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Beneficial role of noise in promoting species diversity through stochastic resonance
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There is an increasing recognition that patterns in species diversity cannot be understood without reference

to nonequilibrial or unstable dynamics. Recently, through a realistic ecological model that involves dispersal,

we have addressed the positive role of noise in promoting species coexistence [Phys. Rev. Lett. 94, 038102

(2005)]. Here we present a physical theory to account for the main scaling law responsible for this

phenomenon.
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One of the most amazing and beautiful aspects of nature
is species diversity. Understanding factors that promote di-
versity is both of fundamental importance and of general
interest. A key to diversity is species coexistence. Thus, one
approach to addressing the diversity problem is to study how
species, inferior or superior in terms of their competitive-
ness, are able to coexist in a common environment [1-4].
Due to the relative difficulty to conduct experimental studies,
theoretical analyses and computational modeling have be-
come an important tool to address the species coexistence
problem. In this regard, models based on nonlinear dynamics
have become increasingly important [5] due to the funda-
mental role played by nonlinear dynamics in ecological sys-
tems [6]. A class of computationally tractable models con-
sists of two species (one inferior and another superior) in a
spatially extended, patchy environment with fixed resources
[5]. Understanding how the inferior species can coexist with
the superior one can provide basic insights into the coexist-
ence problem [5,7]. Previous works suggested that the dis-
persal of the inferior species is essential for its competitive
survival and unstable dynamics such as chaos can greatly
facilitate the survival and hence coexistence. Recently, we
have addressed the role played by noise in promoting species
coexistence [8]. In particular, we have demonstrated that
noise can enhance the intermittency in the synchronization
between patch populations. As a result, some properly de-
fined measure of the degree of coexistence can be optimized
by noise, similar to stochastic resonance [9-12]. The purpose
of this Brief Report is to complement Ref. [8] by presenting
a physical theory for the main scaling law that implies this
phenomenon.

The beneficial role of background noise in physical sys-
tems [10,11] has been appreciated, particularly since the dis-
covery of stochastic resonance [9]. The effect of noise on
ecological system was first addressed by Vilar and Solé [12],
where the interplay between noise and periodic modulations
was studied in the classical Lotka-Volterra model that de-
scribes symmetric, two-species competition in a single envi-
ronment. The authors found that noise can change the system
dynamics characteristically and can enhance coexistence
through stochastic resonance. Since the Lotka-Volterra
model does not take into account space, the authors studied
an idealized coupled-map lattice system and demonstrated
that noise can affect the spatial pattern in population density.
As we will see, our model differs from the Lotka-Volterra
model in that space and species dispersal are essential for the
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population dynamics. Another feature of our model is that it
was constructed based on realistic ecological considerations
[5] and, hence, it is also distinct from idealized coupled-map
lattice models. Dynamically, the key factor promoting coex-
istence in our model is unstable dynamics—e.g., chaos. The
interplay between chaos and noise can enhance the degree of
coexistence [8].

We shall be interested in how an inferior species may
coexist with a superior one in a patchy environment. In order
to survive in the closed environment where a superior and
competitive species is present, the inferior species must
move (or disperse) fast relative to the motion of the superior
species. Another necessary condition for coexistence is spa-
tiotemporal heterogeneity in the environment because, in a
homogeneous environment, the superior species usually
dominates [4]. It was shown by Holt and McPeek [5] that
temporal irregularity in the dispersing dynamics alone can
play the role of spatiotemporal heterogeneity and, in fact,
chaotic dynamics is sufficient for dispersal to be favored.
They obtained this important result by studying an ecologi-
cally realistic, two-species, and two-patch model. More de-
tailed examination of this model revealed [7] that the chaotic
dynamics is in fact an intermittent, temporally synchronous
type of dynamics. In particular, if one examines the total
populations in the two patches relative to their respective
carrying capacities, one finds that the populations tend to
synchronize with each other in various time intervals, with
occasional, relatively fast phases of desynchronization. In a
synchronous state, dispersal is disfavored, while it is favored
during the desynchronization episodes. Thus, the more fre-
quently desynchronizations occur, the more likely and robust
that the inferior species is able to survive and coexist with
the superior one. We have shown [8] that the presence of
noise can enhance the occurrence of the desynchronization
events by reducing the average time between these events.
As a result, the average relative frequency of the dispersing
species increases with noise. A maximal degree of coexist-
ence, as characterized by equal frequencies of the two com-
peting species, can be achieved for an optimal level of noise
(stochastic resonance).

We consider the Holt-McPeek model [5]. Let N;(t) be the
population of clone i in patch j at generation ¢. The realized
fitness (the local population growth rate) of clone i in patch j
is given by
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Wi(t) = exp[r;(1 = N ()/K )], (1)

where r;; is the intrinsic rate of increase of clone i at low-
population size in patch j,Ny;(t)=N;;(t)+N,;(t) is the total
population in patch j, and K; is its carrying capacity. Realis-
tically, in the same patch the intrinsic growth rates for dif-
ferent clones are approximately the same [5]. We thus write
r1j=ry;=r; and W;;=W,(1). Dispersal is modeled by assuming
that, of the total population of clone i, a fraction e; migrate at
each generation from their natal patch, while the remainder
(1-¢;) remain in this patch. The key parameter that distin-
guishes one clone from another is then e;, the dispersal rate
of clone i. There is a cost of dispersal, since the migratory
fraction of the population experiences a mortality rate, which
can be conveniently modeled by the parameter (1 —m). That
is, only a fraction m of immigrants compete on equal terms
with the resident population. To have a model feasible for
computation and analysis, the following ecologically realistic
assumptions were also made [5]: (1) reproduction and den-
sity dependence precede dispersal, (2) the census immedi-
ately follows dispersal, (3) costs of dispersal for a clone are
experienced entirely by those individuals that actually dis-
perse, and (4) population densities are sufficiently high so
that they can be treated as continuous variables rather than
discrete integers. The resulted model can be written as a
four-dimensional, discrete-time, noninvertible map [5]:

Nyt +1) = (1 = e )W [Ny () INy(2) + me; W[ N (1) IN (1),
Nip(t+1) = (1 = e )Wo[Nyp(1) IN15(1) + me, W [Ny (1) Ny (2),
Nyy(t+ 1) = (1 = e)) Wi[Ny (1) INy (1) + mey Wo[ N (1) [Ny (1),

Noy(t+ 1) = (1 = e)) Wo[Np (1) INx (1) + mea W [N () IN4 (1)
(2)

The effect of small, additive noise on a reduced, two-
dimensional Holt-McPeek model [7] has been considered
[13] in terms of the dynamical phenomenon of bubbling
[14]. The ecological meaning of additive noise is, however,
not clear. Realistically, random fluctuations in the environ-
ment would ultimately affect the resource required for popu-
lation dynamics. It is thus reasonable to assume that the car-
rying capacities of the patches fluctuate randomly about

some nomial values: Kj(t)=1?j+ €&(t), where € is the noise
amplitude and &(#)(j=1,2) are independent random vari-
ables of zero mean and unit variance. The noise terms thus
enter the Holt-McPeek model in a sophisticated way in the
sense that it is neither additive nor multiplicative but may be
a complicated combination of both.

A convenient quantity to characterize the degree of syn-
chronization [7] is Q(1)=Np(t)/K,—Np(t)/K,, where Ny,
and N, are the total population in patches 1 and 2, respec-
tively. It has been demonstrated [8] that noise typically en-
hances the intermittent behavior in Q(¢). The intermittent dy-
namics can be characterized by the distribution of the time
interval 7 during which the patchy populations are tempo-
rally synchronized. Extensive numerical computations sug-
gest that, for small noise, (7) remains approximately constant
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and it starts to decrease algebraically as € is increased [8],
o const, for e<e,, 3)
D~
€% fore>e,

where >0 and €, is a constant. The observation that the
average synchronization time starts to decrease with € for €
> €., where €, corresponds to the magnitude of random fluc-
tuations of about 1% of the carrying capacities, has a signifi-
cant consequence. As the desynchronization bursts become
more often, the fast-dispersing species experiences more fre-
quent episodic increases, resulting an increase in its popula-
tion. Indeed, we find [8] that the average frequency p;(e)
=lim;_..(1/T)S,p,(¢) starts to increase for €> €, while it
remains approximately constant for e<<e. Suppose, in the
absence of noise, the population of the dispersing species
falls below that of the relatively stationary species—i.e.,
P1(0)<p,(0). As € is increased through €,,p,(€) increases
but this means a simultaneous reduction in the average fre-
quency of the stationary species [since p,(€)+ p,(€)=1]. That
is, coexistence is enhanced by noise. We can imagine that for
a higher level of noise, an equilibrium point may be reached
where the average frequencies of the two species become
equal, signifying an optimal state of coexistence. As the
noise level is increased further, p;(€) exceeds p,(€) so that
the trend is reversed: coexistence tends to be weakened for
very large noise. All these point to a phenomenon similar to
stochastic resonance: coexistence can be optimized by noise.

To derive the scaling law (3), we use a simplified version
of the Holt-McPeek model [7], a two-dimensional noninvert-
ible map that retains the essential ecological ingredients of
the full model. The map can be approximated by a typical
on-off intermittent dynamical system. Under noise, the sys-
tem can be analyzed by using the Fokker-Planck (FP) Eq.
[15]. A unique feature not present in previous analyses is that
in the canonical model for on-off intermittency derived from
the Holt-McPeek model, the equivalant additive noise term
contains two contributions: one from random noise and an-
other from deterministic dynamics. This affects the choice of
proper boundary conditions when solving the FP equation. In
particular, the noise amplitude and the deterministic fluctua-
tions define the location of a reflecting barrier in the domain
where the FP equation holds. The common feature between
noise and deterministic fluctuations is that they both can in-
duce desynchronization bursts. If the effect of noise is shad-
owed by that of the deterministic fluctuations, the location of
the reflecting boundary condition is determined by the dy-
namics and is independent of the noise amplitude. Otherwise
it is determined by the noise amplitude. Analysis of the first-
passage time leads to the scaling law (3).

To construct an analyzable model, we recall that the typi-
cal setting to address the coexistence problem in species dis-
persal, as in the Holt-McPeek model, is that one species is
nearly stationary and another is rapidly moving between
patches. Coexistence is indicated by a nonzero average popu-
lation of the dispersing species. The influential dynamical
variables are thus the populations of the dispersing species in
different patches. As an approximation, we can regard the
populations of the nearly stationary species as entirely sta-
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tionary and drop these populations from consideration. The
physical effects of the stationary populations, however, can-
not be neglected. A reasonable assumption is that the station-
ary species only affects the resources available to the dis-
persing species but not contributing to dispersal itself.
Accordingly, we consider a one-species, two-patch model
where the existence of the stationary species (with its time-
varying population densities) affects the system by imposing
time-dependent resources availability. The influence of the
stationary clone is modeled in the system by the choice of
K;(1)’s, time-varying carrying capacities. The model becomes

Ni(t+1) = (1 =)W ()N, (1) + meW,(1)Ny(1),

No(t+1) = (1 = e)W(1)N,(1) + meW ()N, (1), (4)

where the growth dynamics in the two patches are given by
w,(t)= TI=MO/K1(0] and Wz(t):er[l—Nz(l)/Kz(t)].

When the patches are identical and the influence of the
stationary clone is also identical, we have K,(r)=K,(r)
=K(t) and r;=r,=r. It is convenient to normalize the popu-
lations in terms of the carrying capacities and make the fol-
lowing change of variables:

(0=~
W k0 T K0

! v(,)zé{Nl_(t) N_m]

K(t) K1)
In the new variables, we have

u(t+1) =[AW, (1) + AW, (1) Ju(t) + [AW, (1) = AW,(1) Ju(2),

v(t+1) =[BW,(t) = BWy(1) Ju(t) + [BW, (1) + BW,(1) Ju(7),
(5)

where A=1-e+me and B=1-e—me. In the vicinity of the
synchronization state, we have v=~0. Using the Taylor ex-
pansion to the first order, e**~1+rv(r), we obtain the
time-dependent growth factors W 5(7),

W, (1) = T2 0] < or(=u[ ] _ (5],

Wz(l‘) — er[l—u(t)+v(t)] ~ er(l—u(z))[l +rv (l‘)] (6)

Near the synchronization state, v(r) =0. Thus, to first order
in v, we obtain

u(t+ 1) = Ae" =4Ok (1),

v(t+ 1) = B OB 1 — (1) o (2). (7)

The remarkable observation is that Eq. (7) is similar to the
model equation for synchronization and on-off intermittency
in nonlinearly coupled, identical maps [16]. This allows us to
understand these dynamical phenomena in a more explicit
way. For instance, we see that the synchronization state v
=0 is invariant under Eq. (7) and, hence, if it is transversely
stable, perfect synchronization v=0 can be realized.

When K (t) # K,(t), we obtain from Eq. (4), in the (u,v)
coordinates, the following [again by Taylor expansion to the
first order in v(7)]:

u(t+1) = VD[Au() +A(A_ =1 + ) rvo(Dulr)
-(A_-T1+ep(1)],
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v(t+ 1) = VD= B ro()u(t) + Boo(t) = (B_ =1 + e)u(r)],
(®)

where the quantities A,, A_, B,, and B_ are given by A,
=1—e+me[KX(t)+K3(D)/[2K,(DKA(1)], A_=1—e+me[K3(1)
~K3(0]/[2K(DKA(D)], B,=1-e—me[K3(t)+K3(1)]/
[2K,()K5(1)], and B_=1 —e—me[K%(t) —K%(t)]/
[2K,(t)K,(2)]. Since the patches are nonidentical, the syn-
chronization state is now defined by N,/K;=N,/K,. In addi-
tion, the variable v also appears in the equation for u. If the
patches are nearly identical—i.e., K;(r) = K,(1)—Eq. (8) can
be further reduced, as follows. Let K,(r)=K(t) and K,(z)
=K(1)+ 8(r), where &(¢) is small compared to K(z). In this
case after neglecting terms of order & or higher, we obtain
A,=l-e+me, A_=l-e-medt)/[K(t)+8(1)], B,~1-e
—me, and B_=~1-e+med(t)/[K(t)+ &(¢)]. We thus have

me &8(t)rv(t)u(r)
K@) + 8(¢)

med(t)v(r)
- K@)+ 80 |

u(t+1) =4O Au(r) +

v(t+1) =B O 1 = ru(®)Jo(2)
+ M Olme SO U K1) + 81)]. 9)

Since &(¢) is small, the last term in the v(z+1) equation can
be considered a small amplitude, additive random noise. In
addition, the leading term in the u(r+1) equation is
Ae’1740)y(r), which typically generates chaotic dynamics.
The effect of v(z) on u(z) is coupled with the small parameter
&(t) and, hence, the u(f) dynamics can be regarded as being
approximately independent of v(z). The v equation can thus
be written concisely as

v(t+1) = alt)v(r) + 5(t), (10)
where

a(t) = BV O 1 = ru(r)],

(11)
7(1) = " Dne S u()[K(1) + 81)]

are effectively random processes. Equation (10) is the ca-
nonical model for on-off intermittency [15,17].

For small v(), its evolution is determined mainly by the
effective additive noise term #(¢). For on-off intermittency
the behavior of large v(7) is important, where the effect of
n(t) can be neglected. Letting y(f)=Inlv(z)|, for [v(z)|
> |7(7)| we can write Eq. (10) as

y(E+1)=y()+ v+ (1), (12)

where the constant v is the average value of In|a(t)| and B(r)
is the deviation of In|a(?)| from v [B(f) has zero mean:
(B(1))=0]. Equation (10) models a random walk. The on-off
intermittent dynamics can be analyzed by setting a threshold
v, and the average dwelling time of the walker in the “off”
state is the mean first-passage time through the threshold. In
the continuous-time approximation, the first-passage time
problem can be solved by using the following Fokker-Planck
equation:

042901-3



BRIEF REPORTS

IP(y,1)19t = — voP(y,1)/dy + (DI2)[FP(y,t)1dy*], (13)

where P(y,1) is the probability density function of y and D
=([y(t+1)=y(O) )= B()]?) is the diffusion coefficient. To
solve Eq. (13), it is necessary to choose initial and boundary
conditions. The choice of the initial condition is standard
[15]; i.e., the walkers start somewhere below the threshold,
P(t=0,y)=58(y—y,), where y,<y,. A walker reaching the
threshold is considered lost (corresponding to the “on” state)
and, hence, there is an absorbing boundary condition at y
=ym: P(t,y=y)=0.

A key feature in our random-walk model, Eq. (12), which
differs from the previous treatment of noise-induced on-off
intermittency in the literature [15], is the selection of the
second boundary condition for the Fokker-Planck equation.
In particular, if the additive noise is independent of the sys-
tem dynamics, its effect can be taken into account conve-
niently by setting a reflecting boundary condition in the y
space at a location determined by the noise amplitude. In our
model, however, the additive noise term 7(f) is not com-
pletely independent of the dynamical variables u(z) and v(z)
[Eq. (11)]. In fact, 5(r) is a result of both deterministic dy-
namics and noise. Heuristically, one can imagine two scales
in the y space, one determined by the dynamics and another
by noise. If the noisy scale is smaller than the dynamical
scale, the reflecting boundary is at the dynamical scale,
which is independent of the noise amplitude. In the opposite
case, the boundary is determined by the noisy scale. We thus
have the following reflecting boundary condition: —wvP(y
=yb,t)+(D/2)0P(y,t)/o?y|y=yb:0, where
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const, for e<e,,
Y= (14)

Ine, fore>e,.

Under these initial and boundary conditions, the first-passage

time is [18]
* Yth IP |t
T=—f tdtf dyﬁ,
0 Yo ot

which can be analytically evaluated to yield [15,18]
7= (yy — yo)/ v+ (DI217)e” 2" 0ui/P[ ] — g2 0uy/P] — (15)

Two time scales are important. One is the diffusion time 7,
=(y,—y,)*! D, which is the time for the walker starting at the
noise level to reach the threshold due to diffusion. Another is
the ballistic time 7,=(y,,—y;)/|v|, which is the time required
for the walker to travel from the location determined by the
noise level to the threshold via simple drift. In our ecological
problem, typically the system remains in an approximate
synchronization state for a long time, with occasional and
rapid excursion from it. Translating into the walker’s space,
the diffusion time is much longer than the ballistic time: 7,
> 7,. Using this condition and also noting that when random
diffusion is dominant we have |v(y,,—y,)|/D> 1, we can ap-
ply Taylor expansion to Eq. (15) to obtain

7=~ (DI212) 20D — o=20rly/D (16)

Substitution of the reflecting boundary condition (14) into
Eq. (16) yields the scaling law (3).

In conclusion, we have provided a physical theory to ex-
plain the scaling law reported in Ref. [8] that suggests the
power of random noise to optimize the degree of species
coexistence in a spatiotemporal environment.
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