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This paper is motivated by the following two related problems in complex networks: �i� control of cascading
failures and �ii� mitigation of traffic congestion. Both problems are of significant recent interest as they address,
respectively, the security of and efficient information transmission on complex networks. Taking into account
typical features of load distribution and weights in real-world networks, we have discovered an optimal
solution to both problems. In particular, we shall provide numerical evidence and theoretical analysis that, by
choosing a proper weighting parameter, a maximum level of robustness against cascades and traffic congestion
can be achieved, which practically rids the network of occurrences of the catastrophic dynamics.
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I. INTRODUCTION

Large networked systems are the basic support of modern
infrastructures and protecting them from random failures or
intentional attacks is an active topic of research in network
science �1–6�. Instances of breakdown with severe conse-
quences include large-scale blackouts of power grids �7� and
heavy congestions on the Internet �8�. Due to the complex
topology of the network, breakdown on a global scale can be
triggered by small, local failures through the mechanism of
cascading �2,4,5,9–12�. Articulating control strategies to pre-
vent complex networks from cascading breakdown becomes
then a pertinent issue.

In Ref. �3�, a method is proposed whereby a set of “insig-
nificant” nodes that contribute more load to the network than
they handle is removed to enhance the overall load-handling
capability of the network. This strategy may be regarded as
“hard” because it requires that certain nodes be removed
from the network, which leads to structural changes in the
network. An issue of interest is whether some proper “soft”
control strategy can be developed to prevent cascading
breakdown but to keep the connections among nodes un-
changed.

In this paper, we present a general “soft” control strategy
to address cascading breakdown and traffic congestion in a
unified manner. Our main idea is based on the following two
considerations: �i� in real-world networks the node capacity
is not linearly proportional to the load, and �ii� transmission
paths can be adjusted by arbitrarily given link weights. For
the capacity-load relation, a recent work �13� indicates that in
real-world networks, there are deviations from the simple
proportional relation between the initial load and capacity,
although it has been used widely in existing works on cas-
cading dynamics �2,4,5,9–12�. For a complex network, dif-
ferent nodes can have different degrees. Links to and from
hub nodes tend to be used more frequently than other links in
the network. The weight of a link can thus be assumed to
depend on the degrees of the two nodes that it connects such
that loads bypassing links and nodes can be tuned. Conse-
quently, information flows on the network depend on the
weights. The finding of this paper is that there exists an

optimal weighting scheme for which cascading failures and
traffic congestion can be suppressed significantly. In particu-
lar, the robustness of a network against cascading failures is
characterized by the critical values of a pair of tolerance
parameters, at which there exists a phase transition from an
absorbing �free� state to a cascading state. The critical values
can be regarded, qualitatively, as corresponding to the mini-
mum cost for protecting networks to avoid cascading dam-
ages. The optimal weighting scheme can thus be quantified
by the lowest minimum cost. For traffic flow dynamics, the
network throughput is characterized by the maximum packet
generation rate for which the network is free of congestion.
The higher the maximum generation rate, the more efficient
for network traffic. What we have found through heuristic
analysis and numerical computations on both model and
real-world networks is that under the optimal weighting
scheme, the lowest minimum protection cost and the highest
packet generation rate can be achieved simultaneously and,
quite strikingly, the minimum cost can be several orders of
magnitude smaller than the values realized in the underlying
nonweighted network. In a practical sense, this means that
the network can essentially be cascade- and congestion-free
through the control implementation of some appropriate
weighting scheme.

In Sec. II, we present our model for cascading dynamics
on weighted complex networks, taking into account features
of load dynamics that are typical of real-world networks. In
Sec. III, we provide numerical evidence for the existence of
an optimal weighting scheme that results in the maximum
amount of robustness against cascading. A heuristic analysis
is provided in Sec. IV for estimating the optimal weighting
parameter and quantities characterizing a network’s resil-
ience to cascading failures and traffic congestion. Conclu-
sions and a discussion are presented in Sec. V.

II. CASCADING MODEL BASED ON WEIGHTING
SCHEME AND REALISTIC LOAD-CAPACITY RELATION

To take into account the relative importance of various
links for transmission in the network, we assume the follow-
ing weight for the link between an arbitrary pair of nodes:
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wij = Aij�kikj��, �1�

where ki and kj are the degrees of nodes i and j, respectively,
� is an adjustable control parameter, and A is the adjacency
matrix of the network �Aij =1 if nodes i and j are connected,
Aij =0 otherwise, and Aii=0�. A weighted path from node a to
b can be specified completely by all nodes located on the
path from a to b in order: a�1,2 , . . . ,n�b. The weighted
path length is the sum of link weights from a to b: da→b

��i=1
n−1wi,i+1, from which the shortest weighted path length

can be obtained. The load at a node can be defined as the
total number of weighted shortest paths passing through the
node. The capacity of a node is the maximum load that the
node can handle. While previous studies on cascades in net-
works �2,14� assume that the capacity of a node is directly
proportional to its initial load, a recent empirical study �13�
indicates that real-world networked systems tend to have a
larger unoccupied portion of the capacities on nodes with
smaller capacities. Following Ref. �13�, we assume the fol-
lowing relationship between the node capacity Ci and the
initial load Li:

Ci = � + �Li, i = 1,2, . . . N , �2�

where ��0 and ��0 are the capacity parameters and N is
the initial number of nodes. Equation �2� models quite well
the empirical capacity-load relation for a number of real-
world networks �13�.

We consider the type of attacks that remove a single node
with the highest load, since the failures of such a node can
affect significantly loads at other nodes. The loads at some
nodes may exceed their capacities and failures occur conse-
quently. The loads are globally redistributed in the network.
When more nodes fail, the weighted shortest paths among all
pairs of nodes and the loads are then recalculated according
to the initially assigned edge weights associated with the
structural changes. The process of node failure and load re-
distribution is repeated until no node fails, at which point the
cascading process can be regarded as being completed. For
sufficiently large values of � and �, load redistribution trig-
gered by attacks is unlikely to cause a cascading breakdown.
We expect that, as � or � is reduced, there exist critical
points �c �for fixed �� and �c �for fixed ��, below which
cascading failures occur. For fixed � �or ��, there should
then exist a transition at �c �or �c� from an “absorbing” to an
“active” phase as � �or �� is decreased. The critical points �c
and �c can be regarded as “robustness parameters” for the
network. The smaller the values of �c and �c, the more ro-
bust is the network because cascading failures will not occur
even when � and � are small �insofar as the conditions �
��c and ���c are satisfied�. It thus suffices to focus on
how the weighting parameter � affects the network robust-
ness as characterized by �c and �c.

III. NUMERICAL EVIDENCE FOR OPTIMAL WEIGHTING
STRATEGY

A convenient criterion to determine the onset of cascading
failures is to examine the load redistribution after the node of
the largest load is disabled. After the attack, the load at node

j changes from Lj to Lj�. A cascading process occurs if Lj�
�Cj =�+�Lj for j=1, . . . ,N, which requires, for a fixed
value of �, Lj�−�Lj ��. If Lj�−�Lj �� for all j, there will be
no cascading. The critical values �c and �c for the onset of
cascading can then be determined by

�c = max�Lj� − �Lj�j = 1,2, . . . ,N� ,

�c = max��Lj� − ��/Lj�j = 1,2, . . . ,N� . �3�

Simulation results of �c and �c for different values of the
weighting parameter � on scale-free networks generated by
the Barabási-Albert algorithm �17� are shown in Fig. 1. We
observe that, as � is increased from some negative value,
both �c and �c decrease. There exists an optimal value �

= �̄�0.4 about which both �c and �c are minimized, indicat-
ing that the network is maximally resistant to cascading fail-
ures. Comparing with the case of nonweighted links ��=0�,
�c can be reduced by over one order of magnitude �Fig. 1�a��
and the reduction in � is also quite significant �Fig. 1�b��.

The existence of an optimal weighting strategy to maxi-
mize the network resistance to cascading dynamics has also
been observed in real-world networks. Here we present two
examples: the Internet and power grids. Figure 2 shows the
variations of �c and �c with � for the Internet at the level of
autonomous systems, which contains a strong scale-free
component �15�. Compared with the �=0 case �unweighted

routing strategy�, for �� �̄, the value of �c can be reduced by
nearly three orders of magnitude �Fig. 2�a��. Optimization
can also occur with respect to �, as shown in Fig. 2�b�.
Similar results have been obtained for the power grid of the
western United States, as shown in Figs. 3�a� and 3�b�. Uti-
lizing optimal weighting to significantly enhance a network’s

FIG. 1. For model scale-free networks, robustness parameters
�a� �c �for fixed �=1.0� and �b� �c �for fixed �=1.0� vs the weight-
ing parameter �. The vertical dashed lines indicate the existence of

an optimal value �= �̄�0.4 at which both �c and �c are minimized.
The results are obtained by using 100 runs of network dynamics
according to load redistribution for each of the 100 network real-
izations. Network size is 1000 and the minimum of degree is
kmin=10.
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ability to resist catastrophic dynamics thus appears to be gen-
erally viable.

In order to understand the behaviors in Figs. 1–3, we ex-
amine the weighted betweenness B�i� of an arbitrary node i,
which as a function of the node degrees k is defined as

B�k� = �
i,ki=k

B�i�/Nk,

where Nk is the number of nodes of degree k. The onset of
cascading failures is usually triggered by the failure of the
node with the maximum load. The higher the load that a

failed node carries, the more difficult it is for the extra load
to be absorbed by the remaining nodes in the network. There
should then be a positive correlation between the maximum
load and values of �c and �c. Figure 4 shows the results of

the maximum node load B̄m as a function of �, for the same

scale-free network as in Fig. 1. We see that B̄m vs � displays
similar behaviors to those of �c and �c. In particular, there

exists an optimal value �̄ for which B̄m reaches minimum.

The estimated values of �̄ from Figs. 1 and 4 are essentially

the same, indicating a strong correlation between B̄m and
��c ,�c�. It is thus reasonable to focus on the dependence of

B̄m on �.

IV. THEORY

The purposes of our analysis are �i� to estimate the value

of B̄m��̄�, �ii� to determine the value of the optimal weighting

parameter �̄, and �iii� to establish a connection between cas-
cading dynamics and traffic congestion.

A. Estimation of B̄m(�̄)

For an unweighted network, it is known that the distribu-
tion of the betweenness B�k� is highly heterogeneous and
obeys the following algebraic scaling law:

B�k� 	 k�, �4�

where ��0 is the scaling exponent. An example illustrating
the scaling is shown in Fig. 5�a�, where the scaling exponent
is ��1.9, in consistency with previous results �18�. Figure
5�b� shows, for a weighted network, the dependence of the

betweenness Bk on the node degree for �= �̄. We see that Bk
is approximately constant for most nodes in the network,
except for a small set of nodes with relatively large degrees.
Figure 5�c� shows a typical profile of the total betweenness
Bsum���, which is approximately constant for all values of �

FIG. 2. �Color online� For the Internet at the level of autono-
mous systems �15�, �a� �c �for fixed �=20.0� and �b� �c �for fixed
�=20.0� vs the weighting parameter �. The original network has
22 963 nodes and average degree is approximately 4.22. Due to the
relatively large size of the network, in our simulations all nodes of
degree one have been removed. The resulting network has 15 123
nodes and the average degree is about 5.37. The dashed line is the
polynomial fitting. The existence of an optimal weighting parameter
at which both �c and �c are minimized can be seen.

FIG. 3. �Color online� For the Northwestern US power transmis-
sion grid �16�, �a� �c �for fixed �=20.0� and �b� �c �for fixed �
=20.0� vs the weighting parameter �. The network has 4941 nodes
and the average degree is about 2.67. The dashed line is the poly-
nomial fitting.

FIG. 4. �Color online� For the same scale-free network as in Fig.

1, B̄m vs the weighting parameter �. Apparently, B̄m reaches mini-

mum at the same optimal value �̄ for which ��c ,�c� are minimized,
indicating a strong correlation between the former and the latter.
The horizontal line indicates our analytically estimated value of

B̄m��̄�.
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of interest. We observe that Bsum��̄��Bsum��=0�, which al-
lows us to write

Bsum�� = 0� = N

kmin

kmax

B�k�P�k�dk ,

where B�k� is evaluated for �=0, and kmin and kmax are the
minimum and the maximum degree, respectively. For a BA
scale-free network, the degree distribution is P�k�=2kmin

2 k−3

and the maximum degree is given by kmax=kmin
�N. Since for

the optimal value �̄ the load is approximately constant with
respect to node degrees except a few very large degree nodes
�cf. Fig. 5�b��, we have

B̄m��̄� �
1

N
Bsum�� = 0� = 20kmin

1.9 �1 − N−0.05� . �5�

As shown in Fig. 4, the horizontal line estimated using the
prediction of Eq. �5� agrees well with the numerically ob-

tained value of B̄m achieved for �= �̄.

B. Optimal weighting parameter �̄

We now turn to estimating the optimal weighting param-

eter �̄. For node i with degree ki, the number of weighted
shortest paths passing through it can be calculated by the
sum of shortest paths passing through all neighbors of node i,
i.e.,

2Bi = �
j=1

N

AijBj→i, �6�

where Bj→i denotes the number of shortest paths from j to i.
The quantity Bj→i can be estimated as

Bj→i = Bj

wij
−1

�
l=1

N

wjl
−1

, �7�

where Bj is the number of shortest paths through node j.
Equation �7� states the fact that the number of shortest paths
from a node to a neighboring node is approximately in-
versely proportional to the weight of the link connecting the
two nodes. If the weight is large, fewer shortest paths are
likely to pass between them. We thus have

2Bi = �
j=1

N

AijBj
��kikj���−1

�
l=1

N

Ajl��kjkl���−1

, �8�

where the summation in the denominator can be written as

kj
−��

l=1

N

Ajlkj
−� = kj

1−� �
k�=kmin

kmax

P�k��kj��k��−�,

where P�k� �ki� is the conditional probability that a node of
degree ki has a neighbor of degree k�. For a network without
degree-degree correlation, we have P�k� �ki�=k�P�k�� / �k
.
We thus obtain

�
l=1

N

Ajl��kjkl���−1 = kj
1−� �

k�=kmin

kmax

P�k��ki�k�−�

= kj
1−� �

k�=kmin

kmax k�1−�P�k��
�k


=
kj

1−��k1−�

�k


,

�9�

where the identity

�
k�=kmin

kmax

k�1−�P�k�� = �k1−�


has been used. Moreover, as shown in Fig. 5�b�, for most
nodes except a few very large degree nodes, their loads are

approximately equal: B1�B2� ¯ �Bk� B̄m. This leads to

2B̄m � �
j=1

N

AijB̄m
�kikj�−�̄�k


kj
1−�̄�k1−�̄


=
�k
B̄m

�k1−�̄

ki

1−�̄ �
k�=kmin

kmax

P�k��ki�k�−1.

�10�

We thus have

ki
1−�̄/�k1−�̄
 = 2,

where

�k1−�̄
 = 

kmin

kmax

2kmin
2 k−3k1−�̄dk =

2

1 + �̄
kmin

1−�̄.

The optimal weighting parameter �̄ can be determined im-
plicitly by

FIG. 5. �Color online� For a standard scale-free network of
N=1000 nodes, �a� betweenness distribution for �=0, �b� the dis-

tribution for the optimal weighting scheme �= �̄, and �c� total be-
tweenness of all nodes in the network versus �. Other network
parameters are the same as in Fig. 1.

YANG et al. PHYSICAL REVIEW E 79, 026112 �2009�

026112-4



� ki

kmin
�1−�̄

=
4

1 + �̄
. �11�

Since this result is based on a mean-field type of approxima-

tion, ki should be large to warrant accurate estimate of �̄.
However, as indicated by Fig. 5�a�, ki should be in the flat

range of Bk, so that the condition Bi� B̄m can be satisfied.
For the numerical example in Figs. 4 and 5 a reasonable

choice is ki=60. Since kmin=10, we obtain �̄�0.42, which
agrees well with the value of 0.4 obtained from direct nu-
merical simulation.

C. Relation between cascading dynamics and traffic
congestion

There is an underlying relation between cascading dy-
namics and congestion of information traffic. In particular,
assume that packets are generated with probability R at each
node and are routed along the shortest paths from their ori-
gins to destinations. According to queueing theory �19�, in a
free flow state, the average queue length �li
 of node i is
given by �li
=ci / �1−ci�, where ci�1 is the average number
of packets passing through i in unit time. Previous works
have demonstrated that ci is proportional to the betweenness
Bi �20,21�: ci=RBi / �N−1�. When buffer size is finite, if any
li exceeds the maximum queue length lmax, congestion will
occur. The critical generation rate Rc that defines the onset of
traffic congestion can then be estimated as �22�

Rc = lmax�N − 1�/��lmax + 1�Bmax� � �N − 1�/Bmax.

The critical rate Rc in fact measures the throughput of a
network in handling information traffic. The higher Rc is, the
more resilient a network is to traffic congestion. A network

with the lowest maximum node betweenness B̄m thus has the

maximum throughput. Setting �= �̄ results in the lowest pos-

sible value for B̄m. This not only yields the maximum degree
of network robustness against cascading failures, but also
enhances the transmission efficiency in routing traffic along
the weighted shortest paths to avoid congestion, e.g., in a
transportation network. It should be noted that our analysis
based on the queueing theory is only applicable for the to-
pological shortest-path routing algorithm, so the fact that at-

taining the maximum throughput at �= �̄ of the weighting
scheme is restricted to the weighted shortest-path routing
based on the global topological information other than the

routing algorithm based on local information �23�.

V. CONCLUSIONS

In conclusion, we have investigated cascading dynamics
on scale-free networks by �i� using a more realistic load-
capacity relation and �ii� considering weighted routing strat-
egy. Our main finding is the existence of an optimal weight-
ing scheme for which the network exhibits a maximum
degree of robustness against cascading failures and traffic
congestion. In particular, for the optimal scheme, the two
quantities characterizing the degree of the catastrophic dy-
namics assume values that are indicative of significant en-
hancement of the network’s resistance to such dynamics. The
key to this phenomenon lies in the load distribution. The
introduction of optimal weighting is to counterbalance het-
erogeneity so as to make the load distribution as uniform as
possible, reducing significantly the likelihood of the occur-
rence of the catastrophic dynamics. We expect our finding to
be relevant to understanding and enhancing the security of
real-world complex networks.

While many networks, especially networks in physical
and biological systems, are weighted and it is difficult to
change the weight of a link as it may be related with the
connectivities of the nodes constituting the link, there are
situations where some appropriate weights can be imple-
mented. Examples are communication and computer net-
works, where the link weights are effectively determined by
predesigned traffic protocols. From another perspective, the
optimal weighting scheme that we discovered can be re-
garded as a general principle for figuring out various routes
for traffic flows on the network. For example, a weight is
equivalent to a distance in the sense that a larger weight
corresponds to a longer distance. Similar to the calculation of
shortest paths in nonweighted networks, under the weighting
scheme, weighted shortest paths can be computed analo-
gously and physical loads are then transmitted along these
paths. After all paths have been determined, the weights can
be abandoned. An appropriate weighting scheme is thus ef-
fectively a statistical guide for the load transmission. Our
optimal weighting scheme can be used to find the optimal
paths for load traffic to enhance the network robustness.
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