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For a quantum dot system of fixed geometry, in the presence of random impurities the average conductance
over an appropriate range of the Fermi energy decreases as the impurity strength is increased. Can the nature of
the corresponding classical dynamics in the dot region affect the rate of decrease? Utilizing graphene quantum
dots with two semi-infinite, single-mode leads as a prototypical model, we address the device stability issue by

investigating the combined effects of classical dynamics and impurities on the average conductance over the
energy range of the first transverse mode. We find that, for chaotic dot systems, the rate of decrease in the average
conductance with the impurity strength is in general characteristically smaller than that for integrable dots. We
develop a semiclassical analysis for the phenomenon and also obtain an understanding based on the random
matrix theory. Our results demonstrate that classical chaos can generally lead to a stronger stability in the device
performance, strongly advocating exploiting chaos in the development of nanoscale quantum transport devices.
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I. INTRODUCTION

In the development of nanoscale quantum devices, an
important issue is stability against random perturbations such
as various types of impurities. While the impurities can
be reduced to certain extent through the improvement and
refinement of the underlying fabrication process, it is of interest
to uncover alternative mechanisms to enhance the device
stability. The purpose of this paper is to show that classical
chaos can be exploited to generate devices that are relatively
more stable in the quantum regime than those exhibiting
integrable dynamics in the classical limit.

To be concrete, we study quantum dot systems, an essential
type of structures in nanoelectronic devices. Such a system
consists of a central scattering region, or a dot region, and a
number of electronic waveguides (leads). Incoming electrons
from one lead undergo scattering in the dot region and
become outgoing in all leads. For quantum dots a fundamental
phenomenon is universal conductance fluctuations [1-5] with
respect to variations in parameters such as the Fermi energy
or the strength of an external magnetic field. In particular, for
mesoscopic systems in the ballistic transport regime, at low
temperatures the conductance fluctuations tend to be indepen-
dent of the sample size and impurities [1] and thus can serve
as a probe of quantum chaos [5], a field aiming to uncover and
understand the quantum manifestations of classical chaos [6].
For over two decades quantum dot systems have become a
paradigm to study quantum chaotic scattering [7,8], and there
has been a large body of literature on the effects of distinct
types of classical dynamics on conductance fluctuations
[9-19]. A basic result is that, for systems with integrable or
mixed classical dynamics, the conductance curves typically
contain a large number of Fano resonances [20-24], leading
to sharp conductance fluctuations. But if the system has fully
developed classical chaos, conductance fluctuations will be
smooth. This result enables conductance fluctuations to be
modulated through the control of the underlying classical
dynamics [25,26].

To address the problem of device stability with respect to
random impurities, in this paper we shall not be concerned
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with conductance fluctuations. Instead, we consider ensemble
of random impurities of systematically varying strength and
investigate their effects on some appropriately averaged value
of the conductance. For this purpose we consider quantum-
dot systems of two semi-infinite leads, each supporting a
single transverse mode, and focus on the average conductance
over the corresponding single-mode Fermi-energy range. This
energy range is classically small but quantum mechanically
large, rendering applicable semiclassical treatment of the
scattering dynamics [27]. To contrast the role of classical
dynamics, we choose two types of geometric domains for the
dot region: stadium and rectangle, which generate classical
chaotic and integrable dynamics, respectively. As the strength
of the random impurities is increased from zero, the average
conductance will decrease due to localization of wave func-
tions. However, we find that the integrable dot system exhibits
a much faster decrease in the average conductance than that
for the chaotic dot system, implying a stronger conductance
stability for the latter. We develop a semiclassical theory to
qualitatively explain this phenomenon, and also provide an
understanding based on the random matrix theory through
analyzing the local density of states in the dot region and
the energy level statistics in the corresponding closed system.
Our finding strongly advocates the use of chaotic geometry
in quantum dot structures, which is consistent with previous
results on smooth conductance fluctuations in classically
chaotic systems. In fact, we generally believe that classical
chaos has the benefit of bringing in greater stability for
quantum devices.

Due to the recent interest in two-dimensional Dirac ma-
terials [28], we choose to study quantum dot systems made
of graphene [29-35]. There were previous experimental [36—
38] and theoretical [39] studies of universal conductance
fluctuations in graphene systems. Theoretically and compu-
tationally, the effects of disorders were also studied [40—44].
In general, investigating the role of classical chaos in such
systems belongs to the emergent field of relativistic quantum
chaos [45-52].

In Sec. II, we describe our graphene quantum dot systems
and the computational method. In Sec. III, we present results
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of the average conductance versus the impurity strength and
contrast the cases of classically chaotic and integrable dot
systems. In Sec. IV, we derive a semiclassical theory to
explain, qualitatively, the numerical finding that the chaotic
dot exhibits a pronouncedly slower decrease in the average
conductance with the impurity strength. In Sec. V, we develop
an understanding based on the random matrix theory. In
Sec. VI, we present conclusions.

II. MODEL AND COMPUTATIONAL METHOD

Quantum-dot structure with distinct classical dynamics.
In order to investigate the effects of classical dynamics on
the conductance of the device in the presence of random
impurities, we use the tight-binding approximation and the
Landauer formalism [53] in combination with the standard
Green’s function (GF) method [54], which enables a sys-
tematic calculation of the conductances for quantum dots of
arbitrary geometry. To be concrete, we choose two standard
geometrical shapes for the junction region of the dot structure:
one of the stadium shape with chaotic dynamics in the
classical limit, and another of the rectangular shape with
classical integrable dynamics, as shown in Figs. 1(a) and 1(b),
respectively. In each case there are random impurities in the
dot region. For simplicity, we assume that, in both devices,
the semi-infinite leads that are connected to the dot region are
made up of perfect ribbons without any disorder.

Hamiltonian. The tight-binding Hamiltonian of the
graphene quantum dot system is

H=Y" t,j(ccj—}—HC)—i-ZVcc,, (1)
(i,J)

where #;; =t is the electronic hopping energy between two
nearest neighboring sites in the lattice, (i, j) signifies that the

summation is with respect to all nearest-neighbor pairs, and

cj and ¢; are the creation and annihilation operators at the

ith site, respectively. The last term in Eq. (1) describes the
effects of impurities of strength V; on the ith site, where V;
is uniformly distributed in the range [—W/2,W/2], with W
being the overall impurity strength.

(a) (b)
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FIG. 1. (Color online) Geometrical dimensions of the quantum
dots. (a) Stadium with classical chaotic dynamics and (b) rectangle
with classical integrable dynamics.
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Green’s function formalism. We use the standard Green’s
function (GF) formalism [54] to calculate the conductance of
the quantum-dot system. We calculate the surface retarded
Green’s functions of the leads and their self-energy func-
tions [55,56]: X;,(E), where o = 1,2 denote the left and
right leads, respectively. The GF of the device can be obtained
through

Gp(E) =

[EI -H-S,(E)-£,B)] . @

The quantum transmission of the system is given by T,g(E) =
Tt[[';, Gpl'r, Gl where Ty, = i[2;, — S} ] and the sub-
script af indicates that the transmission is from the Bth lead to
the oth lead. The conductance can be obtained by the classic
Landauer formula:

2¢?
Got,B(E) = T aﬁ(E)~ (3)
The local density of states (LDOS) at the ith site can be
obtained as n; = —(1/7)Im[G p(i,i)], where Gp(i,i) is the
diagonal matrix element of the Green’s function at the ith site.
The local current element within the linear response regime is
given by [57]

4 n
lij(Ey) = —Im[H /G (Ep)], 4)
where G;'.i(E r) is the (j,i)th element of the matrix

DEDTL f(ne,) + Ty f(re,)|GHE ),

with G, and G%, being the retarded and advanced Green’s
functions, respectively. Here we assume zero temperature so
that the Fermi distribution f(uy,, ) is a step function. The
quantity jip,, is the chemical potential of the left (right) lead.
To ensure linear response, the chemical potentials of both sides
are chosen to be close to the Fermi energy of the device. To be
concrete we use a slightly higher potential in the left lead than
the right lead.

To obtain statistically reliable results for quantum transmis-
sion (conductance), for each fixed Fermi energy and impurity
strength, we average the conductance using 1000 random real-
izations of the impurity configuration, making the computation
quite demanding. To be feasible, we simulate relatively small
devices, with the following geometric parameters: lead width
w~36.92 A and 15.62 A, device width d ~78.7 A, and
device length [ ~ 151.94 A, as shown in Fig. 1. The areas of
the stadium and rectangular devices are approximately equal.
In order to speed up the computation, we use the recursive
Green’s function (RGF) method to calculate the conductance
by dividing the device into many small layers and calculating
the Green’s function of each layer under the self energies of
all other layers and leads. This way, we replace the inverse of
a large matrix by the inverses of many small matrices, leading
to a remarkable improvement in the computational efficiency.

In our computations, for the integrable device, the top and
bottom boundaries have the zigzag orientation. The chaotic
dot shape is cut from the rectangular device with the same
boundary orientation. While the orientation of the graphene
lattice, i.e., zigzag or armchair, can affect the band structure
and the conductance, the lattice orientation is unimportant
in our setting because of the random impurities. A previous

G"(Ey) =
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FIG. 2. (Color online) Dependence of the average conductance on the Fermi energy and impurity strength. (a),(b) Three-dimensional
plot of the conductance vs the Fermi energy and the impurity strength for classically chaotic and integrable dots, respectively. (c),(d) The
corresponding contour plots. (e) Two cases of resonancelike phenomenon for the chaotic geometry for E/t & 0.115 (red solid line) and 0.233
(blue dashed line). (f) Conductance resonance for the integrable geometry for E/t =~ 0.185. (g),(h) Examples of pointer states in absence of
any random impurity for the chaotic and integrable cases, respectively. The device structural parameters are lead width w ~ 36.92 A, dot width
d ~78.7 A, and dot length/ ~ 151.94 A. (i) Conductances vs the Fermi energy of the chaotic (red solid line) and integrable (blue dashed line)
devices without impurities. For both devices, the width of the first transmission mode is about 0.24¢. The results are in units of Gy = 2¢2/h.

work showed that, for a graphene nanoribbon, although the
effect of orientation can be quite significant, when strong
short-range impurities are present there is little difference in the
average conductances associated with the zigzag and armchair
orientations [58]. For the case of weak short-range impurities,
the differences between these two orientations can also be
neglected for nanoscale devices. The geometrical shapes of
the graphene systems in our study are more complicated
than nanoribbons. For example, for a chaotic dot structure,
different segments of the boundary can have different lattice
orientations. The lattice orientation thus will have little effect
on our results.

III. RESULTS

The typical behaviors of the ensemble-average conductance
versus the Fermi energy and the impurity strength are shown
in Figs. 2(a) and 2(b), for classically chaotic and integrable
geometries, respectively. The corresponding contour plots are
shown in Figs. 2(c) and 2(d). For fixed energy values, two

types of behaviors arise in the variation of the conductance
with the impurity strength: (1) the conductance increases
first as the impurities become stronger, reaches a maxi-
mum, and then decreases, and (2) the conductance decreases
monotonically with the impurity strength. The first case is
somewhat counterintuitive, as exemplified in Fig. 2(e) for
E/t ~ 0.115,0.233 for the chaotic dot and in Fig. 2(f) for
E/t ~ 0.185 for the integrable geometry. This resonancelike
phenomenon was reported previously [44], where the initial
conductance enhancement can be attributed to the breakdown
of the edge states in graphene by weak impurities. However,
for strong impurity the quantum states are localized, reducing
the conductance. Here we find, for all cases where such a
resonance phenomenon occurs, the conductance value for the
zero impurity case must be close to zero. That is, when the
system is free of any random impurity, the system is already
in some pointer state, providing a “room” for impurity to
break the state and consequently to enhance the conductance.
Two examples of the pointer states in the absence of any
impurity are shown in Figs. 2(g) and 2(h), respectively, for
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FIG. 3. (Color online) Effect of lead width on conductance sta-
bility. Average conductance over the energy range of the first
transmission mode of the lead vs the impurity strength for (a)
lead width w ~ 36.92 A and (b) lead width w ~ 15.62 A. The blue
(dashed) and red (solid) curves correspond to classically integrable
and chaotic dot structures, respectively. We use (G)o = (G)(W = 0)
to normalize the average conductance. Note that (G)¢ should be
distinguished from the natural conductance unit Gy.

the chaotic and integrable dots. If, for certain Fermi energy,
in the absence of any impurity the quantum state is not a
pointer state so that the conductance has a relatively large
value, introducing impurities into the system can only serve
to reduce the conductance, ruling out any possible increase in
the conductance and consequently resonance.

To address the conductance stability and to better under-
stand the effect of the interplay between random impurities
and classical dynamics on conductance, we examine the
average conductance as a function of the impurity strength.
In particular, for a fixed value of the impurity strength, we
average the conductance over the Fermi energy in the range
defined by the first transmission mode of the graphene device,
which is about 0.24¢ in our cases. For the dot parameters
as in Fig. 2, the normalized average conductance behaviors
are shown in Fig. 3(a), where the blue (dashed) and red
(solid) curves correspond to the integrable and chaotic cases,
respectively. We see that, as the impurity strength is increased,
the average (or overall) conductance decreases monotonically
for both cases. However, for the chaotic dot, the slope of the
decreasing trend is smaller than that for the integrable dot.
This behavior persists with respect to variations in the device
parameters. For example, Fig. 3(b) shows a case with the lead
width reduced to w ~ 15.62 A. These results indicate that the
conductance of the chaotic dot is more “stable” with respect
to variations in the strength of random impurities.

IV. SEMICLASSICAL UNDERSTANDING OF THE
INTERPLAY BETWEEN RANDOM IMPURITIES AND
CLASSICAL DYNAMICS

Our main numerical result is that classical chaos makes
the average conductance of the quantum dot less sensitive to
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random impurities than integrable dynamics. In particular, as
demonstrated in Fig. 3, the derivative of the average conduc-
tance with respect to the impurity strength, d(G)(W)/dW, is
negative but its absolute value is small for the chaotic dot and
relatively large for the integrable dot. It is possible to obtain
a qualitative understanding of the behavior of the derivatives
using a semiclassical argument.

For a general open Hamiltonian system, the elements of
the quantum S matrix can be expressed via classical quantities
through the Miller [27] formula:

i i
Suw(E) = Z [PUQM(E)]‘/2 exp [ﬁq><s>( E)— 75@)} 5)

s

where 1 and v denote quantum states, “(s)” denotes a classical
path, P{*) (E) is the classical transition probability from state
v to state u along (s), £ is the Maslov index, and the sum
is over all the classical paths connecting states v and u. Let
(1,,6,) and (1,,6,) be the action-angle variables associated
with states v and u, respectively. The classical transition prob-
ability is given by [27] P{*), ,(E) = (1/2m)[81,/36, ;. In the
study of quantum chaotic scattering, a seminal result [8,9]
is that the energy autocorrelation function of an S-matrix
element, defined as C,,(¢) = (S}, (E)Su(E +¢€)), can be
obtained through Eq. (5) as a Fourier transform of the classical
particle decay probability:

Counle) = / di(Po(E)pexplst/h),  (6)

where ¢ is the time that a classical particle dwells in the
scattering (dot) region, (P,,(E,t)) is the classical probability
that a v — p transition occurs with the corresponding delay
time in the interval [t,f + dt], and the average (-)g is over
a classically small but quantum mechanically large energy
interval. For our single-mode quantum dot system in the
presence of random impurity of strength W, we have u = v =
1 so we write (P(t; E,W)), which is the probability density
for a particle to have dwelling time in the range [¢,7 + dt]. The
average conductance is given by

(GYW) ~ Cpn(0) ~

m%/dt(P,w(t;E,W))Eexp(isz/h) :
@)

For a chaotic dot, regardless of the presence of random impu-
rities, the particle decay law is exponential: (P(¢; E,W))g ~
e /"W where t(W) is the average lifetime that a classical
particle stays in the dot region. Due to classical chaos,
the scattering is random in the dot region. If there are no
stable periodic orbits (as in the stadium dot), scattering
is already sufficiently random so that the introduction of
impurities will enhance the randomness only incrementally,
causing insignificant decrease in the average lifetime. It is
thus reasonable to assume little dependence of the average
lifetime t on W: dt(W)/dW < 0. Numerically it may be
nontrivial to calculate the particle decay law in the presence
of impurities—see Appendix for a detailed description of our
procedure and numerical parameters.
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FIG. 4. (Color online) Classical scattering dynamics for the inte-
grable quantum dot. (a),(b) For the integrable dot, particle dwelling
time distribution without and with random impurities, i.e., W/K =
0.0 and W/K = 0.2 (where K is the kinetic energy of the classical
particle), respectively, on a double logarithmic scale. We see that
the former exhibits an algebraically decaying behavior and the
latter shows a mixture of algebraically and exponentially decaying
behavior. (c) The probability of having particles with long dwelling
time vs the impurity strength. A detailed description of the numerical
procedure and the parameters is given in the Appendix.

Substituting the exponential decay law into Eq. (7), we
obtain (G)(W) ~ (W) so that

d(G)(W)/dW 50, ()

which explains the slow decrease in the average conductance
with the impurity strength for the chaotic dot.

For an integrable dot without random impurities, the
classical particle decay is algebraic, as shown in Fig. 4(a).
When random impurities are present, the decay law is a
mixture of algebraic and exponential behaviors, as shown in
Fig. 4(b). Especially, as the impurity strength is increased,
random scattering becomes progressively significant so that
the “weight” of the exponential decay gradually dominates. A
plausible mathematical expression for the decay law is

at™%,

b exp[—(t —1.)/Bcl,

where a, b, «., and B, are all positive constants and 7, is
the “crossover” time, above which there is a transition from
algebraic to exponential decay as ¢ is increased. The relative
magnitudes of the constants can be estimated, as follows.
The value of the algebraic decay exponent ¢, is typically
between 1 and 2 for two degrees of freedom Hamiltonian
systems [59—62]. For relatively weak impurities, the crossover
from algebraic to exponential behaviors occurs at some large
time ., which should be much larger than the exponential
decay lifetime B, because the particles tend to leave the
scattering region fast once the algebraic behavior is over and
random scattering from the impurities dominates. It is thus
reasonable to assume B, < f.. At the crossover time 7., we
have b ~ at_%. Since the decay is relatively slow for t < 7,

fy <t <t
t >t

(P(t; E,\W))E ~ { ©))
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the probability for particle to stay in the dot region can be
appreciable for r = z,. We thus have b =~ at_ % < 1.

As the impurity strength W is increased, we expect f.
to decrease. With the aid of numerical simulation, we can
reason that dr.(W)/dW < 0 must hold and |dt.(W)/dW|
is far from being negligible. Specifically, we numerically
calculate, for a set of systematically varying values of W,
the classical probability P,.;(W) that a particle stays in the
scattering region for t > f > t.. As W is increased, we expect
P, 7(W) to decrease. A typical example is shown in Fig. 4(c),
where we observe that P,.;(W) decreases rapidly with W.
Write P-7(W) = f(W) > 0, the probability that a particle
has a dwell time longer than 7, where df(W)/dW < O but
|df (W)/dW| is large [ f(W) can be obtained numerically].
Utilizing Eq. (9), we have

f(W)=[ b exp{—[t — t.(W)]/B.}dt

= aPclt(W)]~* exp {—[f — 1.(W)]/B.},
which gives
di.(W) df(W)/dw 1
dw — fW) 1/ — ac/1e(W)
Since a, ~ 1 and B, K t.(W), we see that the sign of the

derivative dt.(W)/dW is the same as the sign of df (W)/dW,
which is negative. In addition, we have |dt.(W)/dW)| =~
ldf (W)/dW - Bc/f(W)].

Substituting Eq. (9) into Eq. (7), we obtain the average
conductance for the integrable dot system in the presence of
impurities as

1—a. l—a,
(GY(W) ~a ”C(IW)] L L e
— o 1 —a,
which gives
d(G)W) a[tC(W)]_%[l  ab }d%(W)
aw t.(W)| dw
AT WB. [1 _ P ]df W)
(W) | aw
. dt.(W)
= AW = (10)

Since 7 > t., a. ~ 1, and B, K t.(W), the factor A(W) in
Eq. (10) is positive and not negligibly small. We thus have
d{G)W) _ dGYW)| ‘dtc(W)

0 and
dw dw daw

(large).

(1)

Relations (8) and (11), for chaotic and integrable quantum
dots, respectively, represent a semiclassical understanding of
the results in Fig. 3.

V. UNDERSTANDING BASED ON RANDOM
MATRIX THEORY

In situations where a quantum dot exhibits fully developed
chaos in the classical limit and/or has stationary random
impurities, electrons injected from the leads will scatter
elastically from the dot boundaries and/or from the random
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impurities. If the mean free path of the electron is much shorter
than the size of the dot, i.e., [y pp < d,the transportis diffusive
and the time of electrons dwelling in the dot region satisfies
Tdwell > Terg, Where 7o is the time required for a typical
classical trajectory to explore the phase space in an ergodic
manner [63—65], due to chaos and/or random scattering. The
scattering matrix is effectively random, which can be described
through the Wigner-Dyson random-matrix theory (RMT). In
RMT, the transmission coefficient distribution for a single
mode is given by [66—68]

P(T) = %TTWH, (12)

where the range of the transmissionis 0 < 7' < 1 and fr = 1
if there is no magnetic field present, and P(T) approaches a
circular distribution. A previous work [66] demonstrated that
the distribution is highly non-Gaussian, especially for systems
where the number of transmission modes is less than three.
However, for leads that permit many modes, the transmission
distribution approaches Gaussian.

For simplicity, we consider a single-mode quantum-dot
system that is fully chaotic in the classical limit. Integrating
Eq. (12) for transmission in the range [0,1], we obtain the
average conductance as

Br I Br—2
<G>smgle/G0 = (T) = /3T 12 = ) + 2/37" +4, (13)

”

where the first term 1/2 is the “classical” conductance for
the chaotic cavity with the physical meaning that a classical
particle has equal probability to transmit through and to
reflect back from the dot region. The second term is the
correction due to quantum interference, also known as the
weak localization effect [63] for 87 = 1, which vanishes when
the time-reversal symmetry is broken (87 = 2), e.g., when a
perpendicular magnetic field is present. If there is spin-orbit
coupling (Br = 4), the second term becomes positive and
the transmission is enhanced, a phenomenon known as weak
antilocalization.

Figure 5(a) shows the numerically obtained statistics of the
transmission for the chaotic (red circle) and integrable (blue
square) graphene quantum-dot systems. In order to make the
effects of chaotic geometry more pronounced, we consider
relatively large devices, each having over 10000 atoms, and
choose narrow waveguide width so that the coupling between
the leads and the dot region is relatively weak. For the chaotic
dot system, the transmission distribution agrees well with
the prediction in Eq. (12), especially in the low-transmission
regime, as shown in Fig. 5(a). The corresponding average
conductance is (G)sad/Go = 0.3457, which is approximately
equal to the theoretical prediction (G)g,—1/Go = 1/3. For the
integrable dot system, the transmission distribution deviates
from that for the chaotic case in the low- and high-transmission
regimes. However, in the intermediate-transmission regime
(e.g.,0.2 < T < 0.8), there is no apparent difference between
the two cases, as shown in Fig. 5(a). The mean conductance
of the integrable dot system is (G )t/ Go = 0.4544, which
is larger than that for the chaotic dot system. From Fig. 5(a),
we see that, for the integrable dot system, there are fewer
(more) counts of low (high) transmission values as compared
with the chaotic dot system. The differences can be seen
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FIG. 5. (Color online) Transport statistics for chaotic and inte-
grable graphene quantum dots. The width of the leads is w = 6.5a
with single mode transport in the energy range 0 < E/t < 0.796.
For both cases, the ratio of the height and width is #/d = 1.8. For
the chaotic (integrable) dot system, there are 12014 (13464) atoms in
the scattering region. (a) Transmission coefficient distribution P(7T)
for the chaotic (blue circles) and integrable (red squares) dots. The
gray solid curves correspond to the RMT prediction [Eq. (12)].
(b) Differences in the transmission distribution between the two
cases. (c),(d) LDS patterns showing the electron distribution in the
physical space, where the gray arrows depict the directions of the
local currents. The energy values for the chaotic and integrable cases
are £/t = 0.1048 and E/t = 0.048, respectively.

more clearly in Fig. 5(b). The reason is that the integrable
dot system has a high degree of geometric symmetry, for
which quantum pointer states [56,69] can form, leading to Fano
resonances [20-24] in the transmission (e.g., as a function of
the Fermi energy). The resonances contribute to more counts
of much higher-than-average transmission values. Symmetry
breaking can lead to chaos. For a chaotic dot, the probability for
pronounced pointer states to form is significantly lower than
that for an integrable dot system so that sharp Fano resonances
are much less likely. In this case, the transmission fluctuations
tend to be more smooth, giving rise to few counts of extreme
transmission values.

The distribution of transmission P(7) in Fig. 5(a) is
different from that of the transmission eigenvalues p(7,)
obtained from the fixed-energy transmission coefficient be-
tween different modes [70]. A transmission matrix can then
be constructed with elements t,,, and 7, being the eigenvalue
of the matrix ¢z for a fixed Fermi energy, where m and n
are mode indices. Since we focus on the single-mode case
(N¢hannel = 1), the matrix is reduced to a number.

We observe, however, that for the stadium dot system,
there are more counts of very high-transmission values than
predicted, which can be understood again by resorting to
the consideration of symmetry. In particular, the theoretical
curve describes the situation of fully developed classical
chaos [68] without any geometric symmetry. The chaotic
(stadium) dot used in our computation does in fact possess

022901-6



CONDUCTANCE STABILITY IN CHAOTIC AND ...

—— Chaotic
0.9 = = =Integrable|]
0.8r b
0.7r b

0.21 ]

0.1F ]

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

W/t

FIG. 6. (Color online) Behaviors of unnormalized conductance.
For lead width w ~ 36.92 A, unnormalized average transmission
over the energy range of the first transmission mode of the graphene
lead vs the impurity strength, for the chaotic (red solid line) and
integrable (blue dashed line) dot systems. For sufficiently strong
disorder, the difference in the average transmission values for the
two cases diminishes.

certain geometry. The finite width of the leads and their
symmetric locations on both sides of the device allows ballistic
transport channels [71,72] to be bridged, leading to nearly
unity maximum transmission.

Figures 5(c) and 5(d) show, for the chaotic and integrable
dot systems, respectively, a set of typical patterns of LDOS
and local currents. For the integrable system, there are current
channels of direct transport through which electrons transmit
with little scattering [52,73-75], as indicated by the current
direction in Fig. 5(d). In the absence of random impurities,
the average transmission value is thus higher for the integrable
system. As impurities are introduced into the system, even
in the integrable system there are random scatterings. As the
impurity strength is increased, the average transmission value
decreases. For sufficiently strong impurities, the difference
between the chaotic and integrable geometries diminishes,
leading to approximately the same average transmission value.
An example of this behavior is shown in Fig. 6. Thus, in the
same range of variation of the impurity strength, the average
transmission for the integrable system needs to decrease by
a larger amount, leading to a larger slope of decrease in the
average normalized transmission, as exemplified in Fig. 3.

To gain further insights, we investigate the integrable and
chaotic dot structures from the angle of energy level-spacing
statistics. For the corresponding closed systems (e.g., by
making the lead width tend to zero), we can calculate a
large number of energy levels. In the absence of any random
impurity, the level-spacing distributions for the underlying
systems are GOE [Gaussian orthogonal ensemble, P(S) =
(r/2)S e™5*/4] and Poisson [P(S) = ¢S] for chaotic and
integrable geometries [47], respectively, where S stands for
the normalized nearest-neighbor level spacing. When there are
random impurities and as the impurity strength is increased,
we expect the difference in the level spacing statistics for
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FIG. 7. (Color online) Energy level statistics of chaotic and
integrable quantum dots as predicted by the random matrix theory.
Level spacing statistics for (a),(c) chaotic and (b),(d) integrable closed
billiard systems. The ratio of the height and the width for both
geometries in (a),(b) is the same as that of the geometries used to
calculate the transmission in Fig. 5. There are 11777 carbon atoms
in the unfolded stadium system and 13340 atoms in the rectangular
system. In (a),(b), the unfolded level-spacing distributions P(S) are
shown, with the corresponding spectral rigidity Aj for energy levels in
the range of 0.1 < E, /t < 1 shown in (c),(d). The impurity strength
is W = 0.2¢t. Each data point is the result of averaging over 100
random impurity configurations.

the two cases to diminish. Figures 7(a) and 7(b) show P(S)
for the chaotic and integrable dot systems, respectively. In
each panel, the blue circles and the red crosses are for
the cases where random impurities are absent and present,
respectively, where the results are obtained using 100 random
impurity configurations. We see that, even in the presence
of relatively weak impurities (W = 0.2¢), the level-spacing
statistics of both the chaotic and integrable systems are GOE.
This convergence to GOE statistics can be more clearly seen
through the spectral rigidity, as shown in Figs. 7(c) and 7(d).
These results suggest the equivalent effects of classical
chaos and impurities: both generating random scattering in
both classical and quantum regimes. For an integrable dot
system, there is thus a dramatic change in the underlying
quantum scattering as impurity is introduced and its strength
is increased: from little to significant random scattering. As
a result, the average transmission and other device properties
tend to exhibit significant changes. However, for a chaotic
dot system, the presence of impurities hardly changes the
quantum scattering dynamics. From this perspective, chaotic
dot systems possess a higher degree of stability against random
impurities than integrable dot systems.

We note that the quantum pointer states are localized states
with long lifetimes and less interactions with the environment.
They are related to the stable classical periodic orbits and
eigenstates of a closed dot [19]. Previous works showed that
change in the geometry of the device, e.g., from integrable
to chaotic, can lead to a reduction of the number of quantum
pointer states [25]. Random impurities can also reduce the
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number of quantum pointer states. However, if a strong
magnetic field is present, the nature of the classical dynamics
and/or random impurities will have less pronounced effects on
quantum transport [17,18,74]. One set of the quantum pointer
states are associated with the stable orbits within the KAM
islands in the classical phase space. The probability that these
states can be affected significantly by random disorders is
small. The corresponding quantum pointer states can then be
quite persistent.

VI. CONCLUSION

The role of classical chaos in suppressing quantum fluc-
tuations has been recognized in the contexts of quantum
chaotic scattering [7-9] and transport through quantum
dots [25,26] for more than two decades. For integrable or
mixed classical dynamics, there are stable periodic orbits in
the phase space. The corresponding bounded states typically
have little interactions with the leads, giving rise to sharp
Fano resonances in the dependence of the conductance on
the Fermi energy [21-24,69]. However, fully developed chaos
gives rise to strong ergodicity of classical orbits, enabling
strong interaction between the quantum states in the scattering
regions and in the leads. It is then difficult for long-lived
quantum states to form in the dot region, leading to near-zero
probability for pointer states and Fano resonance. As a result,
conductance fluctuations tend to be much more smooth then
those in integrable or mixed quantum dots. In this sense,
while chaos usually generates random dynamical behaviors
classically, quantum mechanically it can lead to suppressed
fluctuations. A similar phenomenon arises in the context of
quantum resonant tunneling, both non-relativistically [76,77]
and relativistically [49].

This paper deals with the interplay between chaos, random
impurities, and quantum behaviors. The main finding is that
chaos can be exploited to stabilize quantum behaviors in
the presence of impurities, which is consistent with previous
works on conductance fluctuations and resonant tunneling.
Especially, we focus on the average conductance and ask how it
may be affected by random impurities for two cases where the
corresponding classical dynamics are chaotic and integrable,
respectively. In general, as the impurity strength is increased,
the average conductance will decrease, and we find that the
decreasing behavior tends to be much less pronounced for the
chaotic quantum dot. That is, for a wide range of the impurity
strength, the average conductance changes only a little if
there is chaos in the classical limit. We develop a physical
understanding of this phenomenon using both semiclassical

PHYSICAL REVIEW E 92, 022901 (2015)

and random-matrix theories. Our work provides a further case
where chaos can be advantageous from the standpoint of
making stable quantum devices.
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APPENDIX: CLASSICAL SIMULATION OF SCATTERING
DYNAMICS IN THE PRESENCE OF
RANDOM IMPURITIES

We simulate the dynamics of the classical particles in the
quantum dot system in the presence of impurities that are
modeled by Gaussian random potentials, using the standard
leap-frog method for numerically solving Hamiltonian sys-
tems [78]. The method is able to maintain the time reversibility
of the system and conserve the energy during the simulation.
The Hamiltonian of the classical system can be written as

HLF = K(Ux,Uy) + U(ny),

where
1 2 2
K(vy,vy) = Em(vx + vy),

— )2 w2
U(x,y):ZVi/exp[_ (x xl);;(y Yi) ]

x; and y; are the coordinates of the center of the ith
Gaussian potential, V/ is its strength uniformly distributed
within [—W /2, W /2], and o; characterizes the range of the ith
potential.

In our simulations, we use the width of the device to
rescale the length. For example, if in the quantum simula-
tions there are about 4000 atoms in the dot, classically we
distribute N’ = 4000 random Gaussian potentials throughout
the scattering region. We setd’ = 1.0 and !’ = 1.8. We assume
the range of each potential to be the same and o; = o can
be approximately calculated from +/d’l’/(2mr N’) = 0.0085.
Without loss of generality, we use o = 1072 in our simulations.
We keep the kinetic energy K of the particles to be the same
for all cases and change the ratio of W/K to simulate the
particle dynamics in the presence of random impurities of
systematically varying strength. In particular, in the interior of
the dot region, the classical evolution is obtained by solving the
Hamilton’s equations of motion using the leap-frog method.
The boundaries are assumed to be hard so that at any boundary
point of collision the particle trajectory is simply reflected.
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