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A superpersistent chaotic transient is characterized by the following scaling law for its average lifetime:t
,expfCsp−pcd−ag, whereC.0 anda.0 are constants,pùpc is a bifurcation parameter, andpc is its critical
value. Asp approachespc from above, the exponent in the exponential dependence diverges, leading to an
extremely long transient lifetime. Historically the possibility of such transient raised the question of whether
asymptotic attractors are relevant to turbulence. Here we investigate the phenomenon of noise-induced super-
persistent chaotic transients. In particular, we construct a prototype model based on random maps to illustrate
this phenomenon. We then approximate the model by stochastic differential equations and derive the scaling
laws for the transient lifetime versus the noise amplitude« for both the subcriticalsp,pcd and the supercritical
sp.pcd cases. Our results are the following. In the subcritical case where a chaotic attractor exists in the
absence of noise, noise-induced transients can be more persistent in the following sense of double-exponential
and algebraic scaling:t,expfK0 expsK1«−gdg for small noise amplitude«, whereK0.0, K1.0, andg.0 are
constants. The longevity of the transient lifetime in this case is striking. For the supercritical case where there
is already a superpersistent chaotic transient, noise can significantly reduce the transient lifetime. These results
add to the understanding of the interplay between random and deterministic chaotic dynamics with surprising
physical implications.
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I. INTRODUCTION

Transient chaos is ubiquitous in nonlinear dynamical sys-
temsf1,2g. In such a case, dynamical variables of the system
behave chaotically for a finite amount of time before settling
into a final state that is usually not chaotic. A common situ-
ation for transient chaos to arise is where the system under-
goes acrisis at which a chaotic attractor collides with the
basin boundary separating it and another coexisting attractor
f1g. Consider, for example, a three-dimensional flow or
equivalently, a two-dimensional invertible map. After the cri-
sis, the chaotic attractor is destroyed and converted into a
nonattracting chaotic invariant setschaotic saddled. Dynami-
cally, a trajectory then wanders in the vicinity of the chaotic
saddle for a period of time before approaching asymptoti-
cally to the other attractor. Chaotic transients of this sort are
usually not “superpersistent” in the sense that their average
lifetimes scale with the system parameter only algebraically.
Specifically, letp be a system parameter and assume that as
p is increased a crisis occurs at the critical parameter value
pc. There is thus transient chaos forp.pc. It is well estab-
lished both theoreticallyf3g and experimentallyf4g that the
average lifetimet of the chaotic transients scales with the
parameter variation algebraically:

t , sp − pcd−h, p . pc, s1d

where h.0 is the algebraic scaling exponent. Since noise
can trigger the occurrence of a crisisf5g, transient chaos
which is “regular” in the sense of the scaling laws1d, can
also be induced by noise.

There exists, however, another distinct class of transient
chaos–superpersistent chaotic transients. They are character-
ized by the following scaling law for their lifetimef6g:

t , expfCsDpd−xg, s2d

where Dp=p−pc, C.0 and x.0 are constants. Asp ap-
proaches the critical valuepc from above, the transient life-
time t becomes superpersistent in the sense that the exponent
in the exponential dependence diverges. This type of chaotic
transients was conceived to occur through the dynamical
mechanism of unstable-unstable pair bifurcation, in which an
unstable periodic orbit in the boundary of a chaotic attractor
collides with another unstable periodic orbit preexisted out-
side the setf6g. The same mechanism was believed to cause
the riddling bifurcationf7g that creates a riddled basinf8g, so
superpersistent chaotic transients can be expected at the on-
set of riddling. Unstable-unstable pair bifurcation is also key
to the dynamical phenomenon of bubblingf9g. Earlier the
transients were also identified in a class of coupled-map lat-
tices, leading to the speculation that asymptotic attractors
may not be relevant for turbulencef10g. Recently, noise-
induced superpersistent chaotic transients were demonstrated
f11g in phase synchronizationf12,13g of weakly coupled cha-
otic oscillators. In addition, signatures of noise-induced su-
perpersistent chaotic transients were foundf14g in the advec-
tive dynamics of inertial particles in open fluid flowsf15g.

In this paper, we investigate the scaling laws for the life-
times of noise-induced superpersistent chaotic transients.
Consider, in the noiseless case, a chaotic attractor and its
basin of attraction. The attractor, by being chaotic, has natu-
rally embedded within itself an infinite number of unstable
periodic orbits. A subset of these orbits can be accessible to
the basin boundary in the sense that a path of finite length
can be found which connects a periodic-orbit point to some
point on the basin boundary. Likewise, there can be a subset
of periodic orbits on the basin boundary that are accessible to
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the attractor. When noise is present, there can be a nonzero
probability that two periodic orbits, one belonging to the
accessible set on the attractor and another to the set on the
basin boundary, can get close and coalesce temporally, giv-
ing rise to a nonzero probability that a trajectory on the cha-
otic attractor crosses the basin boundary and moves to the
basin of another attractor. Transient chaos thus arises. Due to
noise, the channels through which trajectory escapes from
the chaotic attractor open and close intermittently in time.
Because of chaos, the probability of escape is extremely
small, as escaping through the channel requires staying of
the trajectory in a small vicinity of the opening of the chan-
nel for a finite amount of time, which is an event with ex-
tremely small probability. In this sense, the channel must be
“super” narrow f6,7g, leading to a superpersistent chaotic
transient. The creation of the channel by noise and the noisy
dynamics in the channel are thus the key to understanding
the noise-induced transient behavior.

To make analytic derivations and numerical computations
possible, we construct a prototype class of two-dimensional,
noninvertible maps as paradigmatic models for superpersis-
tent chaotic transients. We will argue that the chaotic tran-
sient lifetime is determined by the probability that some es-
caping channel becomes open and, more importantly, the
dynamics in the channel. In the presence of small noise, for
both the subcritical and supercritical cases, there is a finite
probability for the escaping channels to open, and the dy-
namics in the channel can be approximated by stochastic
different equations, the solutions to which can be obtained by
using the Fokker-Planck equation under appropriate initial
and boundary conditions.

Our principal results of amplitude« are the following.s1d
In the critical casesp=pcd, a small noise induces transient
chaos with average lifetime obeying the normal superpersis-
tent scaling law, in the following sense:

t , expsC«−ad, s3d

whereC.0 is a constant anda.0 is the algebraic scaling
exponent in the exponential dependence oft. While we ex-
pect the scaling law to be general, these constants are
system-dependent.s2d In the subcritical casesp,pcd where
a chaotic attractor exists in the absence of noise, for rela-
tively large noisessay «.«c, where«c depends onupc−pu
and «c→0 as p→pcd, the average lifetime of the noise-
induced chaotic transients obeys the normal scaling laws3d.
However, for small noises«,«cd, the average lifetime scales
with the noise amplitude« according to the following double
exponential and algebraic law:

t , expfK0 expsK1«−gdg for p , pc, s4d

whereK0.0, K1.0, andg.0 are constants. Because of the
double exponential dependence and the algebraic divergence
for small noise, the resulted transient lifetime can besignifi-
cantly longerthan that given by the normal superpersistent
scaling law s2d. We call such transientsextraordinarily-
superpersistent chaotic transientsf16g. s3d For the supercriti-
cal casesp.pcd where there is already a chaotic transient,
the lifetime has no dependence on the noise amplitude if it is
small. However, for relatively large noise, the lifetime de-

creases following the normal superpersistent scaling laws3d.
Thus, in this case the chaotic transient lifetime in the pres-
ence of noise can besignificantly shorterthan that in the
absence of noise. These findings should be useful for better
understanding the interplay between noise and chaotic dy-
namics.

In Sec. II, we introduce our prototype model for superper-
sistent chaotic transients. In Sec. III, we analyze the tunnel-
ing time based on the corresponding class of stochastic dif-
ferential equations and derive noisy scaling laws for the
transient lifetimes for all three cases: critical, supercritical,
and subcritical. In Sec. IV, we present numerical verification.
A discussion is presented in Sec. V.

II. MODEL FOR NOISE-INDUCED SUPERPERSISTENT
CHAOTIC TRANSIENTS

A. Dynamical mechanism for noise-induced superpersistent
chaotic transients

There are two essential features that lead to a superpersis-
tent chaotic transient:s1d the finite time it takes for a trajec-
tory to escape through a stochastic “channel” from a chaotic
attractor, ands2d the extremely small probability for a cha-
otic trajectory to spend this finite amount of time in a small
location around the opening of the channel on the attractor.
The location of an opening can be a fixed point, or a com-
ponent of an unstable periodic orbit in the chaotic attractor.
In the subcritical case, there is a chaotic attractor and no
escaping channel exists in the absence of noise. In this case,
the channel is induced by noise and it opens and closes ran-
domly in time. In the supercritical case, the channel is open
and there is already a superpersistent chaotic transient. The
presence of noise affects the deterministic dynamics in the
channel. In either case, the dynamics in the channel can be
regarded as being driven by a stochastic force and, hence, it
can be modeled by a stochastic differential equation, the so-
lution to which gives the tunneling time through the channel.
Apparently, this time depends on the noise amplitude. The
dependence, in combination with the small probability for a
trajectory to move to the opening of the channel and to stay
there for the duration of the tunneling time, gives the scaling
of the average lifetime of the superpersistent chaotic tran-
sients with the noise amplitude.

Previous works suggested unstable-unstable pair bifurca-
tion as the generic mechanism for superpersistent chaotic
transientsf6,7g. One can imagine two unstable periodic or-
bits of the same periods, one on the chaotic attractor and
another on the basin boundary, as shown in Fig. 1sad. In a
noiseless situation, as a bifurcation parameter passes through
its critical value, the two orbitscoalesceand disappear si-
multaneously, leaving behind a “channel” in the phase space
through which trajectories on the chaotic attractor can es-
cape. The chaotic attractor is thus converted into a chaotic
transient, but the channel created by this mechanism is typi-
cally super narrowf6,7g. From Fig. 1sad, we see that if the
phase space is two dimensional, the periodic orbit on the
attractor must be a saddle and the one on the basin boundary
must be a repeller. This can arise if the map is noninvertible.
Thus, the bifurcation can occur in invertible maps of at least

Y. DO AND Y.-C. LAI PHYSICAL REVIEW E 71, 046208s2005d

046208-2



dimension three, or in flows of dimension of at least four.
Our interest is in transient chaos induced by noise. If the
attractor is close to the basin boundary, noise can induce an
unstable-unstable pair bifurcation, creating a narrow channel
through which trajectories can escape, as shown schemati-
cally in Fig. 1sbd. For small noise, the probability for the
channel to open is small, but there can be a nonzero prob-
ability for trajectories to move to the location of the channel
for some amount of time to escape through the channel while
it is open. Suppose on average, it takes timeT for a trajectory
to travel through the channel in the phase space so that it is
no longer on the attractor, we expectT to increase as the
noise amplitude« is decreased, because the probability for
channel to remain open is smaller for weaker noise. In fact,
as we will argue below, we expectT to increase at least
algebraically as« is decreased and,T→` as«→0.

B. A prototype model for superpersistent chaotic transients

Let l.0 be the largest Lyapunov exponent of the chaotic
attractor. After an unstable-unstable pair bifurcation the
opened channel is locally transverse to the attractor. In order
for a trajectory to escape, it must spend at least timeT at the
location of the opening on the attractor centered around an
unstable periodic orbit—themediatingorbit involved in the
unstable-unstable pair bifurcation. The trajectory must come
to within distance of about expf−lTs«dg from this orbit. The
probability for this to occur is proportional to expf−lTs«dg.
The average time for the trajectory to remain on the attractor,
or the average transient lifetime, is thus

t , expflTs«dg. s5d

We see that the dependence ofTs«d on «, which is the aver-
age time that trajectories spend in the escaping channel, or
the tunneling time, is the key quantity determining the scal-
ing of the average chaotic transient lifetimet.

To obtain the scaling dependence of the tunneling time
Tsed on e, we note that, since the escaping channel is ex-
tremely narrow, for typical situations wherel.0 andTsed
large, the dynamics in the channel is approximately one di-
mensional along which the periodic orbit on the attractor is
stable but the orbit on the basin boundary is unstable forp
,pc fFig. 1sadg. This feature can thus be captured through
the following simple one-dimensional map:

xn+1 = xn
2 + xn + p + ejsnd, s6d

wherex denotes the dynamical variable in the channel,p is a
bifurcation parameter with critical pointpc=0, e is the noise
amplitude, andjsnd is a Gaussian random variable of zero
mean and unit variance. Forp,pc=0, the map has a stable
fixed point xs=−Î−p and an unstable fixed pointxu=Î−p.
These two collide atpc and disappear forp.pc, mimicking
an unstable-unstable pair bifurcation.

We are thus motivated to analyze the tunneling time using
the following general class of one-dimensional random
maps:

xn+1 = xn
k−1 + xn + p + «jsnd, s7d

wherekù3 is an odd integer so as to generate a pair of fixed
points with different unstable dimension. If the tunneling
time is T@1, Eq. s7d can be approximated by

dx

dt
= xk−1 + p + «jstd. s8d

For p,0, the deterministic system for Eq.s8d has a stable
fixed point xs=−upu1/sk−1d and an unstable fixed pointxu
= upu1/sk−1d, but there are no more fixed points forp.0, as
shown in Fig. 2. Letxr =xs for p,0 andxr =0 for pù0, and
let Tp

k be the tunneling time. We will show that a properly
formulated first-passage-time problem for this one-
dimensional stochastic process yields the scaling ofTp

k with
the noise amplitude«.

III. SCALING THEORY FOR AVERAGE TUNNELING
TIME AND AVERAGE CHAOTIC TRANSIENT LIFETIME

Let Psx,td be the probability density function of the sto-
chastic process governed by Eq.s8d. This density function
satisfies the Fokker-Planck equationf17g:

FIG. 1. sad In the absence of noise, a chaotic attractor, the basin
boundary, and the pair of unstable periodic orbits.sbd Escaping
channel induced by noise through the mechanism of unstable-
unstable pair bifurcation, converting the originally attracting motion
into a chaotic transient.

FIG. 2. For the prototype model Eq.s6d, sad the stable and
unstable fixed points for the subcritical casessp,0d, and sbd the
supercritical casesp.0d. The functionHsxd will be defined in Eq.
s13d.
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]Psx,td
]t

= −
]

]x
fsxk−1 + pdPsx,tdg +

«2

2

]2P

]x2 . s9d

Let l be the effective length of the channel in the sense that
a trajectory withx. l is considered to have escaped the
channel. The time required for a trajectory to travel through
the channel is equivalent to the mean first passage time T
from xr to l. Our interest is in the trajectories that do escape.
For such a trajectory, we assume that once it falls into the
channel throughxr, it will eventually exit the channel atx
= l without even going back to the original chaotic attractor.
This is reasonable considering that the probability for a tra-
jectory to fall in the channel and then to escape is already
exponentially smallfEq. s5dg and, hence, the probability for
any “second-order” process to occur, where a trajectory falls
in the channel, moves back to the original attractor, and falls
back in the channel again, is negligible. For trajectories in
the channel there is thus a reflecting boundary condition at
x=xr:

UFPsx,td −
]P

]x
GU

x=xr

= 0. s10d

That trajectories exit the channel atx= l indicates an absorb-
ing boundary condition atx= l:

Psl,td = 0. s11d

Assuming that trajectories initially are near the opening of
the channelsbut in the channeld, we have the initial condition

Psx,xrd = dsx − xr
+d. s12d

Under these boundary and initial conditions, the solution to
the Fokker-Planck equation yields the following mean first-
passage timef17g for the stochastic processs8d:

Tp
ks«d =

2

«2E
xr

l

dy expf− bHsydgE
xr

y

expfbHsy8dgdy8,

s13d

whereHsxd=sxk+kpxd andb=2/sk«2d.

A. The critical casep=pc=0

In the critical case, we haveHsyd=yk. The series expan-
sion

expsbwkd = o
n=0

`
sbwkdn

n!

yields

E
0

y

expfbHswdgdw= o
n=0

`
bnykn+1

n!skn+ 1d
.

Letting q=byk, we have

T0
ks«d =

2

«2E
0

l

o
n=0

`
sbykdn

n!skn+ 1d
y exps− bykddy

=
2

«2o
n=0

`
1

n!skn+ 1dE0

l8
qn exps− qd

1

kb
Sq

b
D−sk−2d/k

dq

, «−2+4/ko
n=0

`
1

n!skn+ 1dkE0

l8
qn−sk−2d/k exps− qddq

,«−2+4/ko
n=0

`
1

n!skn+ 1dk
Gsn + 2/kd, s14d

wherel8=blk andGsxd=e0
`tx−1 exps−tddt is the gamma func-

tion. In order to prove that the infinite series

o
n=0

`
1

n ! skn+ 1dk
Gsn + 2/kd s15d

is convergent, we make use of the double-inequality lemma
for the gamma functionf18g,

bb−1

aa−1 expsa − bd ,
Gsbd
Gsad

,
bb−1/2

aa−1/2 expsa − bd sb . a ù 1d.

We thus obtain the upper bound ofGsn+2/kd:

Gsn + 2/kd , Gsn + 1dexps1 − 2/kd
sn + 2/kdn−1+2/k

sn + 1dn

, Gsn + 1dexps1 − 2/kdsn + 2/kd−1+2/k. s16d

SinceGsn+1d=n!, we have

o
n=0

`
1

n!skn+ 1dk
Gsn + 2/kd ,

exps1 − 2/kd
k2 o

n=0

`
1

sn + 1/kd2−2/k

, `. s17d

The convergence of the infinite seriess15d implies the fol-
lowing scaling relation between the tunneling time and the
noise amplitude for the critical case:

T0
ks«d , «−s2−4/kd. s18d

Clearly we haveT0
ks«d→` as«→0, which is consistent with

the dynamics in the deterministic case. Substituting this re-
sult, for instance fork=3, in Eq. s5d gives the following
scaling law for noise-induced superpersistent chaotic tran-
sient in the normal sense:

tp=0 , expsC0«−2/3d. s19d

B. Supercritical regime „p.pc=0…

In the supercritical regime, we have
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Tp
k =

2

«2E
0

l

dy expf− bHsydgE
0

y

expfbHswdgdw

=
2

«2E
0

l

dy expf− bsyk + kpydgE
0

y

expfbswk + kpwdgdw

ø
2

«2E
0

l

dy expf− bsyk + kpydgexpskbpydE
0

y

expfbwkgdw

= T0
k.

That is,T0
k is an upper bound forTp

k. Using binomial expan-
sion, we obtain, for 0øyø l, the following inequality:

ysyk + kpydn

kn+ 1
ø E

0

y

swk + kpwdndwø
ysyk + kpydn

n + 1
.

Using the series expansion

E
0

y

expfbswk + kpwdgdw, o
n=0

`
1

sn + 1d!
bnysyk + kpydn,

letting r =bsyk+kpydù0, and noticing that 0øy/ syk−1+pd
øp−sk−2d/sk−1d for yù0, we obtain

2

«2E
0

l

expf− bHsydgyfbsyk + kpydgndy

ø E
0

l8
exps− rdrnp−sk−2d/sk−1ddr.

It implies that

Tp
ks«d ø o

n=0

`
1

sn + 1d!E0

l8
exps− rdrnp−sk−2d/sk−1ddr

, p−sk−2d/sk−1do
n=0

`
1

sn + 1d!E0

l8
exps− rdrndr

, p−sk−2d/sk−1d.

Utilizing the upper bounds forTp
k, i.e., Tp

ks«d,«−s2−4/kd and
Tp

ks«d,p−sk−2d/sk−1d, we obtain the scaling relation between
the critical noise strength and the bifurcation parameter:

«c , pk/f2sk−1dg. s20d

For the large noise regime«@«c, sincepb→0 ask→`, we
havesexpsbwk+kpbwdd,expsbwkd, which implies

Tp
k , T0

k.

Thus, in the supercritical regimesp.0d, we have the follow-
ing scaling results for the average tunneling time:

Tp
ks«d , H«−s2−4/kd, « @ «c

p−sk−2d/sk−1d, « ! «c,
J s21d

where«c,pk/s2sk−1dd.
Note that in the supercritical regime, an unstable-unstable

pair bifurcation has already occurred so that the correspond-
ing dynamical system in the absence of noise already exhib-
its a superpersistent transient behavior. The average transient

lifetime is determined by the average tunneling time as
expfA·Tp

ks«dg, whereA is a constant. The scaling result in
Eq. s21d implies that the average transient time becomes con-
stant in the small noise regime and decreases in the large
noise regime as the noise amplitude is increased. That is, the
role of noise is to reduce the chaotic transient lifetime.

C. Subcritical regime p,pc=0

In the subcritical regime, we have

Tp
k =

2

«2E
xs

l

dy expf− bsyk + kpydgE
xs

y

expfbswk + kpwdgdw

ù
2

«2E
0

l

dy expf− bsyk + kpydgexpskpybdE
0

y

expfbwkgdw

=
2

«2E
0

l

dy expsbykdE
0

y

expfbwkgdw=T0
k. s22d

That is, T0
k is now a lower bound ofTp

k, in contrast to the
supercritical regime. For«@ upu−k/f2sk−1dg, we have exps−byk

+kbpyd,expsbykd. This impliesTp
k ,T0

k for «@ upu−k/f2sk−1dg.
That is, in the large noise regime, the scaling of the average
transient lifetime is normally superpersistent.

Note that the functionH in the subcritical regime changes
from being positive to negative and then to positive on the
interval fxs, lg, versus the supercritical case whereH is al-
ways positive and an increasing function on the interval
f0,lg, as shown in Fig. 2. The technical consequence is that,
for the supercritical regime, expf−bHsxdg is a decreasing
function ande0

yexpfbHswdgdw is an increasing function on
the integration intervalf0,lg, while for the subcritical re-
gime, exps−bHsxdd changes from being decreasing to in-
creasing on the integration interval fxs, lg and
exs

y expfbHswdgdw is an increasing function with varying
rate. In order to calculate the mean first-passage time, it is
convenient to partition the integral interval and write the
integral in Eq.s22d as

Tp
k =

2

«2E
xs

l

dy expf− bHsydgE
xs

y

expfbHswdgdw

=
2

«2E
xs

0

dy expf− bHsydgE
xs

y

expfbHswdgdw s23d

+
2

«2E
0

l

dy expf− bHsydgE
xs

0

expfbHswdgdw s24d

+
2

«2E
0

xu

dy expf− bHsydgE
0

y

expfbHswdgdw

s25d

+
2

«2E
xu

l

dy expf− bHsydgE
0

xu

expfbHswdgdw

s26d
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+
2

«2E
xu

l

dy expf− bHsydgE
xu

y

expfbHswdgdw.

s27d

Since the functionH is locally quadratic at the stable and the
unstable points, we can approximate it nearx=xs as

Hsxd = H1sxd < Hsxsd + fH9sxsd/2gsx − xsd2

= sk − 1dupuk/sk−1d −
ksk − 1d

2
upusk−2d/sk−1dsx − xsd2.

Nearx=xu, we have

Hsxd = H2sxd < Hsxud + fH9sxud/2gsx − xud2

= − sk − 1dupuk/sk−1d

+
ksk − 1d

2
upusk−2d/sk−1dsx − xud2.

Using the approximations forH1 andH2, the five integrals in
Eqs.s23d–s27d can be carried outssee Appendixd. We obtain,
for the small noise regimes«! upuk/f2sk−1dgd, the average tun-
neling time:

Tp
ks«d ,

1

upusk−2d/sk−1d expS upuk/sk−1d

«2 D . s28d

The tunneling time at the critical noise amplitudeec is

Tp
k
„«cspd… , upu−sk−2d/sk−1d. s29d

D. Summary of scaling laws

The scaling laws of the average tunneling timeTp
ks«d with

noise can be summarized, as follows.
s1d For the small noise regimes«!«c,upuk/f2sk−1dgd, we

have

Tp
ks«d , 5

p−sk−2d/sk−1d, p . 0

«−s2−4/kd, p = 0

upu−sk−2d/sk−1d expS upuk/sk−1d

«2 D , p , 0.6 s30d

s2d For the large noise regimes«@«cd, we have

Tp
k , «−s2−4/kd. s31d

These laws imply the following scaling laws for the average
lifetime of the chaotic transients in various regimesfsubsti-
tuting the expressions ofTp

k in Eq. s5dg.
s1d For the small noise regimes«!«c,upuk/f2sk−1dgd, we

have

tp
ks«d , 5expsD1p

−sk−2d/sk−1dd, p . 0

expsD2«−s2−4/kdd, p = 0

expsD3upu−sk−2d/sk−1d expfupuk/sk−1d/«2gd, p , 0,
6

s32d

whereD1, D2, andD3 are constants.
s2d For the large noise regimes«@«cd, we have

tp
k , expsD4«−s2−4/kdd, s33d

whereD4 is a constant. The general observation is that for
large noises«@«cd, the transient is normally superpersistent.
For small noise, three behaviors arise depending on the bi-
furcation parameterp: constantsindependent of noised for
the supercritical regime, normally superpersistent for the
critical case, and extraordinarily superpersistent for the sub-
critical regime.

E. Remark: relation to Kramer’s law

The scaling laws33d, which holds generally for all three
regimes ssubcritical, critical, and supercriticald and for «
@«c, resembles the Kramers’ lawf19g in statistical physics.
This law states that, for a heavily damped particle in a po-
tential well with barrier heightDE, under Gaussian noise of
amplitude«, in the weak noise regime«2!DE the rate of
transition for the particle to cross over the potential barrier is

K , exps− DE/«2d, s34d

so the average dwelling time of the particle in the potential
well is

ktl , expsDE/«2d. s35d

The similarity between Eqs.s33d and s35d suggests that our
noise-induced transient chaos problem, particularly in the
subcritical regime where it is essentially a problem of noise-
induced escape from a chaotic attractor, can be understood
based on the picture of particle escape from a potential well.
This further suggests that in the regime«@«c where the
scaling laws33d is valid, the theory of quasipotentialf20–23g
may be applicable to the problem of superpersistent chaotic
transients.

Notice, however, in the extremely small noise regime«
!«c, the scaling laws32d deviates from that for the Kramers
time, except for the critical casesp=0d. sThe deviation can
also be seen clearly in numerical experiments, as in Fig. 9.d
This suggests that the picture of particle escaping from po-
tential well may not be applicable. At the present we do not
understand the failure of the Kramers theory in this case.

IV. NUMERICAL SUPPORT

A. Average tunneling time

We use the prototype model Eq.s7d to numerically verify
the scaling laws of the average tunneling time in different
regimes.

1. The critical case

Figure 3 shows, forp=pc=0, scaling of the average tun-
neling timeT0

ks«d with noise on a logarithmic scale, where
the lower, middle and upper curves correspond tok=3,5,7,
respectively. The solid lines represent the theoretical predic-
tion. There is a good agreement between the numerical com-
putation and the theoretical results18d.

2. Supercritical regime

Figure 4 shows, forp=exps−15d.0, scaling of the aver-
age tunneling timeT0

ks«d with noise on a logarithmic scale,
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where the lower, middle and upper curves correspond tok
=3,5,7,respectively. The critical noise levels«c that can be
used to distinguish small and large noise regimes for these
cases are«c<p3/4=exps11.25d, «c<p5/8=exps9.375d, and
«c<p7/12=exps8.75d, which are indicated by the vertical
solid, dashed, and dot-dashed lines, respectively. We observe
that the average tunneling timeTp

ks«d scales algebraically for
«,«c but for «.«c the time is approximately constant, as
predicted by Eq.s21d.

3. Subcritical regime

Figure 5sad shows, forp=−exps−15d,0, scaling of the
average tunneling timeTp

ks«d with noise on a logarithmic
scale, where the lower, middle, and upper curves correspond
to k=3,5,7,respectively. The vertical solid, dashed, and dot-
dashed lines indicate the critical noise level for these cases,
respectively. We see that for«.«c, the scaling is algebraic,
as in the critical case. However, for«,«c, the average tun-
neling time increases much faster than that given by the al-
gebraic scaling as the noise amplitude is decreased. Figure
5sbd shows the same cases but the vertical axis is on a
double-logarithmic scale. The approximately linear behavior
for «,«c indicates that the tunneling time itself is superper-

sistent, as suggested by the theoretical predictions28d. Note
that the linear regions are narrow. This is due to computa-
tional constraints as the average transient time is already of
the order ofe24,1013 iterations in the small noise regime.
The scaling relations28d predicts that the slope of the linear
fit between lnflnsTp

kdg and lns1/«d should be 2, regardless of
the value ofk. While the linear fits for different values ofk in
Fig. 5sbd indeed appear to be parallel to each other, the slope
is about 1.2, which is below the theoretical value. Since the
scaling relations28d is derived under the assumption«!«c,
we suspect that going into smaller« regime may yield slopes
closer to that predicted by theory. However, this is computa-
tionally infeasible at the present.

Figure 6 shows, for the subcritical regime, the relation
between the average tunneling time at the critical noise level
and the parameterp for k=3 sthe lower traced, k=5 sthe
middle traced, andk=7 sthe upper traced. The robust linear
behaviors verify the algebraic scaling relations29d.

B. A two-dimensional map

We consider the class of two-dimensional maps that were
used by Grebogi, Ott, and Yorkef6g to first report superper-
sistent chaotic transients:

un+1 = 2un mod 2p, s36d

zn+1 = azn + zn
2 + b cosun,

wherea andb are parameters. Because of thezn
2 term in the

z equation, for largeuznu we havezn+1.zn. There is thus an

FIG. 3. Verification of the scaling laws18d for the critical case
for three choices of the powerk in the prototype model Eq.s8d: k
=3 sthe lower traced, k=5 sthe middle traced, andk=7 sthe upper
traced.

FIG. 4. Verification of the scaling laws21d in the supercritical
regime for three choices of the powerk in the prototype model Eq.
s8d: k=3 sthe lower traced, k=5 sthe middle traced, and k=7 sthe
upper traced.

FIG. 5. Verification of the scaling laws of the average tunneling
time for the subcritical case wherep=−exps−15d,0. Shown in
each panel are the times for three choices of the powerk in the
prototype model Eq.s8d: k=3 sthe lower traced, k=5 sthe middle
traced, andk=7 sthe upper traced. sad lnsTp

kd versus lns1/«d andsbd
lnflnsTp

kdg versus lns1/«d. We see that for large noise, the scaling is
algebraic but for small noise, the tunneling time itself appears to
obey the superpersistent scaling law, as predicted by Eq.s28d.
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attractor atz= +`. Nearz=0, depending on the choice of the
parameters, there can be either a chaotic attractor or none.
For instance, for 0,b!1, there is a chaotic attractor near
z=0 for a,ac=1−2Îb and the attractor becomes a chaotic
transient fora.ac f6g. The transient is superpersistent for
a.ac, which can be arguedf6g, as follows.

For a,ac there are two fixed points:su1,z1d=s0,zbd and
su2,z2d=s0,zcd, where zc,b=s1−a± rd /2 and r
=Îs1−ad2−4b. The fixed pointss0,zbd ands0,zcd are on the
basin boundary and on the chaotic attractor, respectively.
They coalesce ata=ac. For a.ac, a channel is created
through which trajectories on the original attractor can es-
cape to an attractor at infinity. At the location of the channel
whereu=0, thez mapping can be written as

zn+1 − zn = sa − 1dzn + zn
2 + b.

Letting d=z−z* , wherez* is the minimum of the quadratic
function of z on the right-hand side, yields

dn+1 = dn + dn
2 + b, s37d

where b=Îbsa−acd−fsa−acd /2g2 and for a.ac, we have
b<Îbsa−acd. In the continuous-time approximation, the dy-
namics ind can be described bydd /dt=d2+b. Thus the time
T required to tunnel through the escaping channel is

T <
1

b1/2E
0

` dd

d2 + 1
=

p

2b1/2.

Since theu dynamics is uniformally chaotic with Lyapunov
exponentl=ln 2.0, the probability for a trajectory to fall in
the opening of the channel and to stay near there in theu
direction for consecutivelyT iterations is proportional to
e−T ln 2. For a.ac, the average chaotic transient time is thus
given by

t , eT ln 2 < esp ln 2/2db−1/2
< eCsa − acd−1/2

, s38d

where C=p ln 2b−1/4/2 is a positive constant. Thus in the
noiseless situation, fora.ac the exponent appeared in the
scaling of the average transient lifetime with the parameter

variation assumes the value of 1/2, which was verified nu-
merically f6g.

The above heuristic analysis indicates that the dynamics
in the escaping channel is governed approximately by the
one-dimensional equations37d with a single bifurcation pa-
rameter b. The critical point a=ac in the original two-
dimensional map Eq.s36d corresponds tob=bc=0. This jus-
tifies our use of Eq.s6d and its generalization Eq.s7d as
paradigmatic model for analytically obtaining the scaling
laws of the average tunneling lifetime with noise.

Figure 7 shows, forb=0.04 anda=ac=0.6, the chaotic
attractor nearz=0, its basin of attractionsblankd, and the
basin of the attraction of the attractors atz= +` sblackd.
Signature that an unstable-unstable pair bifurcation is about
to occur can be seen by the vertical, downward tip atu=0,
which is close to the chaotic attractor. For convenience we
write p;a−ac. Figure 8sad shows the behaviors of the tun-
neling time for five cases in the subcritical regime
sp=−0.0001, p=−0.001, p=−0.01, p=−0.1, and p=−0.2,
and the five vertical dashed lines from right to left indicate
the values of ln 1/ec for these five cases, respectivelyd, for
the critical casesp=pc=0d, and for the supercritical casesp
=0.0001d. We observe a robust algebraic scaling with the
2/3 exponent for the critical case. For large noisee.ec, the
scalings for the subcritical and supercritical cases coincide
with that for the critical case. For the supercritical case, how-
ever, the tunneling time plateaus for«,«c. Since the pla-
teaued value ofT is approximately the tunneling time in the
absence of noise, we see that as the noise amplitude is in-
creased, the tunneling time decreases, as predicted by our
theory. For the subcritical cases, the tunneling time increases
substantially for«,«c as compared with that in the critical
case. Figure 8sbd shows, on a double-logarithmic versus
logarithmic scale, the behaviors of the tunneling time for the
five cases in the subcritical regime. The approximately linear
fits in the small-noise range indicate that thetunneling times
themselvesfor those cases obey the superpersistent scaling
law. This can be considered asindirect evidence for extraor-
dinarily superpersistent chaotic transient. Note that the
slopes of the linear fits between lnflnsTpdg and lns1/«d are
approximately the same for different values ofp, as pre-
dicted theoretically, but the values of the slopes are less than
the theoretical value of 2, for the same reason that we specu-

FIG. 6. Verification of the theoretical predictions29d for the
scaling of the average tunneling time at the critical noise level with
the bifurcation parameterp. The three curves are fork=3 sthe lower
traced, k=5 sthe middle traced, and k=7 sthe upper traced in the
prototype model Eq.s8d.

FIG. 7. For the two-dimensional map models36d, in the absence
of noise, a chaotic attractor nearz=0, its basin of attractionsblankd,
and the basin of the attraction of the attractor atz= +` sblackd.
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lated for Fig. 5sbd. That is, because of the extremely rapid
increase in the tunneling time as« is decreased from«c, it is
difficult to extend the range of the noise variation in Fig.
8sbd. fFor instance, decreasing« by one order of magnitude
increasesTps«d by a factor ofe100.g

Figure 9 shows, for the numerical models36d, the scaling
of the average chaotic transient lifetime with the noise am-
plitude « on a proper scale. The scaling in the critical case
follows the normal superpersistent laws3d. For the subcriti-
cal and supercritical cases, the scalings coincide with the
normal superpersistent law only for large noisef«@«c

<s0.1Îbd3/4g. In the supercritical regime, the transient life-
time deviates from the normal superpersistent scaling law for

«!«c and then levels off, approaching a constant as«→0.
In the subcritical regime, for small noise, the chaotic tran-
sient lifetime increases much faster as compared with the
critical case. This behavior, in combination with Fig. 8sbd,
represents numerical evidence for our predicted extraordinar-
ily superpersistent chaotic transients. Note that the ordinate
of Fig. 9 is already on a double-logarithmic scale. Because of
the scaling constants in Eq.s4d, a triple-logarithmic scale
plot would be inappropriate because such a plot still would
not yield a linear behavior.

V. DISCUSSIONS

In summary, we have addressed the phenomenon of noise-
induced superpersistent chaotic transients and derived scal-
ing laws governing the dependence of the average transient
lifetime on noise amplitude. To make analytic treatment pos-
sible, we constructed a prototype map that captures the es-
sential dynamical features for superpersistent chaotic tran-
sients. We argue that noise can induce the opening of a
narrow channel through which trajectories on a original cha-
otic attractor can escape. As a result, the average transient
lifetime has an exponential dependence on the average time
that escaping trajectories spend in the channel. We propose
that the noisy dynamics in the channel can be modeled by a
class of one-dimensional stochastic differential equations and
the tunneling time can be approximated by the first-passage
time of the underlying stochastic process. This picture holds
in subcritical, critical, and supercritical parameter regimes.
We find that at the critical point, the scaling of the average
transient lifetime follows the superpersistent scaling law in
the normal sense. However, in the subcritical regime, the
lifetime can be substantially longer than that given by the
normal superpersistent scaling law. In contrast, in the super-
critical region where there is already a superpersistent cha-
otic transient, noise tends to reduce the transient lifetime.

These results can be relevant to physical situations. For
instance, we recently discoveredf14g that noise-induced su-
perpersistent chaotic transients can occur in the physical
space in the context of advection of inertial particles in open
chaotic flows. In particular, it has been known that ideal
particles with zero mass and size simply follow the velocity
of the flow and, as such, the advective dynamics can be
described as Hamiltonianf24–26g in the physical space for
which chaos can arise but not attractors. Thus, in an open
Hamiltonian flow, ideal particles coming from the upper
stream cannot be trapped and they must necessarily go out of
the region of interest in finite time. However, the inertia of
the advective particles can alter the flow locallyf27g. As a
result, the dynamical system underlying the advection of
such particles becomes dissipative for which attractors can
arise. This means that, due to the presence of an attractor,
particles can be trapped permanently in some region in the
physical spacef28g. This interesting phenomenon has been
demonstrated recently in a model of two-dimensional flow
past a cylindrical obstaclef15g. As the authors of Ref.f15g
pointed out, this result has implications in environmental sci-
ence where forecasting aerosol and pollutant transport is a
basic task. The possibility that toxin particles can be trapped

FIG. 8. For the two-dimensional map models36d: sad scaling
behaviors of the average tunneling timesTps«d with noise on a
logarithmic scale for five cases in the subcritical regime
sp=−0.0001,p=−0.001,p=−0.01, p=−0.1, andp=−0.2d, for the
critical casesp=pc=0d, and for the supercritical casesp=0.0001d,
where p;a−ac. sbd Replots of the tunneling times on a double-
logarithmic versus logarithmic scale for the five cases in the sub-
critical regime insad.

FIG. 9. For our numerical model, noisy scaling laws of the
average chaotic transient lifetime for the subcriticalsa=0.5,ac,
trianglesd, critical sa=ac, filled circlesd, and supercriticalsa=0.7
.ac, asterisksd cases.
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in physical space is particularly worrisome. We were thus
motivated to study the structural stability of such attractors
f29g. In particular, we ask, can chaotic attractors so formed
be persistent under small noise? We find that, indeed, the
attractor can be destroyed by small noise and replaced by a
chaotic transient, whose lifetime versus noise appears to
obey the superpersistent scaling law. An implication is that,
for small noise, the extraordinarily long trapping time makes
the transient particle motion practically equivalent to an at-
tracting motion with similar physical or biological effects.
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APPENDIX

We calculate the five integrals in Eq.s23d–s27d. Using the
approximationH1 of H, the integral in Eq.s23d can be com-
puted as

2

«2E
xs

0

dy expf− bHsydgE
xs

y

expfbHswdgdw

,
2

«2E
xs

0

dy expf− bH1sydgE
xs

y

expfbH1swdgdw

,
2

«2E
xs

0

dy expFg
sy − xsd2

«2 GE
xs

y

expF− g
sw − xsd2

«2 Gdw,

where g=fksk−1d /2gupusk−2d/sk−1d. Let sy−xsd /«=x and sw
−xsd /«=z. We have

2

«2E
xs

0

dy expFg
sy − xsd2

«2 GE
xs

y

expF− g
sw − xsd2

«2 Gdw

=E
0

−xs/«

dxexpfgx2gE
0

x

expf− gz2gdz

, E
0

−xs/«

x expfgx2gdx, upu−sk−2d/sk−1d expS upuk/sk−1d

«2 D .

For calculating the integral in Eq.s24d, we use the approxi-
mationsH1 andH2 of H and the fact

E
−`

`

expf− sx − ad2/b2gdx= Î2pb.

Since

E
−`

`

expf− bH2sydgdy, expS upuk/sk−1d

«2 D
3E

−`

`

expf− gsy − xud2/«2gdy

, «Î2p/upusk−2d/sk−1d expS upuk/sk−1d

«2 D
and similarly

E
−`

`

expfbsH1swddgdw, «Î2p/upusk−2d/sk−1d expS upuk/sk−1d

«2 D ,

we obtain, for the integral in Eq.s24d,

2

«2E
0

l

dy expf− bHsydgE
xs

0

expfbHswdgdw

, upu−sk−2d/sk−1d expS upuk/sk−1d

«2 D .

SinceH is negative onf0,xug, we have expfbHsydg,1 and
H<H2 on f0,xug. Thus

E
0

xu

dy expf− bHsydgE
0

y

expfbHswdgdw

, expS upuk/sk−1d

«2 DE
0

xu

y expf− gsy − xud2/«2gdy.

Since −xu
2ø−2xuy+xu

2øxu
2 on f0,xug, we have u−gs−2xuy

+xu
2du, upuk/sk−1d. This implies that

expS upuk/sk−1d

«2 DE
0

xu

y expf− gsy2 − 2xuy + xu
2d/«2gdy

, expS2upuk/sk−1d

«2 DE
0

xu

y exps− gy2/«2ddy.

Letting y/«=z, we have

E
0

xu

y exps− gy2/«2ddy, «2E
0

`

zexps− gz2ddy

, «2/upusk−2d/sk−1d.

Thus the integral in Eq.s25d is

upu−sk−2d/sk−1d expS upuk/sk−1d

«2 D .

The integral in Eq.s26d can be calculated as follows:

E
xu

l

expf− bHsydgdy, E
xu

l

expf− bH2sydgdy

, expS upuk/sk−1d

«2 D
3E

xu

l

expf− gsy − xud2/«2gdy

, expS upuk/sk−1d

«2 D
3E

−`

`

expf− gsy − xud2/«2gdy

,
«

upusk−2d/s2k−2d expS upuk/sk−1d

«2 D
and
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E
0

xu

expfbHswdgdw, E
0

xu

expfbH2swdgdw

, E
0

xu

exphf− sk − 1dupuk/sk−1d

+ gsw − xud2g/«2jdw

, E
0

xu

expfsgw2 − 2gxuw

+ upuk/sk−1dd/«2gdw

, expS upuk/sk−1d

«2 D
3E

0

xu

expfs− 2gxuwd/«2gdw.

Since

E
0

xu

expfs− 2gxuwd/«2gdw, «2/upu,

the integral in Eq.s26d is approximately

«

upus3k−4d/s2k−1d expsupuk/sk−1d/«2d.

Since H is increasing onsxu,`d, we have 0,Hsyd
−Hswd for xuøwøy, which implies that the integral in Eq.
s27d is

E
xu

l

dyE
xu

y

exph− bfHsyd − Hswdgjdw= C,

whereC is a constant.
Combining the results of these five integrals and using«

!1, we obtain the scaling relations28d.
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