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Detection meeting control: Unstable steady states in high-dimensional nonlinear dynamical systems
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We articulate an adaptive and reference-free framework based on the principle of random switching to detect
and control unstable steady states in high-dimensional nonlinear dynamical systems, without requiring any a
priori information about the system or about the target steady state. Starting from an arbitrary initial condition,
a proper control signal finds the nearest unstable steady state adaptively and drives the system to it in finite
time, regardless of the type of the steady state. We develop a mathematical analysis based on fast-slow manifold
separation and Markov chain theory to validate the framework. Numerical demonstration of the control and
detection principle using both classic chaotic systems and models of biological and physical significance is
provided.
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I. INTRODUCTION

Controlling nonlinear dynamical systems is a challenging
task with applications in many fields. In a real world situation
a mathematical model of the underlying system is not always
available, so one must rely on measured data or time series
to realize control. For low-dimensional chaotic systems, the
problem of data-based control has largely been solved, thanks
to the seminal contribution of Ott, Grebogi, and Yorke (OGY)
[1]. In particular, the OGY methodology enables stabilization
of a chaotic trajectory about one of the infinite number of
unstable periodic orbits (UPOs) embedded in the underlying
chaotic invariant set by using small control perturbations.
Control of high-dimensional nonlinear systems, however,
remains an outstanding problem, due to the many different
types of complex behaviors that such systems can exhibit. To
achieve control, it is necessary to determine the target UPO. In
the past three decades, various methods to calculate UPOs from
system equations were proposed [2–6]. There has also been
a great deal of effort in detecting UPOs based on measured
data [7–12]. In most previous works, detecting UPOs and
controlling chaos were done separately.

The goal of our work is to develop a single framework
to detect and control unstable steady states (USSs) without
requiring knowledge of the underlying system or the target
USS. This problem is particularly relevant to systems biology,
where high-dimensional gene regulatory networks (GRNs)
typically possess a number of USSs that are important for
system functionality. In fact, USSs in GRNs are closely
related to the fundamental concept of biological robustness
[13] and have implications, e.g., in designing therapeutically
effective strategies to treat tumor cells [14–16]. Recently, it
was demonstrated experimentally using synthetic biological
circuits that USSs play an essential role in fundamental
phenomena such as stochastic cell fate determination [17].

*To whom correspondence should be addressed:
wlin@fudan.edu.cn.

From a dynamical point of view, in situations where there are
multiple attractors, the stable manifold of a USS is nothing
but the boundary separating distinct basins of attraction. In
systems biology, different attractors correspond to distinct cell
fate, e.g., a normal cell or a tumor cell. When a trajectory
comes near the stable manifold, any random disturbance can
cause the system to approach a completely different attractor
[17], leading to stochastic cell fates. To be able to detect and
control the USS is thus key to engineering and manipulating
gene regulatory networks to achieve desired cell fate.

There are methods to stabilize USSs based on proportional
feedback control [18–20], which require knowledge about the
mathematical model of the underlying dynamical system. If
such information is not available, the precise location of a
desired USS in the phase space would be needed as a reference
to enable control. A number of control techniques have been
proposed, such as those based on derivative feedback, low-
or high-pass filters, and delayed feedback. These techniques,
when implemented in an adaptive manner, are capable of
locating and stabilizing some particular types of USSs
[21–27], but success still relies largely on information about
the USSs, such as the number of real positive eigenvalues
of the Jacobian matrix [28] or the type of the USS (e.g.,
saddle versus nonsaddle type) [28–30]. In real world systems,
particularly in dynamical systems of significant biological
and/or physical interest with multistability [17,31–37], neither
the exact models nor the accurate coordinates of the reference
point are known a priori. Developing a model-independent
and reference-state free framework to simultaneously detect
and control USSs is thus an outstanding problem with broad
interest.

In this paper, we articulate an effective framework based
on random switching [38,39] and adaptive control to precisely
locate unknown USSs in finite time with minimal energy
consumption. Our scheme is completely model free and it
does not require any a priori information about any USS
in the system. We are able to obtain rigorous mathematical
support for the control and detection framework, and we
present numerical demonstration using a classic nonlinear
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dynamical system, and systems of significant biological and
physical interest, including a high-dimensional GRN and an
infinite-dimensional time-delayed system.

In Sec. II, we describe the basic principle of random
switching control and develop a mathematical theory using the
classic chaotic Lorenz system as a vehicle to gain insights into
detection and control of USSs. In Sec. III, we demonstrate the
working of our random switching framework with examples
from physics and biology. In Sec. IV, we present conclusions
and discussions.

II. FRAMEWORK OF RANDOM SWITCHING CONTROL

We formulate our control and detection framework for
systems described by ẋ = f (x), where the n-dimensional
state variable is x = [x1, . . . ,xn]� ∈ Rn and the smooth vector
field is f (x) = [f1(x), . . . ,fn(x)]�. The aim is to design
a noninvasive controller u(x) to detect and stabilize any
unknown USS, denoted by x∗ = [x∗

1 , . . . ,x∗
n]�. The system

under control can be written as

ẋ = f (x) + u(x), (1)

which would converge asymptotically to x∗ such that f (x∗) =
0 and u(x∗) = 0. We choose the following general proportional
feedback controller:

u(x) = K · [ y − g(x)], (2)

where the diagonal matrix K = diag(k1, . . . ,kn) character-
izes the coupling between the system and the controller,
y = [y1, . . . ,yn]� ∈ Rn represents a reference point of the
target USS, and g(x) = [g1(x), . . . ,gn(x)]� is a measurement
function or an output of the controlled system. For a real-world
system, it is practically infeasible to control every dynam-
ical variable. However, as our mathematical analysis below
indicates, controlling every component is unnecessary—an
appealing feature of our control scheme. Without loss of
generality, we consider the challenging case where only one
dynamical variable is subject to control, i.e., we set the matrix
K as ki = k �= 0 and kj = 0 for j �= i. To search for any
unknown USS, we employ the following random switching
rule to adaptively adjust the reference value yi :

ẏi = ω(t)[gi(x) − yi], (3)

where ω(t) ∈ R is a switching parameter determined by ω(t) =
ωσ (t) for t ∈ In � [n�T,(n + 1)�T ) (n = 0,1,2, · · · ), �T is
the duration of the switching time, and σ (t) in each time
interval In can be regarded as a discrete random variable
taking its values from the index set {+,−}. The corresponding
probability is

P{σ (t) = +|t ∈ In} = P{σ (t) = −|t ∈ In} = 1/2. (4)

We see that ω+ (ω−) takes on positive (negative) values that
can be adjusted to yield optimal searching.

To motivate a mathematical analysis of our control and
detection framework, we perform a benchmark study using
the classic chaotic Lorenz system [40]: ẋ1 = σ (x2 − x1), ẋ2 =
x1(ρ − x3) − x2, and ẋ3 = x1x2 − βx3, for σ = 10, β = 8/3,
and ρ = 28. There are three USSs: one of the saddle type
denoted as P1(0,0,0), and the other two being focuses denoted

as P2,3(±√
[β(ρ − 1)], ± √

[β(ρ − 1)],ρ − 1), as shown in
Fig. 1(a). The controlled Lorenz system is

ẋ1 = σ (x2 − x1), ẋ2 = x1(ρ − x3) − x2 + k(y − x2),
(5)

ẋ3 = x1x2 − βx3, ẏ = ω(t)(x2 − y),

where the measurement function is chosen to be g(x) = x2

and the controller k(y − x2) with the coupling strength k2 = k

is introduced into the second variable of the Lorenz system.
Figure 1(b) shows the behavior of the controlled system, where
one control realization for each initial condition set is depicted.
We see that all USSs can be controlled and detected. Under
control, each USS may be regarded as an “attractor” with
a basin. Figure 1(c) shows the approximate distribution of
the basin volume for each USS. According to the recently
developed basin stability theory [41,42], the extensive basin
implied in Fig. 1(c) indicates that the controller is quite robust
against perturbation. Moreover, we find that, when the initial
condition is chosen from the interval between P2 and P3,
the controlled system will converge to one of the USSs with
probability 1, and the probability to converge to a specific
USS is inversely proportional to the distance between it and
the initial condition. Note that, if the random variable ω(t) in
the controlled Lorenz system is fixed (either ω+ or ω−), our
control method reduces to the method based on deterministic
stable or unstable low-pass filters [43]. The results are shown
in Figs. 1(d) and 1(e). In this case, however, not all USSs
can be stabilized simultaneously with a single low-pass filter.
Intuitively, one might regard our random switching scheme as
some kind of averaging process of the two types of low-pass
filtering. However, it is difficult to understand the key feature
of our framework that the probability of convergence to an USS
approaches unity. In the following we provide a mathematical
analysis to understand the counterintuitive phenomenon.

First, we note that, in spite of random switching, our
adaptive method possesses a fast-slow manifold separation
[27], due to the fact that |ω| � k for sufficiently large k.
The rate of change in the reference signal y is thus much
smaller than that of the dynamical variable x, and dissipation
introduced by the controller will drive the system to a low-
dimensional subspace. As a result, starting from an initial
condition, within a short time period the controlled system
approaches a hypersurface defined by ẋi = 0 (i = 1,2, . . . ,n).
When this occurs, the slow variable y evolves according to
Eq. (3) and the controlled variable x preserves the relation
ẋi = 0 (i = 1,2, . . . ,n). On the hypersurface, Eq. (3) becomes

ẏ = ω(t)[h(y) − y], (6)

where h(y) is a smooth function [the index i in Eq. (3) has been
omitted for simplicity]. An example of the fast-slow manifold
separation for the controlled Lorenz system is shown in
Fig. 2, with the corresponding hypersurface given explicitly by
x2 − y = h(y) − y, where y = x2 − [(ρ − 1)x2 − x3

2/β]/k.
Without loss of generality, we assume that the dynami-

cal system on the hypersurface is nondegenerate, i.e., the
algebraic equation h(y) − y = 0 has m distinct roots in the
order y∗

1 < y∗
2 < · · · < y∗

m, corresponding to the m USSs
in the uncontrolled system, respectively. In addition, we
assume h′(y∗

i ) − 1 �= 0 for i = 1,2, . . . ,m. Now consider
an initial condition between two adjacent fixed points, y∗

1
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FIG. 1. (Color online) (a) A chaotic attractor of the Lorenz system with three USSs (highlighted). (b) Time series x2(t) of the controlled
Lorenz system starting from different initial conditions. (c) Approximate distributions of the “basin” volumes of the USSs. The probability
of convergence to each USS is calculated using 100 independent control realizations. For the previous method, the time series x2(t) is used:
ω(t) ≡ ω+ (d) and ω(t) ≡ ω− (e), where ω+ = 1, ω− = −1, k = 130, and time window �T = 1. The initial conditions are from the subspace
defined by x1(0) = x2(0) = x3(0) = y2(0).

and y∗
2 . The nondegeneracy assumption stipulates that the

trajectory follows that determined by y0 = y(0) ∈ (y∗
1 ,y∗

2 ),
where h(y∗

1 ) − y∗
1 = h(y∗

2 ) − y∗
2 = 0 such that h′(y∗

1 ) > 1 and
h′(y∗

2 ) < 1, as illustrated in Fig. 3(a). For ω(t) ≡ ω+ (ω−), the
fixed point y∗

2 (y∗
1 ) is attractive. Let y+1,y+2, . . . ,y+n, . . . be

the system states at each switching instant n�T for the case
ω(t) ≡ ω+. We have limn→∞ y+n = y∗

2 , as shown in Fig. 3(b).

Analogously, letting y−1,y−2, . . . ,y−n, . . . be the correspond-
ing states for the case ω(t) ≡ ω−, we have limn→∞ y−n = y∗

1 ,
as shown in Fig. 3(c). In our control scheme, ω(t) = ωσ (t)

switches its value between ω+ and ω− randomly at each time
instant n�T and keeps its value unchanged for the duration
�T . As a result, the system state yn = y(n�T ) takes on
its value from the grid yi(i = 0, ± 1, ± 2, . . . ) stochastically
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FIG. 2. (Color online) For the controlled Lorenz system, an
example of fast-slow manifold separation, where the dotted line is
calculated by setting ẋ1 = ẋ2 = ẋ3 = 0. Four different trajectories
are shown.

with the transition probability

P(yn+1 = yi+1|yn = yi)

= P(yn+1 = yi−1|yn = yi) = 1/2. (7)

The dynamics for yn can thus be regarded as a random walk
without bounds on a one-dimensional grid.

Typically, the process of stabilizing an unknown USS
terminates after several successive switches and the variation
of y(t) is small: var[y(t)] < δ for some given small δ. To obtain
a quantitative criterion, we define two stopping regions through

*

  y

*

  y   y   y   y   y   y  y

FIG. 3. (Color online) Schematic illustration of random switch-
ing control. (a) Function h(y) − y and two neighboring nonde-
generated fixed points y∗

1 and y∗
2 . (b,c) Dynamics of the system

ẏ = ω(t)[h(y) − y] starting from initial condition y0 for ω(t) ≡ ω+
and ω(t) ≡ ω−, respectively. (d) System dynamics subject to random
switching control ω(t) = ωσ (t), which can effectively be described as
a random walk with absorbing boundaries.

two ε neighborhoods of the fixed points: (y∗
1 ,y∗

1 + ε) and
(y∗

2 − ε,y∗
2 ), where ε is related to δ and the stabilization process

stops as y(t) enters either region. Under this configuration, y(t)
becomes a random walk on a finite grid with two absorbing
boundaries: {y−n− , . . . ,y−1,y0,y+1, . . . ,y+n+}, as shown in
Fig. 3(d). Here, n+ = � T+

�T
, where T+ is the first time that

y(t) enters the right region (y∗
2 − ε,y∗

2 ) if ω(t) ≡ ω+, and
n− = � T−

�T
 is similarly defined. Using the theory of Markov

chains [44], we arrive at the following lemma, which provides
an understanding of the dynamical behaviors of the controlled
system.

Lemma. Assume that the system ẏ = ω(t)[h(y) − y] starts
from y0, which is selected from the interval between the two
adjacent fixed points y∗

1 and y∗
2 . Then, (i) this system finally

enters one of the absorbing regions of y∗
i with probability 1; (ii)

the probabilities of absorption for y∗
1 and y∗

2 are n−/(n+ + n−)
and n+/(n+ + n−), respectively; and (iii) starting from y0, the
expected time to the absorption state is n−n+�T .

III. NUMERICAL EXAMPLES

A. Network model of hematopoietic stem cells

We first present results of controlling and detecting USSs
in a cellular differentiation network model for hematopoietic
stem cells [45]:

ẋ1 = eN − x1, ẋ2 = 5x1

1 + x1

1

1 + x4
3

− x2,

ẋ3 = 5x4

1 + x4

1

1 + x4
2

− x3, ẋ4 = eM

1 + x4
2

− x4,

(8)

ẋ5 =
(

x1x4

1 + x1x4
+ 4x3

1 + x3

)
1

1 + x4
2

− x5,

ẋ6 =
(

x1x4

1 + x1x4
+ 4x2

1 + x2

)
1

1 + x4
3

− x6,

where x2 and x3 represent the expression levels of two
lineage-specific counteracting suppressors Gfi-1 and Egr(1,2),
respectively, which are activated by their transcription factors
x1 and x4 and regulate the downstream genes x5 and x6.
This model in fact describes the interplay between the
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No. of  independent simulations

x 2

Center of cluster No. 1
Center of cluster No. 2
Center of cluster No. 3
Divergent
Identified value

FIG. 4. (Color online) Clusters formed in executing random
switching control for the cell system (8), where the coupling strength
is k2 = 8 and other parameters are �T = 10 and ω± = ±1.
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TABLE I. Coordinates of the USSs of system (8) and the
corresponding estimated errors.

Approximated coordinates of the USSs Error

U1 (0.5, 1.66, 0.03, 0.06, 0.02, 2.53) O(10−4)
U2 (0.5, 0.75, 1.05, 0.38, 1.69, 0.83) O(10−4)
U3 (0.5, 0.19, 1.66, 0.50, 2.69, 0.10) O(10−5)

two suppressors during cellular differentiation for neutrophil
and macrophage cell fate choices, which is a paradigmatic
model for characterization of USSs in biological networks
[46,47]. Setting parameters as eM = eN = 0.5, we apply our
random switching control to x2, an experimentally accessible
dynamical variable [45]. A representative result is shown in
Fig. 4, where 100 independent control runs are carried out
and the initial value of x2 is chosen randomly from the interval
[0,1]. We see that the controlled values of x2 form four clusters,
where the convergent points about the three USSs are indicated
as clusters 1–3 and the divergent cases are marked by the dots
on the line x2 = 0. Calculating the center of each cluster of
the convergent points, we obtain the approximate locations of
the USSs, as listed in Table I, where U1 and U3 correspond
biologically to two cell fate states, and U2 is an unstable
intermediate state that separates the two basins of convergence.
The results here agree well with the previous results on the
same system [46], obtained using a much more sophisticated
method.

B. A gene regulatory network

We next present a biophysically detailed GRN model of 16
variables, which was derived to understand the mechanism
of endogenous circadian rhythm in mammalian cells [48].
(The detailed model equations can be found in the Appendix.)
Without control, sustained oscillations of a period of about
24 h can be observed, as shown in Fig. 5(a). When switching
control is applied to one of the dynamical variables (Mp), we
obtain the biologically significant [48] steady state solution
with all components being positive, as shown in Fig. 5(b).

C. Time-delayed Mackey-Glass system

We also study control-based detection of USSs for
an infinite-dimensional dynamical system, the time-delayed
Mackey-Glass system:

ẋ = ax(t − τ )

1 + [x(t − τ )]b − cx
, (9)

where τ is the time delay, and a, b, and c are parameters.
This system was originally proposed to model the dynamics of
regeneration of blood cells [49], and it has been a paradigmatic
model for higher-dimensional nonlinear dynamical systems.
For example, for τ = 3.18, a = 2, b = 10, and c = 1, the
system exhibits hyperchaos with multiple positive Lyapunov
exponents [12]. We apply the following switching control:

ẋ = ax(t − τ )

1 + [x(t − τ )]b − cx
+ K(y − x),

ẏ = ω(t)(x − y), ω(t) = ωσ (t), t ∈ In,

(10)

where K = 10, ω+ = 1, ω− = −1, and �T = 5. We obtain
three USSs, as shown in Fig. 6.

D. Coupled mechanical oscillators

To give an example of physical significance, we consider
a system of coupled mechanical oscillators in a parameter
regime that exhibits multistability. While a stability analysis
of each single oscillator is feasible, to identify all the
steady states of coupled oscillators, stable or unstable, is
generally a challenging task. To be concrete, we test a pair
of bidirectionally coupled dissipationless Duffing oscillators
[50]:

ẋ1 = x2, ẋ2 = x1 − x3
1 + c1(y1 − x1),

ẏ1 = y2, ẏ2 = y1 − y3
1 + c2(x1 − y1),

(11)

where c1,2 are coupling coefficients. A single oscillator,
without coupling, is a Hamiltonian system with three equilibria
and various types of periodic orbits, as shown in Fig. 7(a).
With weak coupling there are more unstable equilibria and
chaos can arise, as shown in Fig. 7(b). We select x2 and y2

to be the variables to implement random switching control.
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FIG. 5. (Color online) (a) Dynamics of three mRNA in the circadian rhythm model with sustained oscillation. (b) Convergence to the
biologically significant USS with switching control.
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FIG. 6. (Color online) For the Mackey-Glass system with differ-
ent initial conditions x(t) ≡ x0 for t ∈ (−τ,0), three controlled and
detected USSs.

Because of lack of damping, an arbitrarily low value for
the cutoff frequency is required. To overcome this difficulty,
we implement both linear and derivative feedbacks [21] in

the controller, with random switching applied to the linear
feedback term only. In total, there are nine unstable equilibria.
Starting from different initial conditions, the probabilities of
convergence to the nine equilibria are shown in Fig. 7(c). The
multistable nature of the system is indicated in Fig. 7(d).

IV. DISCUSSIONS AND CONCLUSIONS

To summarize, we articulate a model-independent random
switching control scheme to stabilize and therefore uncover all
USSs, regardless of their type, in high-dimensional dynamical
systems. The method is mathematically justified using the
concept of fast-slow manifold separation and the Markov-
chain theory, and numerically validated using examples of
biological and physical significance. USSs are particularly
important for biological networks, as they are fundamental
to phenomena such as cell fate determination. Our control and
detection framework may provide a platform to understand
biological systems of current interest. Also this framework
will be potentially useful for investigating similar problems in
fractional dynamical systems [51].
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FIG. 7. (Color online) (a) Dynamics of an uncoupled Duffing oscillator with three equilibria. (b) Chaotic behavior in the weakly coupled
Duffing oscillator system for c1,2 = 0.1. Our control method yields all nine unstablse equilibria, marked as red squares. (c) The probabilities of
convergence to the nine equilibria. (d) Composition of the subplots in (c), where the surface in (d) corresponds to the highest probability from
the subplots in (c).
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There are a number of issues associated with success of
control and detection. First, the switching duration �T has a
direct effect on control performance. Starting from a random
initial condition, from the standpoint of control energy it is
desired to find the nearest USS. According to our lemma, the
probability ratio for a pair of adjacent USSs is n+/n−, where
n+ = �T+/�T  and n− = �T−/�T , and T+ and T− are
determined by the distances between the starting position and
the respective steady states. To approximate T+/T− by n+/n−,
we need to choose the switching window �T to be as small as
possible to minimize the control energy. However, if �T is too
small, the expected value of the convergence time, given by
n−n+�T ∼ T−T+/�T , will be large. There is thus a tradeoff
between control energy and time when choosing the value of
�T . Second, in our analysis, the dynamical system for y(t)
is assumed to be nondegenerate, which is reasonable because
a scalar measurement function g(x) generally preserves the
topological property of the USSs [29]. Third, the quantity ω(t)
in Eq. (3) is the cutoff frequency of the low-pass filter [30], so
its absolute value should be smaller than the system damping
coefficient. The coupling strength k should be larger than some
threshold to stabilize the USSs and to realize the fast-slow
manifold separation. To satisfy the threshold requirement,
some adaptive schemes for varying k, e.g., k̇ = σ [g(x) − y],
can be considered [52].

To detect USSs and to control the system into a USS are
two related issues but they are usually treated separately in the
literature. Our random switching scheme represents a unifying
scheme to accomplish both tasks in a single framework. Not
only that, with respect to each task our scheme has advantages.
In fact, our method takes advantage of both stable and unstable
filters, while reducing the computational cost. These features
can be argued, as follows.

For detection, our random switching framework requires
no a priori information about the system or the USSs. In
particular, compared with the previous proportional or time-
delayed feedback control methods [18–20], our method does
not require the position of the steady state; it can find the
unknown steady state adaptively. In addition, previous works
[21–23,25–30] showed that stable filters can detect all USSs of
the saddle type, while unstable filters can detect all USSs of the
nonsaddle type. In order to detect all USSs, it is necessary to
scan through the space of initial conditions twice. However, our
random switching scheme is capable of detecting both saddle
and nonsaddle types of USSs, requiring searching through the
initial condition space only once.

For control of a nonlinear dynamical system, it is generally
desired that the system be driven to the nearest steady state in
finite time but, with a single stable or unstable filter, this would
not be possible since the type and the location of the nearest
USS are a priori unknown. In contrast, our random switching
scheme can adaptively drive the system to the nearest USS
with high probability, as exemplified in Fig. 1(c), which is
mathematically guaranteed (lemma). Another issue is that, in
the situation where there are only saddle type USSs or only

nonsaddle type USSs, a single stable or unstable filter may
drive the system into an irrelevant attractor far away from
the desirable working region of the phase space, as shown in
Fig. 1(e). However, our scheme typically drives the system
to some USS near the initial condition with high probability,
thereby avoiding any undesirable divergence to some distant
attractor.
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APPENDIX: A 16-DIMENSIONAL GENE
REGULATORY NETWORK

We consider a model for the dynamics of endogenous
circadian rhythm in mammalian cells, which consists of 16
kinetic equations [48]. The equations for the three basic
variables, namely, mRNA Per , Cry, and Bmal1, are

dMp

dt
= vsP

Bn
N

Kn
AP + Bn

N

− vmP

MP

KmP + MP

− kdmpMP ,

dMC

dt
= vsC

Bn
N

Kn
AC + Bn

N

− vmC

MC

KmC + MC

− kdmcMC,

dMB

dt
= vsB

Km
IB

Km
IB + Bm

N

− vmB

MB

KmB + MB

− kdmbMB.

There are also four variables for phosphorylated and nonphos-
phorylated proteins PER and CRY in the cytosol, which are
governed by

dPC

dt
= ksP MP − V1P

PC

KP + PC

+ V2P

PCP

Kdp + PCP

+ k4PCC − k3PCCC − kdnPC,

dCC

dt
= ksCMC − V1C

CC

KP + CC

+ V2C

CCP

Kdp + CCP

+ k4PCC − k3PCCC − kdncCC,

dPCP

dt
= V1P

PC

Kp + PC

− V2P

PCP

Kdp + PCP

− vdPC

PCP

Kd + PCP

− kdnPCP ,

dCCP

dt
= V1C

CC

Kp + PC

− V2C

CCP

Kdp + CCP

− vdCC

CCP

Kd + CCP

− kdnCCP .

Next, there are four variables and equations for the phospho-
rylated and nonphosphorylated PER-CRY complex in the
cytosol and nucleus:

dPCC

dt
= −V1PC

PCC

Kp + PCC

+ V2PC

PCCP

Kdp + PCCP

− k4PCC + k3PCCC + k2PCN − k1PCC − kdnPCC,

dPCN

dt
= −V3PC

PCN

Kp + PCN

+ V4PC

PCNP

Kdp + PCNP

− k2PCN + k1PCC − k7BNPCN + k8IN − kdnPCN,
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dPCCP

dt
= V1PC

PCC

Kp + PCC

− V2PC

PCCP

Kdp + PCCP

− vdPCC

PCCP

Kd + PCCP

− kdnPCCP ,

dPCNP

dt
= V3PC

PCN

Kp + PCN

− V4PC

PCNP

Kdp + PCNP

− vdPCN

PCNP

Kd + PCNP

− kdnPCNP .

In addition, there are four variables and equations for the phosphorylated and nonphosphorylated protein BMAL1 in the cytosol
and nucleus:

dBC

dt
= ksBMB − V1B

BC

Kp + BC

+ V2B

BCP

Kdp + BCP

− k5BC + k6BN − kdnBC,

dBCP

dt
= V1B

BC

Kp + BC

− V2B

BCP

Kdp + BCP

− vdBC

BCP

Kd + BCP

− kdnBCP ,

dBN

dt
= −V3B

BN

Kp + BN

+ V4B

BNP

Kdp + BNP

+ k5BC − k6BN − k7BNPCN + k8IN − kdnBN,

dBNP

dt
= V3B

BN

Kp + BN

− V4B

BNP

Kdp + BNP

− vdBN

BNP

Kd + BNP

− kdnBNP .

Finally, there is an equation describing the inactive complex between PER-CRY and CLOCK-BMAL1 in the nucleus:

dIN

dt
= −k8IN + k7BNPCN − vdIN

IN

Kd + IN

− kdnIN .

We use the model parameters as in Ref. [48]. Demonstration of successful control to yield the biologically significant USS is
shown in the main text.
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