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We develop an approach to understanding long chaotic transients in networks of excitatory pulse-coupled
oscillators. Our idea is to identify a class of attractors, sequentially active firing (SAF) attractors, in terms of
the temporal event structure of firing and receipt of pulses. Then all attractors can be classified into two groups:
SAF attractors and non-SAF attractors. We establish that long transients typically arise in the transitional region
of the parameter space where the SAF attractors are collectively destabilized. Bifurcation behavior of the SAF
attractors is analyzed to provide a detailed understanding of the long irregular transients. Although demonstrated
using pulse-coupled oscillator networks, our general methodology may be useful in understanding the origin of
transient chaos in other types of networked systems, an extremely challenging problem in nonlinear dynamics
and complex systems.
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I. INTRODUCTION

Irregular or chaotic transients are ubiquitous in nonlinear
systems, which physically lead to interesting phenomena such
as fractal basin boundaries, chaotic scattering, noise-induced
chaos, etc. [1]. Current theory of transient chaos is mostly built
upon low-dimensional dynamical systems, where the research
focus has been on various dynamical properties of the under-
lying nonattracting chaotic sets, for example, chaotic saddles.
Chaotic transient dynamics in high-dimensional dynamical
systems [2–6], especially in networked systems of significant
physical and biological interest [7–12], has remained to be an
active area of research [1].

The occurrence of chaotic transients can be explained by the
existence of nonattracting chaotic sets. The system can stay in
the vicinity of such a chaotic set for a long time before settling
into an attractor. A nonattracting chaotic set can be created
through the destabilization of a chaotic attractor, as in a crisis
[13]. In networks of pulse-coupled oscillators with excitatory
coupling, chaotic transients were reported [14]. In this type
of systems, an oscillator fires when reaching a threshold and
its state is reset to a lower value. During this process, a pulse
is sent out. The pulse is received by some other oscillators if
they have incoming links from the oscillator. The receipt of the
pulse makes the states of the corresponding oscillators closer
to the threshold for excitatory couplings. Such networks have
been used to study and understand the collective dynamics of
a host of biological systems, such as neural systems, flashing
fireflies, and cardiac pacemaker cells [15–17]. The irregular
transients observed in the excitatory pulse-coupled networks
are chaotic in the sense that they are sensitive to perturbations,
which are mainly due to the excitatory couplings giving rise to
the local expanding dynamics [14]. To understand the origin
of these irregular transients in networked dynamical systems
is extremely challenging, due to nonlinear nodal dynamics and
complex interactions among the nodes. In this regard, the the-
ory of low-dimensional dynamical systems has established that
the origin of chaotic transients is due to nonattracting chaotic
sets in the phase space, and special numerical techniques have
been developed to calculate such chaotic sets [1]. However, it

is difficult to apply these methods to networked dynamical sys-
tems that are typically very high-dimensional. This difficulty
to explore the origin of chaotic transients is hindered by the
fact that such a system can typically possess a large number of
coexisting attractors. Nonetheless, for networks of excitatory
pulse-coupled oscillators, there are dynamical properties that
can be exploited to probe chaotic transients.

A key step in our analysis is a scheme that we articulate
to characterize the attractors of the network system by using
temporal events. In particular, we uncover the existence of a
certain type of attractors: sequentially active firing (SAF, to
be defined below) attractors. Generally, all possible attractors
of the system can then be classified into two types: SAF and
non-SAF attractors. The central result of this paper is that long
chaotic transients occur in the parameter region of transition
between the situations where the SAF and non-SAF attractors
dominate, respectively. The chaotic transients are associated
with the collective destabilization of SAF attractors. In the
transitional region, the basins of SAF and non-SAF attractors
are highly mixed. We show that the destabilization of SAF
attractors tends to induce long irregular transients because the
states of many oscillators are close to the critical value. To our
knowledge, collective destabilization is a new mechanism for
generating long and chaotic irregular transients in networked
dynamical systems.

The organization of this paper is as follows. In Sec. II,
we describe the network model and introduce our scheme to
classify attractors in terms of temporal sequence of events. In
Sec. III, we demonstrate that chaotic transients typically occur
in the transitional region. In Sec. IV, we analyze the detailed
bifurcation processes for SAF attractors and their contribution
to long chaotic transients. Conclusions are drawn in Sec. V.

II. CLASSIFICATION OF ATTRACTORS IN EXCITATORY
PULSE-COUPLED NETWORKS

A. Model description

We consider a system of oscillators interacting with
each other by sending and receiving pulses. Specifically,
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we consider random directed networks of size N with M

directed links, where self-links and multiple connections
are excluded. The maximum number of links is N (N − 1)
for directed networks without self-links. The density of
links p = M/[N (N − 1)] can be used to characterize the
network. The dynamics of an individual oscillator is given
by the Mirollo-Strogatz model, which is equivalent to some
analytically solvable, one-dimensional neuron models such as
the leaky integrate-and-fire model [15]. The state of oscillator
i is described by a phase variable φi(t) that satisfies

dφi/dt = 1. (1)

Upon reaching the threshold � = 1, the oscillator fires a pulse
and its phase φi(t) is reset to zero: φi(t+) = 0. The pulse will
be received by the oscillators that have incoming links from i

after a time delay τ . The associated coupling strength for the
pulse from i to j is εji ≡ ε/kj , which is normalized according
to the number of incoming links of node j (or in-degree of node
j ). The excitatory couplings εji > 0 can drive the state of the
corresponding oscillator close to the threshold. Specifically, a
pulse from oscillator i received by oscillator j at time t will
induce a phase jump in φj (t) according to the following rule:

φj (t+) = min[U−1(U (φj (t)) + εji),1], (2)

where the function U mediating the phase jump is twice con-
tinuously differentiable, monotonically increasing, concave,
and normalized [U (0) = 0 and U (1) = 1]. To be concrete, we
follow Ref. [15] and choose U (φ) = b−1 ln [1 + (eb − 1)φ],
where b > 0. Throughout this paper, b is fixed to be 1.0. It is
useful to define the transfer function H ,

H (φt ,ε
′) = U−1(U (φt ) + ε′), (3)

which characterizes the response of an oscillator of phase
φt to the incoming pulses of total strength ε′ in the
case of subthreshold input: U (φt ) + ε′ < 1. We note that
the so-described pulse-initiated interaction mechanism with
time delay models a range of real-world biological phenomena
[15,16].

B. Classification of attractors

The interactions among oscillators are mediated by the
events of sending and receiving pulses. These events are key
to the emergence and evolution of collective dynamics on the
network. Our idea is then to analyze these events to understand
transients. For convenience, we introduce some notations. Let
Si denote the spiking or firing of the oscillator i from which
a pulse is generated and Rj denote the event that a pulse
from oscillator j is received by others. Events occurring at
two different times are separated by the minus sign “−”.
Therefore, a sequence of events can be recorded for a given
time interval. For example, a segment of an event sequence is
“· · · − R6 − R1S3S5 − S2 − · · ·” showing the events at three
different times. The first event R6 denotes that a pulse from
oscillator 6 is received. The next events R1S3S5 indicate that
oscillators 3 and 5 are firing due to the receipt of pulse from
oscillator 1 directly. This also implies that each of oscillators
3 and 5 has an incoming link from oscillator 1. The third event
S2 denotes the firing of oscillator 2.

The firing events can be further classified into two types:
passive and active [18]. Specifically, for any given oscillator, if
all the incoming pulses directly drive its phase to the threshold,
the firing is passive; otherwise, it is active. The main difference
between active and passive firings is their different responses
to perturbations. Perturbations on the phase of an oscillator
immediately preceding passive firing will disappear after the
firing. In contrast, a small perturbation introduced right before
an active-firing event will change the firing time, albeit slightly.
In this sense, the effect of the perturbation survives through
the firing event, so active firing is capable of spreading fast
perturbations. Due to this dynamical behavior, we highlight
the active firing events by capital letter S.

A key to understanding the origin of the chaotic transients
is to explore the behaviors and organization of the attractors
of the coupled dynamics on networks. However, the large
number of attractors makes it intractable to analyze them
individually. Our idea is to classify the attractors according to
the underlying temporal structures of the firing events. There
are two situations when a firing event occurs, for example, Si

for oscillator i. The first one is that all the generated pulses have
been received before the occurrence of Si . The second is that
some generated pulses have not been received yet. Generally,
the firings (including passive and active firings), which occur
after the receipt of all the generated pulses, are sequential
firings. Of particular importance are active firing events, which
are capable of spreading perturbations. Similarly, an active
firing is called sequential active firing (SAF) if it occurs after
all the generated pulses have been received. If all the active
firing events associated with an attractor are SAF events, it is
called an SAF attractor. Otherwise, it is a non-SAF attractor.

Based on the definition of SAF attractors, we have devel-
oped a numerical procedure to verify whether an attractor is an
SAF or a non-SAF attractor. First we locate the attractor with
a random initial condition. Then we analyze the firing events
associated with this attractor. Special attention is paid to the
firings that are not caused by the receipt of pulses directly, that
is, active firings. If all the generated pulses have been received
just before each of the active firings, the attractor will be an
SAF attractor. In other cases where some generated pulses
arrive later after an active firing or there are no active firings,
the attractor is of the non-SAF type.

For SAF attractors, the minimal time difference between
two successive receiving events is the delay time τ ; for
non-SAF attractors, this constrain does not apply. To give a
concrete example, we consider a network of six oscillators.
The attractors usually are period-one attractors in the return
map; that is, each oscillator reaches the threshold once during
one period of time. Here the return map governs the system
evolution between two successive resettings of the reference
oscillator, for example, oscillator 1. Thus, a period-one SAF
attractor contains only one SAF event. For parameters p = 0.6
(link density), ε = 0.1, and τ = 0.15, we observe the sequence
of events associated with an SAF attractor:

R1S4S5 − R4R5S3S6 − R3R6S2 − R2 − S1. (4)

Immediately preceding the active firing (S1) of oscillator
1, all the generated pulses have been received. Hence, the
corresponding attractor is an SAF attractor. An event sequence
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associated with a non-SAF attractor is

R2 − R1S5 − R5S3 − R3S4 − R4S6 − R6S2 − S1. (5)

Note that the generated pulse from oscillator 2 is not received
before the active firing of oscillator 1.

In the parameter region where τ and ε are small, SAF
attractors dominate in the sense that a random initial condition
leads to one such attractor with high probability. This can
be qualitatively understood, as follows. Consider period-one
attractors in the return map, whose basins typically dominate
in the phase space in a wide parameter region. The events
associated with period-one attractors typically occur at a small
number of different times. The total phase change is due to
(1) phase jump caused by receiving pulses, that is, �φ =
H (φt ,ε

′) − φt , and (2) free evolution according to dφi/dt =
1. The first term is small for small coupling strength. For
non-SAF attractors, the time delay τ is the upper bound of
the time duration of two successive receiving events, so the
amount of phase change due to free evolution is relatively
small. Therefore period-one attractors are typically not non-
SAF attractors when τ and ε are small. The time duration
between an SAF event and the last receiving event is 1 − φ,
where φ is the phase of the SAF oscillator at that receiving
event. Thus, this time duration can be relatively large, so SAF
attractors tend to dominate the phase space for small τ and ε

values. As ε and τ are increased through some critical region,
SAF attractors become rare. In fact, in the parameter plane
(ε,τ ), there exists a transitional region where the fraction of
SAF attractors decreases from near unity to near zero, which
is shown in detail in Sec. III.

We can observe long chaotic transients preceding the
network’s settling into some periodic attractors, as shown
in Fig. 1(a) for a network of size N = 18 and link density
p = 0.6. The firing times when oscillators reach the threshold
are recorded, as shown in Fig. 1(b). The active and passive

FIG. 1. (Color online) (a) A typical long chaotic transient trajec-
tory recorded at the nth resetting of the reference oscillator 1 for a
network of N = 18 oscillators. Simulation parameters are ε = 0.1,
τ = 0.105, and link density p = 0.6. (b) Corresponding times for
active and passive firings for each oscillator, shown in green and red,
respectively.

firings are denoted in green and red, respectively. During the
transient, oscillators undergo rapid switches between passive
and active firings.

III. CHAOTIC IRREGULAR TRANSIENTS IN THE
TRANSITIONAL REGION

Our goal is to find where chaotic transients occur in
the two-dimensional parameter space defined by (τ,ε). For
a period-one attractor, due to the excitatory couplings, the
period is always smaller than the intrinsic period without
couplings, which is unity. We focus on three quantities: the
fraction of basins occupied by period-one attractors fp1, the
average transient time 〈T 〉, and the fraction fSAF of initial
points leading to SAF attractors.

Figures 2(a)–2(c) show, for N = 18 and p = 0.6, the de-
pendence of fp1, fSAF, and 〈T 〉 on the parameters, respectively.
In Fig. 2(a), fp1 is near unity in a wide parameter region,
implying that the phase space is mostly occupied by the
basins of period-one attractors. A sharp transition where fSAF

decrease from 1 to 0 abruptly can be seen from Fig. 2(b),
where the transition appears to occur in the parameter region
where period-one attractors are dominant. On both sides of
the transitional region, the attractors are period-one attractors,
but with different types of event structures. Figure 2(c) shows
that the long chaotic transients occur in the transitional region.
Similar results have been obtained for higher link density,
for example, p = 0.8, as shown in Figs. 2(d)–2(f), where
unstable attractors can appear [18,19]. We find that the unstable
attractors mostly appear in the SAF parameter region and
hence are mostly SAF attractors. In both cases, there is a
strong coincidence between the region with long transients and
the transitional region. The occurrence of this correspondence
does not appear to depend on the link density or the network
size, as shown in Figs. 3(a)–3(c) for p = 0.4 and N = 24,
30, and 36, respectively, where the results are obtained by
averaging over 2 × 104 random initial conditions.

Can the appearance of long chaotic transients be ex-
plained by the variation in the number of attractors?
Reference [14] conjectures that the appearance of chaotic
transients is probably due to the small number attractors left
in the phase space after the destabilization of many attractors,
for example, unstable attractors. Generally, there are a large
number of attractors, as shown in Fig.4. For N = 24 and N =
30, we can observe several significant changes in the number
of attractors near some parameters. However, the average
transient time does not change appreciably. In addition, near
the parameter region where long chaotic transients occur, the
number of attractors does not change appreciably either. For
N = 36, the number of attractors becomes so large that the
number of random initial conditions used is not sufficient
to detect any significant changes. Based on these findings,
we conclude that variation in the number of attractors cannot
explain the appearance of long transients. As a matter of fact,
near the transitional region, many SAF attractors are destroyed
but many non-SAF attractors are created.

We then focus on the dynamical properties of the phase
space near the transitional region, where significant numbers
of SAF and non-SAF attractors coexist. Naturally, one can
divide the phase space into two parts: the basins of SAF and of
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FIG. 2. (Color online) Dynamical behaviors in the parameter plane (τ,ε) for two networks of size N = 18 and link density p = 0.6 and 0.8,
respectively. Panels (a)–(c) are for p = 0.6, and (d)–(f) are for p = 0.8. Panels (a) and (d) show the dependence of the fraction of period-one
attractors fp1 on parameters, panels (b) and (e) show the fraction of SAF attractors, fSAF, and panels (c) and (f) show the dependence of average
transient time 〈T 〉 (on a logarithmic scale) on parameters. Long transients occur near the transitional region where fSAF changes from near
unity to near zero, but occur in the region where the phase space is dominated by periodic attractors of low periods. The results are obtained
through ensemble average of 500 initial conditions.

non-SAF attractors. Long chaotic transients are likely when
the basins are mixed in a complicated manner, because a
trajectory will undergo many “zigzag” type of paths before
settling into the final attractor. The degree of basin mixing
can be conveniently characterized by the uncertainty exponent
[20]. Specifically, consider two nearby initial conditions of
phase-space distance ε apart. If the two resulting trajectories
approach the same type of attractors (i.e., SAF or non-SAF),
the initial conditions are called “certain” with respect to
perturbation ε; otherwise, they are “uncertain.” The fraction of
uncertain initial conditions f (ε) scales with ε algebraically:
f (ε) ∼ εα , where 0 � α � 1 is the uncertainty exponent [20].
The closer the value of α is to zero, the stronger the degree of

FIG. 3. (Color online) (a)–(c) Dependence of average transient
time 〈T 〉 and fraction of SAF attractors, fSAF, on τ for three networks
with size, N = 24,30,36, respectively (p = 0.4 and ε = 0.1). The
common phenomenon is that long transients occur in the transitional
region.

mixing of the two types of basins. An example of the scaling
law of f (ε) is shown in Fig. 5(a) for the parameter setting
of N = 18, p = 0.6, ε = 0.1, and τ = 0.105, where 5 × 104

random initial conditions are used to calculate f (ε) for each
value of ε. We obtain α ≈ 0.0707, indicating an extremely
interwoven structure of the two types of basins. A visual
illustration of the basin structure in a two-dimensional cross
section (φ2,φ3) is shown in Fig. 5(b).

IV. DESTABILIZATION OF SAF ATTRACTORS

A large number of SAF attractors destabilize near the
transitional region. As long chaotic transients accompany
this collective destabilization, it is important to study the
bifurcation process in detail. Our analysis mainly focuses on

FIG. 4. (Color online) (a)–(c) Dependence of average transient
time and number of attractors on τ for N = 24,30,36, respectively
(p = 0.4 and ε = 0.1).
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FIG. 5. (Color online) (a) Numerically obtained algebraic scaling
of f (ε) ∼ εα (see text for parameter setting). The uncertainty
exponent is estimated to be α ≈ 0.07, indicating an extremely strong
degree of mixing of basins of SAF and non-SAF attractors. (b) An
example of mixed basins in an arbitrary two-dimensional cross section
(φ2,φ3) in the phase space.

period-one attractors, as they are the dominant attractors, as
shown in Fig. 2(a). The event structures of any period-one
SAF attractor consist of one sequential active firing event
and a number of passive firings induced by the receipt of
pulses. We find that the bifurcation of SAF attractors is
typically caused by the conversion of passive firing into active
firing. Specifically, a passive-firing event of oscillator i occurs
when it receives pulses of suprathreshold strength ε′, that is,
hi

p = H [φi(t),ε′] > 1, at time t . Immediately after the firing,
the phase is reset to zero. We can then use the quantity hi

p

to conveniently denote the hidden state of oscillator i right
before the resetting due to passive firing. If hi

p crosses 1 when
varying parameters, the passive firing will become active after
the receiving event. In the other case, if the phase of oscillator
i is less than 1 just before the receiving event, the oscillator i

will become active before the receiving event. Thus, hi
p should

be smaller than H [1,ε′] for a passive firing. To be concrete but
without loss of generality, we derive the dependence of hi

p on
parameters τ and ε.

Suppose there are m receiving events and an active firing
for the reference oscillator j so that the active firing is the
(m + 1)th event. Let i denote a passive-firing oscillator and
suppose it fires just after the Lth receiving event, where 1 �
L � m. For the kth receiving event, the numbers of pulses
received by j and i are n

j

k and ni
k , respectively. The quantity hi

p

depends on both the number of pulses received by oscillator
i and the waiting time W of oscillator j , that is, the time
needed to reach the threshold just after the mth receiving event.
Thus, W = 1 − φm

j , where φm
j denotes the phase of oscillator

j just after the mth receiving event, which can be obtained
recursively by

φs+1
j = H

(
φs

j + τ,εnj
s /kj

)
,

for s = 2, . . . ,m − 1 with φ1
j = H (τ,εnj

1/kj ). We thus have

W = 1 −
[

exp

(
εb

m∑
h=1

n
j

h

/
kj

)
+ exp

(
εb

m∑
h=2

n
j

h

/
kj

)

+ · · · + exp
(
εbnj

m

/
kj

)]
τ − exp

(
εb

∑m
h=1 n

j

h

/
kj

)−1

exp (b) − 1
,

which can be simplified by using
∑m

h=1 n
j

h = kj for period-one
attractors. We obtain

W = 1 − Ajτ − B, (6)

where the coefficients Aj and B are defined as

Aj = exp

(
εb

m∑
h=1

n
j

h

/
kj

)
+ exp

(
εb

m∑
h=2

n
j

h

/
kj

)

+ · · · + exp
(
εbnj

m

/
kj

)
,

B = [exp (εb) − 1]/[exp (b) − 1].

We can now derive a formula for hi
p. Immediately after the

Lth firing event, the phase of oscillator i is zero. Similar to the
derivation of W , we can obtain φm

i by sequentially considering
the effect of pulses received at the L,L + 1, . . . ,mth events:

φm
i =

[
exp

(
εb

m∑
h=L+1

ni
h

/
ki

)
+ exp

(
εb

m∑
h=L+2

ni
h

/
ki

)

+ · · · + exp
(
εbni

m

/
ki

)]
τ

+ exp
(
εb

∑m
h=L+1 ni

h

/
ki

)−1

exp (b) − 1
.

Free evolution due to W gives rise to φm+1
i = φm

i + W . After
considering the effect of the 1st, . . . ,and Lth receiving events,
we have

hi
p =

[
Ai − Aj exp

(
εb

L∑
h=1

ni
h

/
ki

)]
τ + C, (7)

where the coefficients Ai and C are given by

Ai = exp

(
εb

m∑
h=1

ni
h

/
ki

)
+ exp

(
εb

m∑
h=2

ni
h

/
ki

)

+ · · · + exp
(
εbni

m

/
ki

)
,

C = exp

(
εb

L∑
h=1

ni
h

/
ki

)
− B exp

(
εb

L∑
h=1

ni
h

/
ki

)
+ B.
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The terms Ai and Aj have the same structure with respect
to the corresponding numbers of pulses received by oscillators
i and j . The extra multiplication factor exp (εb

∑L
h=1 ni

h/ki)
for Aj can make the whole term negative, in particular for
large L. In the case of L = m, we have Ai − eεbAj , which is
always negative because each term in Ai or Aj is not larger
than eεb. Hence, passive firing oscillators tend to be closer to
the critical value 1 as τ is increased.

When the system moves closer to the transitional region
from the region of SAF attractors, which can be realized
through increasing the delay time τ , the passive firings
associated with SAF attractors can readily be converted
into active firings. In this sense, the SAF attractors become
more vulnerable near the transitional region. Because of this,
perturbation induced by the new active firing can convert more
passive firing events into active firing ones. Consequently, the
bifurcation can make the system undergo irregular transients
before settling into a new attractor. As an example, Fig. 6
demonstrates a detailed bifurcation behavior of an SAF
attractor caused by the conversion of passive firing of an
oscillator (No. 4 in this case) to active firing, when h4

p crosses
the critical value 1. Just before the bifurcation, we see that
all hi

p values for the passive firing oscillators decrease as
τ is increased and hence are closer to the critical value 1
[Fig. 6(a)]. Just after the bifurcation, other oscillators, for

FIG. 6. (Color online) (a) Bifurcation of an SAF attractor induced
by the conversion of passive firing of oscillator 4 to active firing.
The bifurcation value τ ≈ 0.0885 is determined by h4

p’s approaching
the critical value 1.0. All values of hi

p for passive-firing oscillators
decrease as τ is increased. (b) The bifurcation further causes
other passive-firing oscillators to be converted into active-firing
ones, generating long chaotic transients, before settling into a
new attractor. Here n represents the nth resetting of the reference
oscillator 1.

example, 3, 17, 13, 15, 10, 16, 12, and 7, can be converted into
active firings subsequently. The system undergoes irregular
transient before settling on a new attractor, as shown in
Fig. 6(b).

The irregular transients are easily observed for SAF at-
tractors destabilized near the transitional region. For non-SAF
attractors with typical event structures as described by Eq. (5),
the time difference between two successive receiving events is
not constrained by τ . As a result, the bifurcation of non-SAF
attractors is usually induced by the merge of two receiving
events, caused by the time difference between two successive
receiving events going to zero. The event structure for the new
attractor is approximately invariant, so the system typically
spends a short time after bifurcations of non-SAF attractors
before settling into the new attractors.

Generally, the destabilization of an SAF attractor near the
transitional region tends to leave a trace in the phase space,
where the system can irregularly be redirected to some remote
regions. As a large number of SAF attractors collectively
become destabilized, long chaotic transients arise near the
transitional region.

V. CONCLUSION

In summary, we have investigated the underlying mecha-
nism for the occurrence of long chaotic irregular transients in
networks of excitatory pulse-coupled oscillators. Exploring
the dynamical origin of transient dynamics in networked
systems is extremely difficult [1,14]. We have developed a
framework for understanding long chaotic transients based
on analyzing temporal events of pulse firing and receiving.
We define a special type of attractors, SAF attractors, which
allows us to classify all attractors of the system into this and
the complementary type, making it possible to analyze the
mechanism of transients. Our finding shows that long chaotic
transients occur in the transitional region where a large number
of SAF attractors are collectively destroyed. The bifurcation
of an SAF attractor tends to induce irregular transients. In
addition, the basins of SAF attractors and non-SAF attractors
are highly mixed in the transitional region. We emphasize that
the source of chaotic transients is collective destabilization of
SAF attractors.

Our work demonstrates that extremely complex dynam-
ical phenomena in networked dynamical systems may be
understood through the structures of attractors. Although
our technique is illustrated using networks of pulse-coupled
oscillators, it can be generalized to other networked systems
following the basic principle of finding some suitable schemes
to classify coexisting attractors of the system into a few
groups.
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