si(t̂ + 1)⟩ ≈
ki∑

m=0

Cm
ki

m∑

l=0

[
(−1)m−lCl

mF (l,ki)
]
(1 − m)pm

0

+
ki∑

m=0

Cm
ki

m∑

l=0

[
(−1)m−lCl

mF (l,ki)
]
mpm−1

0 pt̂ .

(13)

On the other hand, substitute Eq. (10) into Eq. (9) yields

N∑

j=1,j ̸=i

aij ⟨sj (t̂)⟩ =
ki∑

m=0

mCm
ki
pt̂

m(1 − pt̂ )
ki−m.

= kipt̂ . (14)

Combining Eq. (13) and Eq. (14), we have

⟨si(t̂ + 1)⟩ ≈
ki∑

m=0

Cm
ki

m∑

l=0

[
(−1)m−lCl

mF (l,ki)
]
(1 − m)pm

0

+
{

1
ki

ki∑

m=0

Cm
ki

m∑

l=0

[
(−1)m−lCl

mF (l,ki)
]
mpm−1

0

}

×
N∑

j=1,j ̸=i

aij ⟨sj (t̂)⟩. (15)

Note that all variables in the first term on the right-hand side
of Eq. (15) are only determined by the binary-state dynamics
and the node degree of i. Hence, the first term corresponding
to di is a constant with respect to node state si . In analogy, all
variables in the coefficient of the second term are determined
by the binary-state dynamics and the node degree of i as
well, indicating the coefficient is a constant corresponding
to ci in Eq. (4). Taken together, we theoretically justified that
Eq. (15) is approximately a linear equation in the form of
Eq. (4).

Figures 3(e) and 3(f) show the relationship between
⟨si(t̂ + 1)⟩ and

∑N
j=1,j ̸=i aij ⟨sj (t̂)⟩ (namely ⟨m⟩) of each

set of bases and the linear relationship calculated by using
Eq. (15) for the game model and the majority model with
nonlinear and piecewise switching dynamics. We see that the
theoretical predictions are in good agreement with the results
from the merging process for linearization, which strongly
validates the data-based linearization for general binary-state
dynamics.

It is noteworthy that the key to the success of the data-based
linearization lies in selecting similar strings subject to a
base and the average over each set of bases. The selection
of similar strings accounts for the binomial distribution of
active neighbors in a set, and different bases induces different
success probability in each trial. Then the average of the
binomial distributions leads to the relatively small range of
⟨m⟩ compared to the original range in the switching function,
allowing us to use Taylor linear approximation. Moreover,
high-order terms in the Taylor series expansion contribute
little to the binomial distribution, which justifies the low-
order approximation. Based on the linear relationship, the
reconstruction of local structure can be realized by employing
the lasso without requiring the linear coefficients and intercept.
In other words, the data-based linearization is generally valid
for arbitrary binary-state dynamics without any knowledge of
the switching function.

D. Reconstruction of local structure based on the lasso

The linear relationship, Eq. (4), allows us to ascertain
the neighbors of any node i from M different values of the
base time, e.g., t̂1, . . . ,t̂M , and their subordinate times. In
particular, with respect to t̂1, . . . ,t̂M , Eq. (4) can be expressed
in the matrix form Yi = &i × Xi as Eq. (16), where the
vector Xi is to be solved for obtaining the neighbors of
i, and the vector Yi and the matrix &i can be constructed
entirely from binary time series without requiring any other
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information:

⎡

⎢⎢⎢⎣

⟨si(t̂1 + 1)⟩
⟨si(t̂2 + 1)⟩

...
⟨si(t̂M + 1)⟩

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

1 ⟨s1(t̂1)⟩ · · · ⟨si−1(t̂1)⟩ ⟨si+1(t̂1)⟩ · · · ⟨sN (t̂1)⟩
1 ⟨s1(t̂2)⟩ · · · ⟨si−1(t̂2)⟩ ⟨si+1(t̂2)⟩ · · · ⟨sN (t̂2)⟩
...

...
...

...
...

...
...

1 ⟨s1(t̂M )⟩ · · · ⟨si−1(t̂M )⟩ ⟨si+1(t̂M )⟩ · · · ⟨sN (t̂M )⟩

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

di

ci · ai1

...
ci · ai,i−1

ci · ai,i+1

...
ci · aiN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

The natural sparsity of complex networks ensures that, on
average, the number of neighbors for a node is much smaller
than the network size N , implying that Xi is typically sparse
with most of its elements being zero and the number of nonzero
elements is in fact the node degree ki with ki ≪ N . We can
then exploit the sparsity to reconstruct Xi by employing the
lasso [41], a convex optimization method for sparse signal
reconstruction. The lasso incorporating an L1-norm and an
error control term is efficient and robust, enabling a reliable
reconstruction of the local network structure as represented by
Xi from a small amount of data. In particular, the problem is
to optimize

min
Xi

{
1

2M
∥&iXi − Yi∥2

2 + λ∥Xi∥1

}
, (17)

where ∥Xi∥1 =
∑N

j=1,j ̸=i |xij | is the L1 norm of Xi assuring
the sparsity of the solution, and the least squares term ∥&iXi −
Yi∥2

2 guarantees the robustness of the solution against noise in
data. In Eq. (17), λ is a nonnegative regularization parameter
that affects the reconstruction performance in terms of the
sparsity of the network, which can be determined by a cross-
validation method [62]. An advantage of using the lasso is
that M , i.e., the number of bases needed, can be much less
than the length of Xi . For each base of each node, the strings
included can be collected and calculated from only one set
of data sample in the time series, ensuring the sparse data
requirement.

After the vector Xi has been reconstructed, the direct
neighbors of node i are simply those associated with nonzero
elements in Xi . In the same manner, we can uncover the
neighborhoods of all other nodes, so that the full structure
of the network can be obtained by matching the neighbors of
all nodes.

IV. RECONSTRUCTION PERFORMANCE

A. Measurement indices

To quantify the performance of our reconstruction method,
we introduce two standard measurement indices [57], the area
under the receiver operating characteristic curve (AUROC) and
the area under the precision-recall curve (AUPR). True positive
rate (TPR, RTP), false positive rate (FPR, RFP), precision
('precision), and recall ('recall), which are used to calculate
AUROC and AUPR, are defined as follows:

RTP(l) = NTP(l)
NP

, (18)

where l is the cutoff in the edge list, NTP(l) is the number of
true positives in the top l predictions in the edge list, and NP
is the number of positives in the gold standard.

RFP(l) = NFP(l)
NN

, (19)

where NFP(l) is the number of false positive in the top l
predictions in the edge list, and NN is the number of negatives
in the gold standard.

'precision(l) = NTP(l)
NTP(l) + NFP(l)

= NTP(l)
l

, (20)

'recall(l) = NTP(l)
NP

, (21)

where 'recall(l), which is called sensitivity, is equivalent to
RTP(l). By varying l from 0 to N , two sequences of points
(RTP(l),RFP(l)) and ('recall(l),'precision(l)) are measured, re-
spectively, and the receiver operating characteristic curve and
the precision-recall curve are obtained, as shown in Figs. 3(d)
and 3(f). The area under the two curves, denoted as AUROC and
AUPR, respectively, represent the reconstruction performance:
AUROC(AUPR) ranges from AUROC = 0.5(AUPR = NP/2N ) for
random guessing to AUROC = 1(AUPR = 1) for perfect recon-
structibility.

Because the links of each node are actually identified
separately, the AUROC and AUPR are calculated for each node,
and we use the mean index values over all the nodes to
characterize the reconstruction performance for the whole
network.

B. Reconstruction performance affected by network structure
and amount of data

We test our method by implementing different dynamical
processes on Erdös-Rényi random (ER) [54] (circle), scale-
free (SF) [55] (square), small-world (SW) [56] (diamond), and
empirical networks. For network reconstruction, knowledge
about the switching dynamics and network details is not
necessary—only the states of the nodes at different time
steps need to be recorded. See Sec. 1 in the Supplemental
Material [48] for computational details.

Figure 4 illustrates the reconstruction performance, where
Fig. 4(a) shows the element values xij in the reconstructed
neighboring vector Xi of all nodes for SW and SF networks
with the voter model. nt̂ is defined as the number of used base
strings normalized by network size N . We note that the values
of xij corresponding to actual links are markedly and distinctly
greater than those of null connections. Setting a cutoff value
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(a) (b)

(d) (f)

(e) (g)(c)

FIG. 4. Reconstruction performance. (a) Reconstructed values of the neighboring vector Xi for all nodes in SW and SF networks with the
voter model, where N = 100, ⟨k⟩ = 6, nt̂ = 0.8, and the length of time series used is 1.5 × 104. The red dashed line represents the threshold
for determining whether a reconstructed value is regarded as representing an actual link (a value larger than the threshold) or a null link (a
value smaller than the threshold). The correctly reconstructed links (true positive), falsely reconstructed links (false positive), and missing links
(false negative) are represented by the dark blue, red, and light blue points, respectively, while the yellow points indicate the true negative links.
(b, c) Visualization of the reconstructed SW and SF networks, respectively. The color legends of the reconstructed links are the same as those
in (a). There are more missing links (false negative) in the SF network than in the ER network. (d, e) ROC curves of reconstructed values for
SW and SF networks for different values of nt̂ . (f, g) PR curves of the reconstructed values for SW and SF networks for different values of nt̂ .

in the gap between the two groups of points in Fig. 4(a),
we can separate the actual links from the null connections,
enabling a reconstruction of the whole SW network. For the
SF network, it is difficult to fully reconstruct the neighbors of
the hub nodes, for the following two reasons: (i) in general the
linearization procedure works better for small node degree, as
shown in Fig. 2; (ii) the lasso-based reconstruction requires
smaller data amount and offers better accuracy for sparser
vector Xi associated with small degree nodes. However, for an
SF network, a vast majority of the nodes in an SF network

(a) (b) (c)

(d) (e) (f)

FIG. 5. Reconstruction performance with respect to the number
of base strings. (a, b, c) AUROC and (d, e, f) AUPR as functions of the
normalized number of base strings nt̂ for the voter, game and majority
model on ER (circle), SF (square), and SW (diamond) networks.
The network size N = 100 and ⟨k⟩ = 6. The length of time series
is 1.5 × 104. Other parameter values of binary-state dynamics are
shown in Supplemental Material Table S1.

are not hubs, which can be precisely reconstructed. The
reconstructed SW and SF networks are shown in Figs. 4(b)
and 4(c), respectively.

To assess how the number of base strings t̂ affects the recon-
struction accuracy, we define nt̂ to be the number of t̂ divided
by the network size N to quantify the relative amount of the
base strings. As shown in Figs. 4(d)–4(g), the receiver operat-
ing characteristic (ROC) and the precision-recall (PR) curves
show better performance as nt̂ is increased for both SW and SF
networks, implying that high accuracy can be achieved for rea-
sonably large values of nt̂ . Figure 5 shows the AUROC and AUPR

(a) (b) (c)

(d) (e) (f)

FIG. 6. Reconstruction performance with respect to the length of
time series. (a–c) AUROC and (d–f) AUPR as functions of the relative
length of time series nt for the voter, ising and majority model on
ER (circle), SF (square), and SW (diamond) networks. The network
size N = 500 and ⟨k⟩ = 6. Other parameter values of binary-state
dynamics are shown in Supplemental Material Table S1.
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TABLE II. AUROC and AUPR measures for various dynamics on a variety of model and empirical networks. The parameter values in the
dynamical models are listed in Supplemental Material Table S1. The size and mean degree of ER (circle), SF (square), and SW (diamond)
networks are N = 500 and ⟨k⟩ = 6, and the length of time series used is 6 × 104. The length of time series used for empirical networks is
1.5 × 104.

AUROC/AUPR Voter Kirman Ising SIS Game Language Threshold Majority

ER 1.000/0.983 0.999/0.954 1.000/0.982 0.997/0.960 0.999/0.981 0.995/0.934 1.000/0.988 1.000/0.986
SF 0.992/0.959 0.985/0.920 0.998/0.976 0.984/0.924 0.988/0.951 0.986/0.925 0.986/0.985 0.999/0.980
SW 1.000/0.988 1.000/0.982 1.000/0.988 1.000/0.988 1.000/0.988 1.000/0.986 0.994/0.979 1.000/0.987
Dolphins 1.000/0.916 0.997/0.908 0.999/0.911 0.978/0.867 0.993/0.900 0.985/0.870 0.991/0.890 1.000/0.913
Football 0.999/0.884 1.000/0.898 0.999/0.899 0.999/0.884 0.996/0.882 0.992/0.859 0.918/0.637 0.999/0.896
Karate 0.997/0.856 0.969/0.838 0.981/0.836 0.954/0.823 0.984/0.839 0.960/0.803 0.971/0.810 0.996/0.847
Leader 1.000/0.838 0.991/0.912 0.991/0.823 0.968/0.789 0.990/0.818 0.966/0.780 0.970/0.760 0.998/0.832
Polbooks 0.999/0.912 0.991/0.829 0.998/0.908 0.932/0.779 0.986/0.888 0.978/0.857 0.971/0.858 0.999/0.913
Prison 1.000/0.936 0.999/0.896 1.000/0.935 0.992/0.915 0.981/0.909 0.991/0.909 0.999/0.931 1.000/0.935
Santa Fe 0.998/0.967 0.990/0.933 1.000/0.969 0.982/0.937 0.997/0.965 0.996/0.959 0.994/0.961 1.000/0.970

measures as a function of nt̂ for different dynamical models on
ER, SW, and SF networks. Due to the advantage of the lasso
for sparse vectors, nearly perfect reconstruction is achieved
after nt̂ exceeds a relatively small critical value, e.g., 0.4.

It is also important to assess how the length of the binary
time series affects the reconstruction accuracy and efficiency.
We have calculated the AUROC and AUPR measures as a function
of the relative time-series length nt (defined as the total length
of time series divided by N ) for various dynamical processes
on ER, SF, and SW networks. Figure 6 shows the recon-
struction performance for voter, Ising, and majority models
in combination with different types of networks. We find that
AUROC and AUPR rapidly increases as nt increases. After nt

exceeds a relatively small value, nearly full reconstruction
can be achieved, which provides additional evidence for the
high efficiency of our reconstruction method (see Supple-
mental Material [48], Sec. 2 for full results of performance
for all models versus nt ). In general, high reconstruction
accuracy can be achieved for relatively short time series. We

(a) (b) (c)

(d) (e) (f)

FIG. 7. Reconstruction performance affected by average node
degree. (a, b, c) AUROC and (d, e, f) AUPR as functions of the average
node degree ⟨k⟩ for the voter, game and majority model on ER (circle),
SF (square), and SW (diamond) networks. The network size N = 500
and relative length of time series nt = 100. Other parameter values
of binary-state dynamics are shown in Supplemental Material Table
S1.

systematically test our method on a variety of model and
real networks in combination with eight binary-state dynamics
(Table II) and find high values of AUROC and AUPR for all
cases.

We explore the effects of network properties such as the av-
erage degree ⟨k⟩ and the size N on reconstruction performance.
As shown in Fig. 7, the reconstruction accuracy decreases
as ⟨k⟩ increases. The main reason for this result is that the
low-order approximation in the data-based linearization is
better for smaller node degree. Moreover, with the increase of
⟨k⟩, the vector Xi to be reconstructed will become denser. Note
that it usually requires larger amounts of data to reconstruct a
denser signal by using the lasso according to the compressive
sensing theory. Thus, in general a network with larger ⟨k⟩
will be more difficult to be reconstructed. Figure 8 shows
the minimum relative length of time series nmin

t to acquire at
least 0.95 AUROC and AUPR simultaneously as a function of
network size N . We see that nmin

t decreases as N increases,
which is because of network sparsity as well. In general, for
the same average node degree ⟨k⟩, a network with larger size
will be sparser, leading to a sparser vector Xi . According to
the compressive sensing theory, less data are required for
reconstructing a sparser Xi , accounting for the decrease of
nmin

t with the increase of N . These results indicate that our
reconstruction method is scalable and of practical importance
for dealing with large real networked systems.

(a) (b) (c)

FIG. 8. Reconstruction performance affected by network size.
The minimum relative length nmin

t to acquire at least 0.95 AUROC and
AUPR simultaneously as a function of network size N for the voter
(red circle), Ising (green square), and majority model (blue diamond)
on (a) ER, (b) SF, and (c) SW networks. The mean degree of networks
is 6. Other parameter values of binary-state dynamics are shown in
Supplemental Material Table S1.
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TABLE III. Robustness of reconstruction against noise and missing data. AUROC and AUPR measures for voter, game, and majority models
on ER, SF, and SW networks for measurement noise nf = 10% and the fraction of inaccessible nodes nm = 30%. The network size is N = 500
and the mean degree is ⟨k⟩ = 6. The length of the time series used is 6 × 104. Details of the parameter values in the dynamical models are
listed in Supplemental Material Table S1.

nf = 10% nm = 30%

AUROC/AUPR Voter Game Majority Voter Game Majority

ER 0.995/0.938 0.955/0.707 0.991/0.864 1.000/0.985 0.999/0.983 1.000/0.988
SF 0.983/0.903 0.954/0.800 0.990/0.894 0.995/0.968 0.991/0.957 0.995/0.984
SW 1.000/0.984 0.976/0.741 0.994/0.874 1.000/0.988 1.000/0.988 1.000/0.988

C. Robustness of reconstruction against noise and missing data

In real applications, time series are often contaminated
by noise and the data from certain nodes may be lost or
inaccessible. To address these practical issues, we test the
robustness of our method. Specifically, we instill noise into
the time series by randomly flipping a fraction nf of binary
states and assume a fraction nm of nodes are inaccessible. The
results are shown in Table III, where voter, game, and majority
models are used as examples of linear, nonlinear, and piecewise
dynamics, respectively. Strikingly, we obtain high values of
AUROC and AUPR even in the presence of 10% measurement
noise or 30% inaccessible nodes, providing strong evidence
for the robustness of our framework against noise and missing
data. More detailed characterization associated with the results
in Table III, i.e., AUROC and AUPR as functions of nf and nm,
are provided in the Supplemental Material [48], Sec. 3.

V. DISCUSSION

Reconstructing the topological structure and dynam-
ics of complex systems from data is a central issue
in both network science and engineering commu-
nity [22,24,25,27,28,32,58,59]. A framework [29,60,61] of
network reconstruction is based on compressive sensing
[35–40], a sparse signal recovery method developed in applied
mathematics and engineering signal processing. A recent
work [33] also demonstrated that compressive sensing can
be exploited for network reconstruction in situations where
the available time series are polarized (binary), e.g., virus
spreading and information diffusion in social and computer
networks. While the structure of the virus propagation network
and the spreading sources can be obtained, the method is
unable to predict the network dynamical systems that generate
the binary data.

The contribution of this paper is a general framework
to solve the challenging problem of reconstructing complex
networks hosting binary-state dynamics, based only on time
series without any knowledge of the network structure and
the switching functions that generate the binary data. The key
to our success is the formulation of a universal data-based
linearization method, which is powerful for reconstructing
the neighborhood of nodes for any type of nodal dynamics:
linear, nonlinear, discontinuous, or stochastic. The natural
sparsity of real complex networks allows us to address the local
reconstruction as a sparse signal reconstruction problem that
can be solved by employing the lasso, a convex optimization

method, from small amounts of binary data. The optimization
is robust against measurement noise and missing data. Once
the neighborhoods of all nodes have been reconstructed, the
whole network can be mapped out by assembling all the local
structures and making adjustments to ensure consistency. We
have validated our framework using a variety of binary-state
dynamical models on a number of model and real complex
networks. High reconstruction accuracy has been obtained for
all cases, even for relatively small amounts of binary data
contaminated by noise and when partial data are lost. These
results suggest the practical applicability of our framework. In
practical applications, instead of evaluating AUROC and AUPR,
we often need to distinguish the true links from the nonlinks
based on the reconstructed values of X. To accomplish this
goal, we can generate a histogram from all the elements of X
and find a appropriate cutting threshold between the two peaks
representing links and nonlinks.

While our framework potentially offers a general, com-
pletely data-driven approach to reconstructing binary dynam-
ical processes on complex networks, there are still challenges.
For example, our framework can deal with various types
of switching functions underlying the binary-state dynamics,
but in its present form the framework is not applicable to
nonmonotonic functions or non-Markovian type of dynamics.
Especially, when the switching functions are not monotonic,
the data-based linearization would fail due to the violation
of the one-to-one correspondence between the switching
probability and the number of active neighbors. For non-
Markovian dynamics, the merging procedure inherent in our
method would fail. To predict the interaction strength among
nodes presents another challenge, especially where noise is
present and there is missing data. The results reported in this
paper suggest strongly that our present framework can serve
as a starting point to meet the challenges, eventually leading to
a complete and universally applicable solution to the inverse
problem of binary network structure and dynamics.
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APPENDIX: DESCRIPTION OF USED
BINARY-STATE DYNAMICS

The voter model [13] assumes that a node randomly chooses
and then adopts one of its neighbors’ state at each time step.
The total number of neighbors is its degree k, of which m
are active, i.e., they are in state 1. The probabilities that the
node will become active and inactive are m/k and (k − m)/k,
respectively. In the majority-voter model [53], a node tends
to align with the majority state of its neighbors, and the
probability of misalignment is Q.

In the Kirman’s ant colony model [49], a node switches
from state 0 to 1 with the probability Fk,m = c1 + dm (with m
being the number of active neighbors) and the rate of transition
from 1 to 0 is Rk,m = c2 + d(k − m), where the parameters c1
and c2 quantify the individual action that is independent of
the states of the neighbors and d characterizes the action of
copying from neighbors’ state.

The Ising model [17] is a classic paradigm to study
ferromagnetism at the microscopic level of spins. In the model,
a node can assume either one of the two states: spin-up or
spin-down. Switching in the state occurs with the probability
determined by minimizing the energy (Hamiltonian) of the
system. In our study, we chose the transition rates according
to the Glauber dynamics [50], as shown in Table I, where the
parameter β quantifies the combining effect of temperature
and the ferromagnetic-interaction parameter.

The SIS model [14] describes the epidemic process of
disease spreading with infection and recovery. Each suscepti-
ble individual contracts the disease from each of its infected
neighbors at the rate λ, so at each time step a susceptible
node with m infected neighbors has the probability (1 − λ)m of

remaining susceptible. The infection rate is then 1 − (1 − λ)m.
The recovery rate of an infected node is µ at each time step.

The game model [3] originates from the evolutionary game
theory. In a network, each node is a player, and the two states
means that the player can take on two different strategies. A
player plays with each of his/her neighbors using one chosen
strategy at each time step. The profit of a rational player i,
when playing with a neighbor j , is characterized by the payoff

matrix
s1 s2

s1s2( a
c

b
d ) where a, b, c, and d are parameters. Different

games can be generated by adjusting a, b, c, and b. The payoff
of a player is the sum of profit from playing game with all its
neighbors. A player switches the strategy with a probability
that depends on the payoff it may gain in the next round under
the current circumstance by switching its strategy, as illustrated
in Table I, where the parameter α qualifies the willingness for
an individual to change its strategy according to those of its
neighbors, and β is associated with the effect of the expected
payoff.

For the language model [51], the two states denote two
different language choices of a person. Transition from
the primary language to the secondary occurs with the
probability that is proportional to the fraction of speak-
ers in the neighbors with the power α, multiplied by
the parameter s (or 1 − s) according to the respective
language.

The threshold model [52] is a deterministic model, where
for each node a certain threshold Mk is set which can be, for
example, a function of the node’s degree. At each time step,
a node becomes active if the number m of its active neighbors
exceeds the threshold Mk , and no recovery transformation is
permitted.
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1 Computation details

Parameter values in the binary-state dynamics used for network reconstruction are displayed

in Supplementary Table S1. The only requirement for choosing the parameter values is that the

switching dynamics should be monotonic. Since all the binary-state dynamics are monotonic,

there is no specific restriction for the parameter values. Note that several models have convergent

behaviors. If the states of nodes converge into a stable state, there will be no more useful informa-

tion for network reconstruction. If this occurs, we randomly initialize the states of all nodes after

a certain period.

The set of the threshold parameter � for realizing the merging process for network reconstruc-

tion is independent of network structure and binary-state dynamics. We investigate the dependence

of the reconstruction performance on threshold �. The results are shown in Supplementary Fig S1.

We found that AUROC and AUPR can always reach high values when 0.4 6 � 6 0.55 in all cases.

Thus, we set the threshold � to be 0.45 for simplicity.

Regarding the selection of bases, the method is relatively time consuming because it requires

calculating the Hamming distance between each pair of strings in different time steps. Hence, to

improve computational efficiency, for large-size networks with N > 500, we choose bases ran-

domly instead of using the base-selection method presented in the main text. It reduces accuracy

a little in a few cases, but the computational complexity is considerably reduced. Supplementary

Figs. S2 (a) and (b) show the results of reconstruction for Ising and Voter dynamics on ER, WS
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Supplementary Table S1 | Settings in numerical simulations. Parameter values in various

binary-state dynamics and the period for initiating node states because of converging to steady

state.

Model Parameters Convergent Update period

Voter — Yes 100 (5 for N=100)

Kirman c1 = 0.1, c2 = 0.1, d = 0.08 No —

Ising Gluaber � = 2 No —

SIS � = 0.2, µ = 0.5 No —

Game ↵ = 0.1, � = 1, a = 6, b = 5, c = 1, d = 0 No —

Language s = 0.5, ↵ = 0.7 No —

Threshold Mk = 2/k Yes 5

Majority vote Q = 0.3 Yes 10 (5 for N=100)
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and SF networks. We found that for Ising dynamics, the results are almost not affected by the value

of �; but for Voter dynamics, a large value of � is preferred. The possible reason is that, for dy-

namics with convergence such as Voter, the time series is dominated by all zeros or all ones. In the

similarity networks, the nodes representing all zeros(or ones) time strings densely connect to each

other, which leads to a bimodal degree distribution, as shown in Supplementary Fig. S2(d). We

can see that there are more than 40% nodes in the rightmost bin. Thus, � should be large enough

to exclude these nodes, and then the reconstructing performance will approach high accuracy then,

as shown in Fig. S2(b). For Ising dynamic, the degree distribution is like a bell shape, and there

are no dominant zeros(or ones) time strings, so � is not a key parameter. We also compare the

performance of the networked base selection with the performance of randomly base selection.

The networked indeed shows better performance, especially for dynamics with convergence.

Supplementary Figure S1 | Determination of threshold �. (a) AUROC as a function of thresh-

old parameter � for the voter and Ising model on ER, SF and SW networks. (b) AUPR as a

function of � for the two models and three networks. The network size N = 100 and hki = 6.

The length of time series is 1.5⇥ 104. Other parameters of dynamics are shown in Supplementary

Table S1.
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Supplementary Figure S2 | Determination of threshold �. (a,b) AUROC as a function of

threshold parameter � for (a) the voter and (b) Ising model on ER, SF and SW networks, respec-

tively. The dashed lines are the results of randomly selected bases. (c) The degree distribution

of the constructed similarity network for Ising dynamic on ER network. (d) The degree distribu-

tion of the constructed similarity network for Voter dynamic on ER network. The network size

N = 100 and hki = 6. The length of time series is 1.5 ⇥ 104. Other parameters of dynamics are

shown in Supplementary Table S1.

There is an adjustable parameter � in the lasso. In general, the parameter is determined by

using cross-validation method, such as sklearn.linear model.LassoCV in python. In terms of the

cross-validation method, we obtained the proper value of �, which is set to be 10�4 and 10�3 for

reconstructing networks with N 6 500 and N = 1000, respectively, in all reconstructions. All

the convex optimizations are implemented in Python(version 2.7) and Sklearn(version 0.14).
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2 Dependence of performance on data amount

We examine how the length of time series affects reconstruction accuracy. We let nt denote

the ratio of the total length of time series normalized to the network size N . Supplementary

Fig. S3 shows the reconstruction performance measured by AUROC and AUPR for various dy-

namics in combination with different types of networks. We find that AUROC and AUPR rapidly

increases as nt increases. After nt exceeds a relatively small value, nearly full reconstruction can

be achieved, which provides additional evidence for the high efficiency of our method. The results

are summarized in Table II in the main text.

Supplementary Figure S3 | Reconstruction performance with respect to the length of time

series. (a-h) AUROC and (i-p) AUPR as functions of the normalized length of time series nt for

various dynamics on ER, SF and SW networks. The network size N = 500 and hki = 6. Other

parameter values of binary-state dynamics are shown in Supplementary Table S1.
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3 Robustness against noise and missing data

Robustness against noise and missing data is important for evaluating the applicability of a

method. We consider the scenario of noise-induced wrong records in time series. Specifically,

we assume that a fraction nf of binary states are wrong, and flip from 1 to zero or from zero

to 1. The presence of unobservable nodes or missing data is quite often in the real situation.

We assume that the data of a fraction of nodes, nm, cannot be observed. We investigate the

reconstruction accuracy as a function of nf and nm, respectively. As shown in Supplementary

Fig. S4 and Supplementary Fig. S5, respectively, we find that high AUROC and AUPR remains

in a wide range of nf and nm, providing strong evidence for the robustness of our reconstruction

framework against measurement noise and missing data. The results are summarized in Table III

in the main text.

Supplementary Figure S4 | Robustness against measurement noise. (a,b,c) AUROC and (d,e,f)

AUPR as functions of the fraction nf of wrong states in time series for the voter, Ising and majority

model on ER, SF and SW networks. Parameters of networks and dynamics are the same as in

Supplementary Fig. S3. nt = 100.
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Supplementary Figure S5 | Robustness against missing data. (a,b,c) AUROC and (d,e,f) AUPR

as functions of the fraction nm of unobservable nodes for the voter, Ising and majority model on

ER, SF and SW networks. Parameters of networks and dynamics are the same as in Supplementary

Fig. S3. nt = 100.
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