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Detecting unstable periodic orbits (UPOs) in chaotic systems based solely on time series is a fundamental
but extremely challenging problem in nonlinear dynamics. Previous approaches were applicable but mostly for
low-dimensional chaotic systems. We develop a framework, integrating approximation theory of neural networks
and adaptive synchronization, to address the problem of time-series-based detection of UPOs in high-dimensional
chaotic systems. An example of finding UPOs from the classic Mackey-Glass equation is presented.
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The most fundamental building blocks of any chaotic
set, attracting or nonattracting, are unstable periodic orbits
(UPOs) [1]. Consider, for example, a chaotic attractor. The
motion of a typical trajectory can be regarded as consisting of
intermittent “epochs” of visits to the neighborhoods of various
UPOs and, as a result, the natural measure of the attractor is
determined by the unstable eigenvalues of the UPOs [2]. A
similar picture arises for nonattracting chaotic sets leading to
transient chaos [3], in that the natural measure of such a set can
be characterized by UPOs in a way similar to that for chaotic
attractors [4]. UPOs are also pivotal for many other areas of
research, such as controlling chaos [5], where a central task is
to stabilize the system about some UPO that gives rise to desir-
able performance. In the field of quantum chaos, the celebrated
Gutzwiller formula expresses the quantum density of states in
terms of classical periodic orbits [6]. It is no surprise then that
investigations of UPOs played an extremely important role in
the development of nonlinear dynamics and chaos.

In the experimental study of nonlinear systems, a common
situation is that the system equations are not known but one
is interested in detecting UPOs. Consequently, one must rely
on measured time series to accomplish this task, and there
has been a significant amount of previous work on this topic
[7–12], where some pioneering approaches were based on the
recurrence of chaotic trajectories in the reconstructed phase
space [7–9], including the approach articulated by Kostelich
and Lathrop (LK) [8]. In particular, given a time series, one
first reconstructs a phase-space trajectory by using Takens
delay-coordinate-embedding method [13]. One next follows
the phase-space evolution and records the recurrence time,
the time that it takes for the trajectory to return to a small
neighborhood of some recurrent point. Statistical significance
test can then be conducted to determine whether the recurrent
point belongs to some UPO. This approach is not only
applicable to chaotic attractors but also to detecting UPOs
from transiently chaotic systems where only short segments of
informative time series are available [10]. In spite of its wide
usage, a basic limitation of the LK method lies in the difficulty
with high-dimensional chaotic systems. This is especially the
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case when detection of UPOs of long periods is attempted,
due to the difficulty to identify long recurrences. In fact, due
to the basic characteristics of the dynamical recurrences in
chaotic systems, the LK method is best suited for detecting
UPOs from low-dimensional chaotic systems. The problem of
detecting UPOs in high-dimensional chaotic systems remains
outstanding in applied nonlinear dynamics.

In this paper, we articulate a general method to detect
UPOs in high-dimensional chaotic systems by integrating the
approximation theory of neural networks [14,15] and adaptive
delayed feedback control [16,17]. In particular, our method
consists of three steps: (1) reconstructing from time series
the phase space of the underlying system using the standard
delay-coordinate embedding technique, (2) adaptively training
proper neural networks in a bounded region in the phase space
to obtain an estimate of the vector field of the underlying
system, and (3) using adaptive control or synchronization to
detect UPOs. We demonstrate that our method is capable
of detecting UPOs from high-dimensional chaotic systems
modeled, for example, by delay-differential equations. We
expect our method to find applications in experimental study
of high-dimensional nonlinear dynamical systems.

We consider nonlinear dynamical systems described by ẋ =
F (x), where F : Rn → Rn is a continuous vector function. We
assume that the system has a chaotic attractor A contained
in some bounded set � ⊂ Rn in the phase space and the
n-dimensional state variable obeys the constraint x(t) =
[x1(t),x2(t), . . . ,xn(t)]� ∈ � ⊂ Rn. The output of the system
is defined as y(t) = h(x(t)), where h is a smooth observable
function. In the special case where h is an identity function,
each component of the state variable can be measured: y(t) =
x(t). In experimental situations, however, not all but only a
subset of the dynamical variables can be measured; i.e., y(t) =
h(xj1 (t),xj2 (t), . . . ,xjq

(t)), where the arguments in h are
q(<n) components selected from the n-dimensional state
variable. In this case, we use the classic Takens embedding
theory to reconstruct the phase space. To be illustrative, we
consider the case where h is a scalar function, i.e., only a scalar
time series is available, which is denoted by y(t) = h(x). The
reconstructed vector is z(t) = [y(t),y(t + τ ), . . . ,y(t + (L −
1)τ )]� ∈ RL, where L is the embedding dimension and τ

is a properly chosen delay time. The vector time series z(t)
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can be regarded as being generated by the following “virtual”
dynamical system: ż = F̄(z), where F̄ : RL → RL is a vector
field. In general, for faithful reconstruction, the vector time
series z(t) needs to cover the underlying chaotic attractor
Ā ⊂ �, where � is a bounded set in RL.

We next estimate the vector field F̄ by using the approx-
imation theory of neural networks [14,15], which stipulates
that, for each component of F̄, say F̄i(i = 1, . . . ,L), and
arbitrary small δ > 0, there exists a radial-basis function
(RBF) neural network Ni(z), such that the inequality |Ni(z) −
F̄i(z)| < δ holds for all z ∈ �. The vector field can then
be approximated by all the properly weighted RBF neural
networks. The weights of the neural networks can be obtained
through a standard training process using the method of
adaptive synchronization and parameter estimation [17]. To
be concrete, we write N = [N1,N2, . . . ,Nn], which can be
further written in a compact way asN (ζ ,P,z) = P × G(ζ ,z),
where ζ = [ζ1,ζ2, . . . ,ζm] with all ζj ∈ Rn distributed evenly
in the phase-space area �, P = {pij }L×m is a weight matrix,
and G(ζ ,z) = [g1(z),g2(z), . . . ,gm(z)]� with each gj (z) =
exp(−λj‖z − ζj‖2) being a Gaussian type of RBF centered at
ζj . The problem of training the weight matrix P thus becomes a
problem of adaptive synchronization and parameter estimation
for the following system:

u̇ = P × G(ζ ,u) + K · (u − z), (1)

where K · (z − u) is a feedback coupling term and each ele-
ment of K = diag{k1, . . . ,kn} represents a dynamic coupling
strength. The adaptive rules for the dynamic coupling strengths
and weight parameters can be taken as

k̇i = −δi(ui − zi)
2, ṗij = −rij gj (u)(ui − zi),

(2)
i = 1,2, . . . ,L, j = 1,2, . . . ,m,

where δi,rij are constants that can be adjusted to achieve an
optimal convergence rate. According to the approximation
theory and the adaptive approach, the weight matrix P will
fluctuate about a constant matrix P̄ = [p̄ij ]n×m when the
system u(t) nearly synchronizes with the measured time series
z(t). After the adaptive synchronization training, the vector
field F̄ can be reconstructed in the following sense: For some
small δ > 0, there exists a positive time t0 such that for t > t0,

∣∣∣∣∣∣

m∑

j=1

p̄ij gj (z(t)) − F̄i(z(t))

∣∣∣∣∣∣
< δ, i = 1,2, . . . ,L, (3)

for z ∈ Ā. Consequently, the estimated system for z can be
expressed as

ż = P̄ × G(ζ ,z). (4)

In general, the vector field associated with system (4) satisfies
the condition (3) only with respect to the measured time series.
However, because of ergodicity of chaotic trajectories in the
region of Ā, the validity of the condition (3) in Ā is guaranteed.

To detect UPOs in the estimated system (4), we utilize
the adaptive delayed feedback control (ADFC) method [17],
which requires no knowledge about the periods of the UPOs
in advance. In particular, we introduce an ADFC term into
system (4):

ż = P̄ × G(ζ ,z) + C(t), (5)

where C(t) is a feedback control term chosen to be C(t) =
�(t) · [z(t − τ ) − z(t)]. For convenience, all components of
the control term except one can be set to zero, i.e., � =
diag{0, . . . ,0,γi,0, . . . ,0}. In order to maintain boundedness
of the controlled system and noninvasiveness of the ADFC
method [17], we need to consider some truncated function and
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FIG. 1. (Color online) (a) Three UPOs of periods T1 = 1.48, T2 = 3.17, and T3 = 4.53, computed directly from the original Lorenz system.
(b) The corresponding UPOs of approximately the same periods (T ∗

1 = 1.557, T ∗
2 = 3.084, and T ∗

3 = 4.588, respectively), detected adaptively
from the measured data based on system (6). (c) Spectra of the UPOs in panels (a) and (b). (d) Three detected UPOs of longer periods: T ∗

4 = 6.3,
T ∗

5 = 6.9, and T ∗
6 = 9.6.
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FIG. 2. (Color online) (a) Time series x2(t) from the Lorenz system, (b) reconstructed attractor, (c) an UPO detected from the reconstructed
attractor, and (d) time evolution of UPO trajectories, where the upper panel exhibits the detected UPO in panel (c) and the lower panel is the
directly computed period-T3 UPO shown in Fig. 1(a).

impulsive strategy by adaptively adjusting the control strength
and the delay variable τ according to

τ̇ = −r1[zi(t − τ ) − zi(t)], γ̇i = r2[zi(t − τ ) − zi(t)]
2,

where r1 and r2 are positive constants that can be adjusted to
achieve an optimal convergence rate. The controlled system (5)
will asymptotically converge to one of the UPOs and, at the
same time, τ approaches the period of the UPO.

To test our method, we first conduct benchmark test using
the classic Lorenz system [18] for which many UPOs have
been reported [19]: [ẋ1,ẋ2,ẋ3] = [10(x2 − x1),−10x1x3 +
28x1 − x3,10x1x2 − 8x3/3]. The system has a chaotic attractor
in the compact set � = [−2,2] × [−3,3] × [0,5]. Assume that
time series from the state variable x(t) = [x1(t),x2(t),x3(t)]�
are available. We choose the centers ζj of the RBF neural
networks N as the grid points of � with grid size 1
and construct the networks N (ζ ,P,x) by setting gj (x) =
exp(−‖x − ζj‖2/8). With the measured data of x(t) and the
configuration of the RBF neural networks N (ζ ,P,x), we
train the weight matrix P according to the rules in Eq. (2).
After obtaining the trained networks N (ζ , P̄,x), we utilize

the ADFC method to find the UPOs. Specifically, the trained
network system with ADFC is

ż1 =
m∑

j=1

p̄1j gj (z), ż2 =
m∑

j=1

p̄2j gj (z) + C(t),

ż3 =
m∑

j=1

p̄3j gj (z), τ̇ = −r1{z2[t − τ (t)] − z2(t)}, (6)

γ̇ = r2{z2[t − τ (t)] − z2(t)}2.

To guarantee the boundedness of the controlled system, we
use the impulsive strategy proposed in Ref. [17] and take
the truncated function C(t) = I{|S(t)|<C0}S(t) + C0I{S(t)>C0} −
C0I{S(t)<−C0}, where IB represents the indication function of
the set B, S(t) = γ (t){z2[t − τ (t)] − z2(t)}, and C0 = 0.1 is an
arbitrarily small constant. Starting from different initial condi-
tions, various UPOs can be found from system (6). A compar-
ison between these detected UPOs with the UPOs computed
directly from the original Lorenz system indicates no signifi-
cant difference, as shown in Figs. 1(a) and 1(b). The similarity
between the detected and the original UPOs can also be seen
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in the frequency domain, as shown in Fig. 1(c). UPOs of much
longer periods can also be found, as illustrated in Fig. 1(d).

We next assume that only a scalar time series from the
Lorenz system is available, say y(t) = h(x(t)) = x2(t), as
shown in Fig. 2(a). Application of the delayed embedding
method leads to a reconstructed vector with components
z1(t) = y(t), z2(t) = y(t − τ0), and z3(t) = y(t − 2τ0), where
we choose τ0 = 0.1. A reconstructed attractor is shown in
Fig. 2(b). We set up and adaptively train the RBF neural
networks using z = [z1,z2,z3]�. A detected UPO is shown
in Fig. 2(c). Figure 2(d) shows that there is no qualitative
difference between the detected UPO and the corresponding
one computed directly from the original Lorenz system. This
result indicates that our UPO-detection strategy is applicable
to common experimental situations where only partial
information about the dynamical variable of the underlying
system is available.

We then consider the realistic situation where time series
are measured at lower sampling rate and are subject to
noise by using the Hindmarsh-Rose system [20] with a
chaotic attractor: [ẋ,ẏ,ż] = [2y − x3/4 + 5.84x2/2 − 0.2z +
5.98,1.0 − 5x2/4 − y,0.4(0.5x + 1.6) − 0.01z], which de-
scribes the spiking-bursting behavior of the membrane po-
tential x of a single neuron, where y and z represent the
transport rates of ions across the membrane through the ion
channels. Figure 3(a) shows the chaotic attractor. We first use
�̂(t) = �(t)[1 + n(t)] to generate the time series perturbed
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FIG. 3. (Color online) For the Hindmarsh-Rose neuron model,
(a) a chaotic attractor, (b) noise-perturbed and sparsely sampled time
series, (c) a detected UPO from the time series data in panel (b) with
the period T = 91.47, (d) the corresponding UPO computed directly
from the model with the period T = 91.22, and (e) MSE vs the noise
level.

by multiplicative noise, where n(t) is a white noise term of
strength 0.001, and � ≡ x,y, or z. In addition, in each unit
time interval, we sample 10 points from [x̂(t),ŷ(t),ẑ(t)] to
generate the measured data, denoted by [x̃(t),ỹ(t),z̃(t)], as
shown in Fig. 3(b). The corresponding sampling rate is 10 Hz,
which is far below the frequency of about 103 Hz of the
original time series in Fig. 3(a). As shown in Figs. 3(c)–3(d),
the detected UPO is qualitatively consistent with the UPO
computed directly from the original Hindmarsh-Rose neuron
model. To assess the robustness of our method against additive
noise, we consider �̄(t) = �(t) + n�(t), where n�(t) obeys
the normal distribution of strength proportional to the signal
rms. Figure 3(e) shows the mean square error (MSE) between
the vector field functions of the estimated neural-network
model and the original. The MSE assumes much lower values,
below 0.1, until the noise level increases through a threshold,
which is about 1.4% of the signal rms. Similar results have
been obtained for the noise-perturbed time series from the
Lorenz system [21]. Thus, the noise tolerance of our approach
is approximately twice as that of the classic LK algorithm [8].

Finally, we demonstrate the power of our method to detect
UPOs in high-dimensional chaotic systems. We consider the
time-delayed Mackey-Glass system [22]:

ẋ = ax(t − τ )

1 + [x(t − τ )]b
− cx, (7)

where τ is the time delay and a, b, and c are parameters. The
model was originally introduced to describe the dynamics of
regeneration of blood cells, but it has become a paradigmatic
model for studying higher-dimensional chaos. In particular,
due to the time delay, the right-hand side of the equation
becomes a functional, so in principle the system is an
infinitely dimensional dynamical system. To be concrete, we
set a = 2, b = 10, c = 1, and τ = 3.18. The system thus
exhibits a hyperchaotic attractor, as shown in Fig. 4(a), with
multiple positive Lyapunov exponents [21]. A representative
UPO embedded in the attractor [23] is also shown, which
is obtained by using the ADFC method applied directly
to the original Mackey-Glass system. To detect the UPO
from the time series x(t), we need to choose RBF neural
networks with the ability to reconstruct functionals. This can
be accomplished [14] by replacing the basis functions with
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FIG. 4. (Color online) (a) A chaotic attractor of the Mackey-Glass
system and an UPO of period about T = 7.61 computed directly from
system equations. (b) UPO in panel (a) and the corresponding UPO
(of period T ∗ = 7.60) detected from our reconstructed system of RBF
neural networks.
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the basis functionals gj (xt ) = exp{−λj‖xM
t − ζ j‖2

RM }, where
xM

t = [xt (θ1), . . . ,xt (θM )]� ∈ RM holds for any continuous
function xt ∈ C([−τ,0],R). We choose M = 2, θ1 = 0, θ2 =
−τ = −3.18 and λj = 1/0.32. Grid points ζ j = [ζj1,ζj2]�
are chosen from the area [0.2,1.4] × [0.2,1.4] with grid size
0.2. Neural networks can then be trained and UPOs can be
detected. Figure 4(b) shows an example of a detected UPO. The
observed consistency between the two UPOs in Figs. 4(a)–4(b)
indicates that our method is capable of detecting UPOs in
high-dimensional chaotic systems.

In summary, we have articulated a general approach to
detecting UPOs embedded in chaotic attractors from time
series. Particularly, using the classic Takens embedding
theorem to reconstruct vector time series from an available
scalar time series, we construct neural networks to obtain
an estimate of the system equations, based on which the
adaptively delayed feedback control method can be used to
detect UPOs. The basic philosophy underlying our approach
is the following: The estimated system equations through the
neural networks are not the exact equations of the original

dynamical system, so it is in general not possible to, for
example, assess and predict the exact dynamical evolution
of the system. However, UPOs are robust building blocks of
any chaotic systems, and they constitute the “skeleton” of the
underlying chaotic set. As a result, detection of UPOs does not
require a very precise equation of the system. The appealing
feature of our method lies in its ability to detect UPOs from
high-dimensional chaotic systems, as we have demonstrated
using the Mackey-Glass delay-differential equation system.
We remark that, in situations where the periods of the UPOs
to be detected are known a priori, algorithms such as those
developed in the field of chaos control [24] can lead to better
performance in terms of accuracy and convergence.
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