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In the study of cascading failures on complex networks, a key issue is to define capacities of edges and
nodes as realistically as possible. This leads to the consideration of intrinsic edge capacity associated with laws
governing flows on networks, which goes beyond the existing definitions of capacity based on the initial load
as quantified by the betweenness centrality. Limited edge capacity �or bandwidth� and high flux or attack can
trigger cascading processes, which we find as characteristically different from those reported in the literature.
In particular, there can be an abnormal parameter regime where incrementally augmenting the edge capacity
can counterintuitively increase the severeness of the cascading process. Another striking finding is that hetero-
geneous flow distribution tends to suppress the cascading process, in contrast to the current understanding that
heterogeneity can make the network more vulnerable to cascading. We provide numerical computations and
analysis to substantiate these findings.
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I. INTRODUCTION

The concepts of load and capacity are fundamental to dy-
namical processes on networks. An intuitive and apparently
well-accepted definition of load is the betweenness, the num-
ber of shortest paths through a node or an edge �1�. This is
based on the consideration that information is usually trans-
mitted along the various shortest paths, e.g., in a computer
network. Assume that, in each time unit, a node transfers one
data packet along any shortest path through the node. The
total number of packets that the node handles in one time
unit is thus equal to the number of shortest paths through it,
so the betweenness represents the load. This load definition
and the assumption that node capacity �2,3� or edge capacity
�4,5� is linearly proportional to the load have been used
widely in the complex-network literature, and they have been
the key to addressing fundamental issues such as cascading
breakdown. However, the initial-load-based definition of
node capacity may be idealized for realistic network systems
supporting a variety of flows. For example, a recent work has
reported that the proportional relation between load and ca-
pacity appears to be violated for a number of real-world net-
worked systems �6�. We are thus interested in alternative
ways to define node capacity in the study of cascading dy-
namics on networks. Moreover, in physical, chemical, and
biological networks the quantities of interest are usually vari-
ables such as the electrical currents or chemical concentra-
tions. In such a case the underlying rules governing the evo-
lutions of the relevant variables are a significantly more
important factor to determine the flow than merely the num-
ber of shortest paths �betweenness�.

In this paper, we study cascading dynamics triggered by
overloads along edges by incorporating the Ohm’s law and
the Kirchhoff conservation law instead of using topological
betweenness. Our idea is inspired by Ref. �5� in which the
authors have given a suggestion to use the laws to explore
cascading failures. The advantages of this approach is then
that the capacities of edges can be naturally defined accord-
ing to the laws which governs flows. This overcomes the

difficulty associated with the existing definition of the node
capacity �2,3�, which depends on the initial load and is there-
fore somewhat artificial. To be as general as possible, we
shall study weighted complex networks to take into account
heterogeneous node-to-node interactions. Our main finding is
that heterogeneous flow distribution at nodes can signifi-
cantly enhance the network’s ability to counter cascading
failures as triggered by intentional attacks. This is surprising,
considering that heterogeneous networks being more vulner-
able to cascading failures is a central result from models in
the complex-network literature that use betweenness to de-
fine load �2,3�. We also find that, incorporating inherent edge
capacity on the network, situations can arise where a quan-
tity characterizing the degree of the cascading failure can
exhibit a nonmonotonic behavior as a function of the capac-
ity parameter �7�. This implies that, for a given network set-
ting, there can be an interval in the capacity parameter where
enhancing it can actually cause the network to be more vul-
nerable to cascading failures. While our findings are counter-
intuitive with respect to existing results, we will provide
analyses and numerical computations to establish that they
are the consequences of considering flow and capacity in a
more realistic way, and we expect these phenomena to be
generic for complex networks.

In Sec. II, we describe our cascading model with intrinsic
edge capacity. In Sec. III, we provide simulation results and
analysis for cascading dynamics on regular and small-world
networks. In Sec. IV, we study weighted scale-free networks
with respect to global cascading breakdown and present evi-
dence for abnormal cascading region. In Sec. V, cascading
failures as induced by attacks are discussed and compared
with results from previous studies. Conclusion and a brief
discussion are offered in Sec. VI.

II. CASCADING MODEL

To incorporate the natural laws governing the flow on the
network, we assume that each edge ij has a resistance Rij
against the flow, which is determined, for example, by the
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conductance associated with the edge in an electrical net-
work, or by the size of the vessel in a biofluid network, or by
the condition of the road in a transportation network. The
bandwidth wij of edge ij can be defined as being inversely
proportional to the resistance: wij �1 /Rij, which can be the
conductance of an electrical wire, the cross-sectional area of
a vessel, or the number of lanes in a transportation network.
A flow should obey the Ohm’s law: f ij = �Pi− Pj� /Rij, where
f ij is the flux passing through edge ij, Pi and Pj represent
various quantities that can be voltages in an electrical net-
work, hydraulic pressures in a biofluid network, or the
amount of traffic in a transportation network. For a net-
worked system, the total flow at any node obeys the Kirch-
hoff conservation law: Fi=� j=1

N Aijf ij =� j=1
N Aij�Pi− Pj� /Rij =0,

where A is the adjacency matrix of the network. We then
have GP=F, where G is the Laplacian matrix of the under-
lying network whose elements, when taking into account
edge resistances, are given by

Gij =��l=1

N
Ail/Ril, i = j

− Aij/Rij , i � j .
� �1�

If we randomly choose a pair of nodes i and j as input and
output, respectively, with a unit flux, the flow vector F be-
comes Fi=1, Fj =−1, and Fk=0 for k� i , j. The vector P can
then be solved by GP=F and the flux of each edge can be
calculated by the Ohm’s law. The actual flow passing
through an edge ij is the sum of flows from all possible input
nodes a and output nodes b,

Fij = �
a=1

N

�
b=1,b�a

N

	f ij
a→b	 . �2�

The capacity of an edge ij can be defined to be the band-
width of this edge, which is the maximum flux that the edge
can handle without congestion or damage. This way, the ca-
pacity �bandwidth� of an edge is an inherent characteristic
and is inversely proportional to the edge resistance. We write

Cij = �/Rij , �3�

where � is a capacity parameter. When the capacities are
sufficiently large, all edges are functional and the network
stays in a free-flow state. However, when a number of edges
is disabled, the Laplacian matrix is changed and the flux at
some of the remaining edges will also be changed. If the flux
at an edge exceeds its capacity, the edge fails, which can
induce further edge failures, leading to a cascading process.
An important issue is how network topologies affect the cas-
cading dynamics in our model.

If the network is broken into several disconnected com-
ponents after cascading failures, the input and output can be
obtained only within the same component. In this case, the
total flux will be considerably reduced compared to the case
of a single connected component. As a result, the cascading
process will usually stop.

III. CASCADING DYNAMICS ON REGULAR AND
SMALL-WORLD NETWORKS

To gain insights, we first consider regular networks. First
all edge resistances are set to be unity and the capacity pa-
rameter � is fixed. Then the flow Fij is calculated and com-
pared to Cij. An edge fails if Fij �Cij, which changes the
network topology and leads to changes in Fij and failures of
edges whose loads exceed their capacities at the next time
step. This process will continue until all remaining links sat-
isfy Fij �Cij. The severeness of an edge-cascading process
can be characterized by the ratio s of the number of broken
edges at the end of the cascading process to the total number
of edges in the network. We shall focus on the relation be-
tween s and the capacity parameter �. For simplicity, we set
the resistance of all edges to be unity. As shown in Fig. 1, our
computations with regular ring networks indicate the exis-
tence of a generic first-order phase transition at some critical
value �c, where s=0 �free-flow state� for ���c. For �
��c, all edges are damaged and s=1. The transition is thus
abrupt in the sense that the value of s changes suddenly from
0 to 1 as � is decreased through �c. The same phenomenon
has been found on two-dimensional lattice networks of dif-
ferent coordination numbers. For ring networks with coordi-
nate number 1, the value of �c can be calculated analytically.
In particular, the sum of fluxes at all edges is given by

�
i=1

N

�
j=1,j�i

N

AijFij =
N

L



0

L

�L − l�ldl =
N

6
L2, �4�

where L is the length of the ring. Since the ring topology has
a circular symmetry, the fluxes through all edges are the
same. We have

�c =
1

N
�
i=1

N

�
j=1,j�i

N
AijFij

Rij
=

1

6
L2. �5�

In general, the sharp transition in regular networks is due to
the narrow distribution of edge fluxes. For instance, in an
eight-neighbor lattice, there are only two different fluxes.
When � is less than the higher flux, half of all edges with the
higher flux will be broken and the higher flux will be distrib-
uted to the other half of the edges with the lower flux, lead-

FIG. 1. �Color online� Normalized cascading size s as a function
of the capacity parameter � for small-world and regular ring net-
works. The small-world networks are constructed by randomly re-
wiring a regular ring network �8�. The average degree �k� of the
regular ring and the small-world networks, and the rewiring prob-
ability p of the small-world networks are shown in the figure.
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ing to a complete breakdown. The critical value �c is thus
determined by the highest flux.

For a small-world network, the edge fluxes are narrowly
distributed due to the homogeneous degree distribution. Thus
a cascading phenomenon similar to that on regular networks
is expected. As shown in Fig. 1, there exists a sharp transi-
tion from a full cascading state to a cascading-free state at
some critical value of �c for two different values of rewiring
probability of the small-world network.

IV. CASCADING ON WEIGHTED SCALE-FREE
NETWORKS

We now investigate scale-free networks �9�. Since inter-
actions among nodes can be heterogeneous in real-world net-
works, we incorporate weights into the network connectivity.
For example, since hubs in a transportation or in a commu-
nication network usually play a key role in handling flow,
heavier traffic can be expected for edges connected to vari-
ous hubs. To make the network less vulnerable to edge cas-
cading, it is reasonable to broaden the bandwidth of those
edges or, equivalently, to reduce their resistances to flow.
These considerations lead to the following assumption for
edge resistance: Rij = �kikj��, where ki and kj are the degrees
of the nodes at the ends of edge ij. This assumption is sup-
ported by empirical evidence of weighted networks found in
the real world �10�. For ��0, edges connected to hub nodes
have less resistances and broader bandwidths. Figure 2�a�
shows, for a scale-free network of N=500 nodes, normalized
cascading size s as a function of � for different values of �.
We observe the following: �1� there exists a critical value �c
such that for ���c, s=0 so that no cascading failures occur;
�2� for ���T, the value of s approaches unity so that cas-
cading breakdown occurs on a global scale, and �3� for �
��c, there exists an abnormal regime where s, as a function
of �, exhibits a nonmonotonic behavior. In this abnormal

region, cascading can be more severe for a larger value of the
capacity parameter. The abnormal region is more pronounced
for larger value of the weighting parameter �. We have also
investigated scale-free networks for different values of the
degree-distribution exponent � and different network sizes
N. The abnormal phenomenon, as shown in Fig. 2�b�, ap-
pears general. �Here, the scale-free networks are constructed
by using the configuration model with a pre-existed degree
sequence �11�.�

To understand the cascading phenomenon in a quantita-
tive manner, we have carried out a heuristic analysis, aided
by numerical computations. Figure 3 shows, on a semiloga-
rithmic scale, critical values �c and �T as a function of the
weighting parameter �. We observe that both �c��� and �T���
are exponential functions. In particular, decreasing � can de-
lay the occurrence of edge cascading in terms of adjusting
the capacity parameter. To explain the exponential functions,

we examine the total flux at a node defined as F̄i

=� j=1
N AijFij. The degree-dependent total flux F̄�k� can be ob-

tained by averaging over all nodes of degree k. Figure 4

shows that F̄�k� can be approximately fit by an algebraic
function of k for different values of �. A striking phenom-

FIG. 2. �Color online� For weighted scale-free networks, nor-
malized cascading size s as a function of the capacity parameter �
for �a� different values of the weighting parameter � and �b� differ-
ent values of exponent � of the power-law degree distribution and
network size N for �=0. Barabási-Albert �BA� networks �9� with
N=500 have been used in �a� and random scale-free networks have
been used in �b�.

FIG. 3. �Color online� Critical values �T �lower trace� and �c

�upper trace� as a function of the weight parameter � for BA scale-
free networks of size �a� N=200 and �b� N=500, on a semilogarith-
mic scale. Solid lines are analytical predictions from Eqs. �10� and
�12�.

FIG. 4. �Color online� Degree-dependent total flux F̄�k� for dif-
ferent weight parameter � on BA scale-free networks of size �a�
N=200 and �b� N=500. The critical degrees kc at the intersecting
point are marked by arrows. Our analysis gives that kc= �k2� / �k�,
which agrees well with the numerically obtained values.

ABNORMAL CASCADING ON COMPLEX NETWORKS PHYSICAL REVIEW E 80, 036109 �2009�

036109-3



enon is that all curves intersect at a single point. The critical
degree at the crossover point kc is approximately given by
kc= �k2� / �k�. These numerical findings provide insights into
the behavior of the function �c���. For example, according to

Fig. 4, we can deduce that the flux at node i is F̄i=aki
�. The

flux of edge ij can be estimated as

Fij 
1

2
�F̄i

Rij
−1

�l=1
N AilRil

−1 + F̄j

Rij
−1

�l=1
N AjlRjl

−1� ,

which states that the flux at two edges connecting to the
same node is approximately inversely proportional to the re-
sistances of the edges, and the contributions of both nodes at
the ends of an edge to the edge flux should be taken into
account. If for any edge ij, the inequality Fij �Cij =� /Rij is
satisfied, the network will be in a free-flow state. Noting that
the onset critical capacity parameter �c is determined by the
first set of failed edges as � is decreased, we have

1

2
� aki

��kikj�−�

�l=1
N Ail�kikl�−�

+
akj

��kikj�−�

�l=1
N Ajl�kjkl�−��  �c�kikj�−�. �6�

Based on the mean-field approximation, we have

�
l=1

N

Ail�kikl�−� = ki
1−� �

k�=kmin

kmax

P�k�	ki�k�−�

= ki
1−� �

k�=kmin

kmax k�1−�P�k��
�k�

=
ki

1−��k1−��
�k�

, �7�

where the conditional probability P�k� 	ki�=k�P�k�� / �k� and
the identity

kc  �
k�=kmin

kmax

k�1−�p�k�� = �k1−��

have been used. We can write

�c 
a�k�

2�k1−��
�ki

�+�−1 + kj
�+�−1� . �8�

For � close to zero and the degree distribution is P�k�
=2kmin

2 k−3, we have

�k�
�k1−��

=
�kmin

kmaxkP�k�dk

�kmin

kmaxk1−�P�k�dk
= �1 + ��kmin

� . �9�

Since the onset of cascading is determined by the edges be-
tween the nodes with the lowest degree, �c can thus be ob-
tained by setting ki=kj =kmin. We finally have

�c = A�� + 1�kmin
2� , �10�

where the coefficient A is independent of � and given by A
=akmin

�−1. For ���T, all edges have been damaged. The cross-
over point kc can be estimated by the average degree of the
two nodes at both ends of a broken edge,

kc = �
i

�
j�i

Aij
ki + kj

2
/�Nkmin� =

�k2�
�k�

. �11�

By setting ki=kj =kc in Eq. �8�, the critical value of �T for
global cascading can be obtained as

�T  Ā�1 + ���kckmin��, �12�

where Ā=akc
�−1. Predictions from Eqs. �10� and �12� agree

well with the numerics, as shown in Fig. 3.
Further insights into the existence of the abnormal region

can be gained by examining the process of cascading, step by
step, for three typical points in the abnormal region. As
shown in Fig. 5�a�, we choose three representative values of
�, corresponding to the local minimum and maximum values
of cascading size s and a lower value of s on the right-hand
side of the local maximum, respectively. Both the edge fail-
ure size sE�t� and the node failure size sN�t� are then mea-
sured as functions of time t from the beginning of cascading
to the end, where sN�t� is defined as the number of removed
nodes normalized by N in the network at time t �a node is
removed if all edges connecting to it are damaged�. One can
see that at the first step, sE and sN are inversely proportional
to �, meaning that a lower capacity always leads to more
severe damage at the first step, which is intuitive. However,
the failure size at the second step triggered by the damage at
the first step is not a monotonic function of �. We actually
observe that sE�2� and sN�2� peak at �=470, the local maxi-
mum, and their values are much higher than those for �
=420 and �=540. For t�2, we find that the value of sE�t
�2� for any value of � is insignificant relative to the total
cascading size s. It is thus reasonable to focus on the contri-
butions of sE�1� and sE�2� to s. By examining the behaviors
of both sE�t� and sN�t�, we can explain why smaller values of
sE�1� can lead to larger values of sE�2� based on a compari-

FIG. 5. �Color online� �a� Three representative points in the
abnormal region as marked by colored dashed lines. �b� Edge fail-
ure size sE�t� and node failure size sN�t� as functions of time step t
for the three representative values of �. The inset of �c� shows the
ratio sE�t� /sN�t�. BA scale-free networks with N=500 and �k�=5
have been used.
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son between the �=470 and the �=420 cases. Since there is
a unit flow between each pair of nodes, the total flux at all
edges, �i=1

N � j=1,j�i
N AijFij, is positively correlated with the

number of nodes N. For a fixed value of N, fewer edges carry
larger average flux so that the capacities of the edges are
more likely to be exceeded. Consequently, one can expect
that more damaged edges with less removed nodes at the first
step will trigger more severe failures subsequently. We can
use the ratio sE�t� /sN�t� to quantify the influence of the net-
work state at time step t to failures at t+1, where higher
values of sE�t� /sN�t� result in higher values of sE�t+1� and
sN�t+1�. As shown in the inset of Fig. 5�c�, sE�1� /sN�1� for
the local maximum ��=470� is much larger than that for the
local minimum, leading to larger values of sE�2� and sN�2� at
the local maximum and then the larger cascading size. The
existence of the abnormal behavior indicates that enhancing
edge capacities may not make network more robust against
edge cascading.

V. ATTACK-INDUCED CASCADING

We address the issue of attack-induced cascading. As can
be seen from Fig. 4, the flux through a node is positively
correlated with the node degree. Attacking the node with the
highest degree is thus most likely to trigger a global cascad-
ing event. Before the attack, the network is assumed to be in
a free-flow state so that the cascading event is due com-
pletely to the attack. To make an unbiased comparison, we
introduce a normalized parameter, defined as 	�̄=	� /�c,
where �c is the onset of a cascading event. The actual capac-
ity parameter becomes �=�c�1+	�̄�=�c+	�. We examine
cascading size s as a function of 	�̄ for different values of �.
As shown in Fig. 6, larger values of � make the network
more fragile against attack-induced cascading breakdown.
Moreover, we find that larger values of � lead to more ho-
mogeneous flux at nodes, as shown in Fig. 7. Due to the

correlation between � and s and that between � and the flux
heterogeneity at nodes, we see that heterogeneity in flux can
actually make the network more robust against cascading
failures. This phenomenon does not arise in any
betweenness-centrality-based cascading model. For example,
it has been found that intentional attack can be much more
fatal to heterogeneous networks than homogeneous networks
as a result of cascading breakdown. Disabling the node with
the largest load in a heterogeneous network can result in
more severe load redistribution to other nodes and conse-
quently lead to more node failures. However, this observa-
tion is based on the assumption that the capacity of a node or
an edge is linearly proportional to its initial load, which is
somewhat artificial. In our model, the capacity of an edge
does not depend on the amount of flow passing through it.
Our flow model and the associated capacity hypothesis are
thus more natural. In fact, we do not assume any linear rela-
tion between the initial flux and edge capacity. As a result,
for a more heterogeneous network, flux redistribution caused
by attack on the highest-flux node can be more easily ab-
sorbed by other nodes, effectively inhibiting cascading
breakdown.

VI. CONCLUSIONS

In conclusion, we have reexamined the concept of load in
network dynamics and proposed a model for cascading fail-
ures based on the inherent edge capacities, independent of
the initial loads at edges. We find that cascading dynamics
can occur for limited edge capacity. For regular and small-
world networks, the occurrence of cascading is abrupt but for
networks with heterogeneous degree distribution, such as
scale-free networks, the transition from free-flow state to
global cascading breakdown is continuous. Between these
two states there exists an abnormal regime where an increase
in the edge capacity can counterintuitively make the cascad-
ing process more severe. We also find that heterogeneous
flow distribution at nodes can enhance the network’s ability
to sustain edge cascading, in contrast to previous results.

FIG. 6. �Color online� Cascading size s as a function of normal-
ized capacity parameter 	�̄ for different values of � for BA net-
works with size �a� N=200 and �b� N=500. The cascading event is
triggered by a single attack on the largest degree node when the
network is in the free-flow state.

FIG. 7. �Color online� Distribution of flux at nodes P�F̄� for
different values of �. BA scale-free networks with N=500 have
been used.
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These findings suggest that cascading behaviors based on the
inherent edge capacity are quite different from cascading
based on the linear relation that has been studied extensively
in the complex-network literature. It is noteworthy that from
an applied point of view, controlling cascading failures is an
important issue of practical significance. Some controlling
strategies have been proposed in Refs. �12,13� to enhance
network robustness against random failures and targeted at-
tacks. The key ingredient in our approach is to find the value
of � for optimal robustness by taking into account the invest-

ment cost. A comparison study with previous approaches can
then be carried out.
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