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Growth and preferential attachments have been coined as the two fundamental mechanisms responsible for
the scale-free feature in complex networks, as characterized by an algebraic degree distribution. There are
situations, particularly in biological networks, where growth is absent or not important, yet some of these
networks still exhibit the scale-free feature with a small degree exponent. Here we propose two classes of
models to account for this phenomenon. We show analytically and numerically that, in the first model, a
spectrum of algebraic degree distributions with a small exponent can be generated. The second model incor-
porates weights for nodes, and it is able to generate robust scale-free degree distribution with larger algebraic
exponents. Our results imply that it is natural for a complex network to self-organize itself into a scale-free
state without growth.
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Complex networks have become an area of tremendous
recent interest �1–4� since the discoveries of the small-world
�5� and scale-free �6� properties in many natural and man-
made networks. A small-world network is characterized by a
short network distance and a high clustering coefficient.
Watts and Strogatz demonstrated that the two small-world
characteristics can be obtained from a regular network by
rewiring or adding a few long-range links �shortcuts�, which
connect otherwise distant nodes �5�. Indeed, since a regular
network intrinsically already has a high clustering coefficient
but has a large network distance, a few shortcuts can signifi-
cantly reduce the network distance, while having little effect
on the clustering coefficient. The scale-free property is char-
acterized by an algebraic degree distribution: P�k��k−�,
where the degree variable k measures the number of links of
node in the network, and ��0 is the algebraic scaling expo-
nent. Barabási and Albert discovered the scale-free property
and also proposed growth and preferential attachment as the
two basic mechanisms responsible for the scale-free property
�6,7�. Here, growth requires that the numbers of nodes and
links increase with time and preferential attachment means
that when a new node is added to the network, the probabil-
ity that it connects to an existing node is proportional to the
number of links that this node has already had.

Although growth and preferential attachment can indeed
account for the scale-free property in many real-world com-
plex networks, there are networks that are apparently scale-
free but for which the growth mechanism seems to be lack-
ing or not particularly relevant. Typical examples are
biological networks �8–10�. For instance, the basic building
blocks of a cell and the energy required for its survival come
from a sequence of a large number of intracellular biochemi-
cal reactions that decompose complex molecules from food.
These biochemical reactions can be regarded as links in a
network, where the nodes are various chemicals participating
in the reactions. This is the so-called metabolic network,
which was shown to exhibit both scale-free �8� and small-

world features �9�. It is hard to imagine that these networks,
which are fundamental to all living cells, are constantly
growing. It is only reasonable to assume that evolution and
natural selection are the mechanisms responsible for the for-
mation and function of these networks. That is to say, the
networks and their scale-free property arise only because the
links, or the various biochemical reactions, have been chang-
ing and optimizing themselves continuously in time. Con-
sider also the various networks of neurons in the brain. The
numbers of neurons, in general, do not increase during the
lifetime. The evolution and development of the brain are
accomplished by connections among neurons, which vary
constantly in time. Although the scale-free feature seems to
be universal, it is also important to note that in many com-
plex networks, there is always an exponential component in
the degree distribution �11,12�. In particular, the distribution
typically contains an algebraic component for small degree
and an exponential decay component for large degree. That
is, the scale-free characterization is valid only to certain ex-
tent. Many realistic networks show the scale-free feature
with algebraic scaling exponent between 2 and 3 and thus
most studies thus far have focused on network structure with
��2. However, some biological networks with the scale-
free feature have their algebraic exponents close to unity
�10�. To be able to account for such scale-free networks with
small algebraic exponent without the need to incorporate the
growth mechanism is of great interest.

In this paper, we propose two classes of nongrowing net-
work models that can naturally generate the scale-free fea-
ture in a self-organized manner. For the first model, starting
from a regular network of a large number �fixed� of nodes,
the links among various nodes can be removed and reestab-
lished constantly in time. In particular, links are detached
from nodes randomly in time. Once such an event occurs, the
link can be rewired following a rule that contains a compo-
nent of preferential attachment, which is controlled by a pa-
rameter 0���1. We will show that a network evolving
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following such a simple rule generally reaches an equilib-
rium configuration with both algebraic and exponential de-
gree distributions

P�k� � k−�e−�k, �1�

where the algebraic exponent � and the exponential rate �
depend on the model parameter �. For the attachment rule
that we used, analytic expressions of � and � can be derived.
Extensive numerical experiments using network size of as
large as 105 nodes yield scaling results that are in good
agreement with the theory. Considering that nodes and links
can play different roles in terms of physical functions, we
also introduce a weighted, nongrowing network model and
show that it can generate robust scale-free behavior with
value of the exponent � in the range that fits many realistic
networks �between 2 and 3�. As most previous works empha-
size growth as one of the fundamental, necessary mecha-
nisms for the scale-free property, our results suggest that this
may not always be true. In fact, a large, nongrowing network
can evolve by itself into a scale-free state. As we have elabo-
rated, such self-organized scale-free networks may find ap-
plications, particularly in biological systems. Since self-
organized criticality has been speculated to be a universal
mechanism for generating algebraic �power-law� behaviors
in natural systems �13–15�, it is reasonable that the scale-free
feature in complex networks can arise through a self-
organizing process.

In what follows, for clarity we focus our theoretical analy-
sis on the first model �nonweighted�. To obtain a self-
organized scale-free network in the simplest possible way,
we begin by generating a one-dimensional regular network
of N �large� nodes on a ring, as shown in Fig. 1�a�. Initially
each node has one link that can be rewired �denoted by a
solid line with arrow�. Let lm→i be the link between nodes m
and i. The link is assumed to originate from the node m, i.e.,
the link cannot be detached from m, but it can be detached
from node i �only incoming links can be detached from
nodes� and reconnected to a third node in the network. At
each time step, link lm→i is chosen randomly and it is de-
tached from node i and reconnected to node j according the
following rewiring probability:

	�kj� =
kj − �

�r
�kr − ��

=
kj − �

N�2 − ��
, �2�

where kj is the number of links that node j has, ��0 is the
control parameter and � j	�kj�=1. Since the minimum num-
ber of rewirable links a node has initially is one, we have
��1. This rewiring process continues in time. One question
is whether an equilibrium state can be reached in the sense
that the degree distribution converges asymptotically.

To address this question, we use the master-equation ap-
proach. Let P�k , t� be the degree distribution function at time
t, i.e., the probability that a randomly selected node has ex-
actly k links at time t. We focus on P�k , t+1� and enumerate
all possible contributions to it. There are four possible pro-
cesses that can change P�k , t�. �i� At time t, a randomly se-
lected link is detached from a node with k+1 rewirable links.
Since there are N rewirable links in the network, the prob-
ability for this to occur is k /N. At time t+1 there is thus an
increase of �k /N�P�k+1, t� to P�k , t�. �ii� At time t, a ran-
domly chosen link is detached from a node with k rewirable
links. This causes a decrease in the amount of ��k
−1� /N�P�k , t� to P�k , t�. �iii� For nodes with k−1 links at
time t, there is a probability that an additional link can be
attached to one of them. This is the rewiring probability for
nodes with k−1 links. There is thus an increase of 	�k
−1�P�k−1, t� to P�k , t�. �iv� Similarly, a node with k links at
time t can lose one link with probability 	�k�, giving rise to
a decrease of 	�k�P�k , t� to P�k , t�. Summarizing all these
contributions, we obtain the master equation for P�k , t�

P�k,t + 1� = P�k,t� +
k

N
P�k + 1,t� −

k − 1

N
P�k,t�

+
�k − 1� − �

N�2 − ��
P�k − 1,t� −

k − �

N�2 − ��
P�k,t� .

�3�

In the steady state, we have P�k , t+1�= P�k , t� and, hence,

0 = kP�k + 1� − �k − 1�P�k� +
�k − 1� − �

�2 − ��


P�k − 1� −
k − �

�2 − ��
P�k� , �4�

where P�k�� P�k , t→��. For network with large number of
nodes, we can use the continuum limit N→� and treat k as
a continuous variable. To obtain a differential equation for
P�k�, we rewrite Eq. �4� as

0 = �k + 1�P�k + 1� − 2kP�k� + �k − 1�P�k − 1� −
k

2 − �
P�k�

+
k − 1

2 − �
P�k − 1� + kP�k� − �k − 1�P�k − 1� +

�

2 − �
P�k�

−
�

2 − �
P�k − 1� − P�k + 1� + P�k� , �5�

which is equivalent to

FIG. 1. �Color online� �a� Initial configuration: a one-
dimensional regular network on a ring. Each node has one link that
can be rewired. �b� The resulting network after a number of rewir-
ing steps.
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d2

dk2 �kP�k�	 +
d

dk
���k + � − 1�P�k�	 = 0, �6�

where

� =
�

2 − �
,

� = 1 − 1/�2 − �� . �7�

Solution to Eq. �6� is the scaling law �1�, with the algebraic
exponent and exponential rate given by Eq. �7�. We see that
the degree distribution can indeed reach an equilibrium that
contains both an algebraic and an exponential component.
For �
1, we have �
0 so that the dominant contribution to
P�k� is algebraic. For 0���1, the degree distribution is
algebraic for small k but has an exponential tail for large k.
For �=0, we have �=0, so the degree distribution is entirely
exponential. A prediction is then that the scale-free feature
can exist in large, nongrowing networks through the mecha-
nism of self-organization.

Intuitively, to see why a network can self-organize into a
scale-free form for �
1, we note that both probabilities for
a link to be detached from a node i with degree k and to be
attached to it are �k−1� /N. This makes it possible that some
nodes can capture a relatively large number of links. Let us
consider n nodes with degree l and a node j with degree m,
where m=nl��1� and n is a small integer. The probabilities
of attachment of a link to and detachment of it from node j
are approximately the same as the corresponding probabili-
ties for the n nodes. In general, in a steady state, kNP�k� is
distributed equally over large k. This is consistent with our
theory P�k��1/k. When �=0, the probability of detachment
of a link from a node with degree k is �k−1� /N, but the
probability of attachment of a link to it is about k /2N. Thus
the probability for a node to have large degree is relatively
small. This tends to make the degree distribution uniform
and, in fact, gives rise to an exponential distribution.

To provide numerical support for the scaling law �1�, we
generate a network of N=105 nodes with initial configuration
as shown in Fig. 1. We then perform the rewiring process
according to the rule in �2�. For network of this size, we find
that the steady state can be reached typically after about
100N rewirings �or time steps�. Figure 2 shows the time-
averaged degree distributions defined by �P�k , t��
=�t=T0

t=T0+TP�k , t� /T, where T�1 and T0� �to be defined be-
low�. Each data set in Fig. 2 is obtained for �
1. We ob-
serve deviations from the straight line for k�kmax, where
kmax increases as N does. Inset of Fig. 2 shows the
asymptotic degree distribution for �=0.997 and N=105. The
distribution is apparently scale-free over two orders of mag-
nitude of variation of k. Note that for this network of N
nodes, the minimum value that P�k� can have is 1 /N. For
N=105, P�k� has the minimum value when k=kmax�
200�.
Therefore, the distribution appears to be algebraic for k up to
kmax, but it dose not follow the algebraic behavior for k
�kmax. This is the reason why a cutoff in Fig. 2 occurs. The
generated network has a peculiar sensitivity of the emergent
structure to small deviations of the parameter � from 1, sug-

gesting a narrow range for self-organizing scale-free struc-
tures. When � deviates from 1, the exponential component in
the degree distribution becomes numerically observable, as
shown in Figs. 3�a�–3�c�, respectively, for �=0.99, 0.95, and
0.90, where the dashed lines indicate the theoretical predic-
tion �1�. The numerical data deviate from the theoretically
estimated line when k is large, but the deviation can be re-
duced by increasing the network size. The agreement be-
tween numerics and theory is reasonable. The pure algebraic
decay behavior in this nonweighted model can occur only
when �→1. For �=0, our theory predicts that the degree
distribution is completely exponential, as shown in Fig. 3�d�.

An issue is how long it takes for an initially regular net-
work to reach the equilibrium configuration through the re-

FIG. 2. �Color online� Time-averaged degree distribution with
�
1 for N=5
103, 104, 5
104, and 105 from top to bottom.
Inset: Algebraic degree distribution with �
1 for N=105 and �
=0.997. The degree distribution has the minimum value P�k�
=1/105 when k=kmax�
200�.

FIG. 3. �Color online� Time-averaged degree distribution for
N=105 and �=0.99 �a�, 0.95 �b�, 0.9 �c�, and 0.0 �d�. Degree dis-
tribution contains both an algebraic and an exponential component
for ��0. The dashed lines correspond to �=0.98 �a�, 0.91 �b�, 0.82
�c�, 0 �d� and �=0.01 �a�, 0.05 �b�, 0.09 �c�, 0.7 �d�.
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wiring process. Here we can provide a lower and a upper
bound for this time . For a network with N nodes and N
rewirable links, at least N rewiring steps are necessary to
guarantee that majority of the links are altered so that the
network is no longer regular. Thus we have �N. To obtain
an upper bound for , we imagine a diffusionlike process that
evolves a uniform distribution to a different one. This diffu-
sion picture can be heuristically justified by noting that the
master equation �3� can be written as

�Q�k,t�
�t

=
k

N
 �2Q�k,t�

�k2 +
�

�k
���k + b�P�k,t�	� , �8�

where Q�k , t�=kP�k , t�. For ��1, the parameters b and � are
both near zero. Equation �8� thus models approximately a
diffusionlike process. For a system of “spatial” size of N, an
elementary scaling argument suggests that the typical time
for a disturbance to diffuse through the whole system is pro-
portional to kN. We thus have �N2. Combining both the
lower and upper bounds, we obtain N��N2. Numerical
computations yield results that are consistent with these es-
timates. Although the above results are for the case where the
number of links permanently attached to node �denoted by
Kp� is 1, we find that the results remain essentially the same
in the sense that the scaling law �1� can be generated but for
�
Kp.

We have numerically measured the clustering coefficient
C �3�,

C =
3 
 �number of triangles in the network�

number of connected triples of nodes
�9�

and found that it typically assumes small values �from 4

10−5 to 10−6 for � from 0 to 1�. We have also calculated
the degree-degree correlation coefficient r �16� for different
values of �. In particular, to evaluate r, we measured the
Person correlation coefficient of the degrees at both ends of
the links, as follows:

r =

N−1�i
jiki − N−1�i

1

2
�ji + ki��2

N−1�i

1

2
�ji

2 + ki
2� − N−1�i

1

2
�ji + ki��2 , �10�

where ji and ki are the degrees of the nodes at the ends of ith
link, N is the total number of link, and the summation is
respect to all links in the network. In our model, for �=0
nodes with large degrees tend to connect to nodes with only
one link and this tendency becomes stronger as � is in-
creased from 0 to 1. The result is shown in Fig. 4, where we
observe that the Person correlation coefficient is negative for
0���1. This indicates that our self-organized networks are
disassortative. As biological networks are expected to be dis-
assortative, Fig. 4 indicates that our model may be poten-
tially relevant to biology �16�.

We remark that the scale-free structure can originate from
various processes, such as preferential rewiring of links �17�,
weighted linking �18�, self-organized process �19�, etc. The
degree exponents from these models are typically ��2.
However, there are scale-free biological networks with their

degree exponents close to 1 �10�. Our study shows that this
small exponent value can be explained by a simple rewiring
process of links without growth.

We now discuss our weighted, nongrowing scale-free net-
work model. In this model, random weight wi between 0 and
1 is assigned to each node i in the regular network shown in
Fig. 1, where wi is drawn from uniform distribution. At each
time step, link lm→i and node j are chosen randomly and the
link can be detached from node i and reconnected to node j
with probability wj. This process is then repeated. Note that
in this model, the rewiring process is random. The distribu-
tion P�k , t� in a steady state appears to be algebraic for k up
to kmax. The value of kmax is similar to that found in the
nonweighted network model. When a steady state is reached,
we find a robust scale-free behavior: �P�k , t���k−� with �

2, as shown representatively in Fig. 5 for a network of N
=1.5
105 nodes. Again, similar scaling behavior arises for
Kp�1.

In summary, we have introduced two self-organized net-
work models, where the total number of nodes is fixed, but a
rewiring process of links occur continuously, to account for
the scale-free property in nongrowing networks that can
arise, for instance, in biological systems. Our nonweighted

FIG. 4. Degree-degree correlation coefficient r for different val-
ues of � in the nonweighted network with N=10 000.

FIG. 5. �Color online� For a weighted network with N=1.5

105, algebraic degree distribution with �
2. Data were averaged
over 30 network realizations
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network model can yield a spectrum of degree distributions
ranging from algebraic to exponential, whereas the weighted
network model is capable of generating robust scale-free be-
havior. In addition, our model generates networks that are
apparently disassortative, suggesting its potential relevance
to biological networks �16�. The simplicity of our models
suggests that the scale-free feature, which has been demon-
strated to be so pervasive in complex networks, can, in fact,

arise via a self-organizing mechanism through natural evolu-
tion of links in the network, even without any growth mecha-
nism �20�. Our finding extends to complex networks the
speculation that many natural systems can self-organize
themselves into criticality with power-law behaviors
�13–15�.
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