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Scaling laws for noise-induced superpersistent chaotic transients
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A superpersistent chaotic transient is characterized by the following scaling law for its average lifetime:
~exg C(p-p.)~“], whereC>0 anda >0 are constant@= p. is a bifurcation parameter, an is its critical
value. Asp approacheg, from above, the exponent in the exponential dependence diverges, leading to an
extremely long transient lifetime. Historically the possibility of such transient raised the question of whether
asymptotic attractors are relevant to turbulence. Here we investigate the phenomenon of noise-induced super-
persistent chaotic transients. In particular, we construct a prototype model based on random maps to illustrate
this phenomenon. We then approximate the model by stochastic differential equations and derive the scaling
laws for the transient lifetime versus the noise ampliteder both the subcriticalp < p.) and the supercritical
(p>p.) cases. Our results are the following. In the subcritical case where a chaotic attractor exists in the
absence of noise, noise-induced transients can be more persistent in the following sense of double-exponential
and algebraic scaling:~ exd Ko exp(K1&~?)] for small noise amplitude, whereKo>0, K; >0, andy>0 are
constants. The longevity of the transient lifetime in this case is striking. For the supercritical case where there
is already a superpersistent chaotic transient, noise can significantly reduce the transient lifetime. These results
add to the understanding of the interplay between random and deterministic chaotic dynamics with surprising
physical implications.
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I. INTRODUCTION 7~ exdC(Ap)™], (2

Transient chaos is ubiquitous in nonlinear dynamical sys- e i
tems[1,2]. In such a case, dynamical variables of the systemWherEAp_p P, C=>0 and x>0 are constants. Ap ap

. ) : .~ _proaches the critical valug, from above, the transient life-
behave chaotically for a finite amount of time before settling;. ! .
. . . . .. “time 7 becomes superpersistent in the sense that the exponent
into a final state that is usually not chaotic. A common situ-

ation for transient chaos to arise is where the system undef- the exponential dependence diverges. This type of chaotic

goes acrisis at which a chaotic attractor collides with the fransients was conceived to occur through the dynamical

basin boundary separating it and another coexisting attracttgpeChamsm of unstable-unstable pair bifurcation, in which an

[1]. Consider, for example, a three-dimensional flow Orunstable periodic orbit in the boundary of a chaotic attractor
. ' . pe. a . - collides with another unstable periodic orbit preexisted out-
e_quwalently, gtwo-dmens_mnal invertible map. After the_ " side the sef6]. The same mechanism was believed to cause
sis, the ChaOt'C attractor 1s destroyed' and converted Into fhe riddling bifurcatior{ 7] that creates a riddled badi@], so
nonattracting chaotic invariant s@thaotic saddle Dynami-

cally, a trajectory then wanders in the vicinity of the Chaoticsuperper5|stent chaotic transients can be expected at the on-

saddle for a period of time before approaching asymptoti—set of riddling. Unstable-unstable pair bifurcation is also key

cally to the other attractor. Chaotic transients of this sort ansf-to th? dynamical phgnomgnon of bubblifg]. Earlier the
X . o ; ransients were also identified in a class of coupled-map lat-
usually not “superpersistent” in the sense that their avera

o ; . g{“Tces, leading to the speculation that asymptotic attractors
lifetimes scale with the system parameter only algebraically, ;

o may not be relevant for turbulendd.0]. Recently, noise-
Specifically, letp be a system parameter and assume that 8hduced superpersistent chaotic transients were demonstrated
p is increased a crisis occurs at the critical parameter valu Perp

pe. There is thus transient chaos for p.. It is well estab- El.l] n p_hase synchron!z_atlc[a_z,l?;l of weakly _coupled cha
X . . otic oscillators. In addition, signatures of noise-induced su-
lished both theoretically3] and experimentally4] that the . . ; X
. . . . perpersistent chaotic transients were folibd] in the advec-
average lifetimer of the chaotic transients scales with the ;. . A . ) .
o : ) tive dynamics of inertial particles in open fluid flows5].
parameter variation algebraically: ; : : . :
In this paper, we investigate the scaling laws for the life-

r~(P-p)" P> pe (1) times of noise-induced superpersistent chaotic transients.

Consider, in the noiseless case, a chaotic attractor and its

whereh>0 is the algebraic scaling exponent. Since noisebasin of attraction. The attractor, by being chaotic, has natu-
can trigger the occurrence of a crigi§], transient chaos rally embedded within itself an infinite number of unstable

which is “regular” in the sense of the scaling lad), can  periodic orbits. A subset of these orbits can be accessible to

also be induced by noise. the basin boundary in the sense that a path of finite length
There exists, however, another distinct class of transientan be found which connects a periodic-orbit point to some

chaos—superpersistent chaotic transients. They are charactpoeint on the basin boundary. Likewise, there can be a subset

ized by the following scaling law for their lifetimgs]: of periodic orbits on the basin boundary that are accessible to
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the attractor. When noise is present, there can be a nonzecoeases following the normal superpersistent scaling(Bw
probability that two periodic orbits, one belonging to the Thus, in this case the chaotic transient lifetime in the pres-
accessible set on the attractor and another to the set on tleace of noise can bsignificantly shorterthan that in the
basin boundary, can get close and coalesce temporally, giabsence of noise. These findings should be useful for better
ing rise to a nonzero probability that a trajectory on the chaunderstanding the interplay between noise and chaotic dy-
otic attractor crosses the basin boundary and moves to theamics.

basin of another attractor. Transient chaos thus arises. Due to In Sec. Il, we introduce our prototype model for superper-
noise, the channels through which trajectory escapes fromistent chaotic transients. In Sec. lll, we analyze the tunnel-
the chaotic attractor open and close intermittently in timeing time based on the corresponding class of stochastic dif-
Because of chaos, the probability of escape is extremelferential equations and derive noisy scaling laws for the
small, as escaping through the channel requires staying dfansient lifetimes for all three cases: critical, supercritical,
the trajectory in a small vicinity of the opening of the chan-and subcritical. In Sec. IV, we present numerical verification.
nel for a finite amount of time, which is an event with ex- A discussion is presented in Sec. V.

tremely small probability. In this sense, the channel must be

“super” narrow[6,7], leading to a superpersistent chaotic || ODEL FOR NOISE-INDUCED SUPERPERSISTENT

transie_nt. 'I_'he creation of the channel by noise and the no_isy CHAOTIC TRANSIENTS

dynamics in the channel are thus the key to understanding

the noise-induced transient behavior. A. Dynamical mechanism for noise-induced superpersistent
To make analytic derivations and numerical computations chaotic transients

possible, we construct a prototype class of two-dimensional, There are two essential features that lead to a superpersis-
noninvertible maps as paradigmatic models for superpersigant chaotic transientl) the finite time it takes for a trajec-
tent chaotic transients. We will argue that the chaotic trantOry to escape through a stochastic “channel” from a chaotic
sieqt lifetime is determined by the probabilityn that some Sattractor, and2) the extremely small probability for a cha-
caping channel becomes open and, more importantly, thgtic trajectory to spend this finite amount of time in a small
dynamics in the channel. In the presence of small noise, fofcation around the opening of the channel on the attractor.
both the subcritical and supercritical cases, there is a finitgne |ocation of an opening can be a fixed point, or a com-
probability for the escaping channels to open, and the dyponent of an unstable periodic orbit in the chaotic attractor.
namics in the channel can be approximated by stochastig, the subcritical case, there is a chaotic attractor and no
different equations, the solutions to which can be obtained b)éscaping channel exists in the absence of noise. In this case,
using the Fokker-Planck equation under appropriate initiathe channel is induced by noise and it opens and closes ran-
and boundary conditions. _ _ domly in time. In the supercritical case, the channel is open
Our principal results of amplitude are the following(1)  ang there is already a superpersistent chaotic transient. The
In the critical case(p=p,), a small noise induces transient presence of noise affects the deterministic dynamics in the
chaos with average lifetime obeying the normal superpersischannel. In either case, the dynamics in the channel can be
tent scaling law, in the following sense: regarded as being driven by a stochastic force and, hence, it
7~ exp(Ce™), 3 can be moqeled. by a stochasti.c dif_ferential equation, the so-
lution to which gives the tunneling time through the channel.
whereC>0 is a constant and>0 is the algebraic scaling Apparently, this time depends on the noise amplitude. The
exponent in the exponential dependencer.dfVhile we ex-  dependence, in combination with the small probability for a
pect the scaling law to be general, these constants afgajectory to move to the opening of the channel and to stay
system-dependent2) In the subcritical casép<p) where  there for the duration of the tunneling time, gives the scaling
a chaotic attractor exists in the absence of noise, for relasf the average lifetime of the superpersistent chaotic tran-
tively large noise(say & > ¢, wheree. depends onp.—p| sients with the noise amplitude.
and e;—0 as p—p.), the average lifetime of the noise-  Previous works suggested unstable-unstable pair bifurca-
induced chaotic transients obeys the normal scaling(Bw tion as the generic mechanism for superpersistent chaotic
However, for small noisés <), the average lifetime scales transientg6,7]. One can imagine two unstable periodic or-
with the noise amplitude according to the following double bits of the same periods, one on the chaotic attractor and
exponential and algebraic law: another on the basin boundary, as shown in Fig).1n a
_ - noiseless situation, as a bifurcation parameter passes through
7~ exiKoexplKye ] forp<p, @ its critical value, the two orbitsoalesceand disappear si-
whereK,>0, K;>0, andy> 0 are constants. Because of the multaneously, leaving behind a “channel” in the phase space
double exponential dependence and the algebraic divergentiough which trajectories on the chaotic attractor can es-
for small noise, the resulted transient lifetime cansiifi-  cape. The chaotic attractor is thus converted into a chaotic
cantly longerthan that given by the normal superpersistenttransient, but the channel created by this mechanism is typi-
scaling law (2). We call such transientextraordinarily-  cally super narrow6,7]. From Fig. 1a), we see that if the
superpersistent chaotic transieris]. (3) For the supercriti- phase space is two dimensional, the periodic orbit on the
cal case(p>p.) where there is already a chaotic transient,attractor must be a saddle and the one on the basin boundary
the lifetime has no dependence on the noise amplitude if it isnust be a repeller. This can arise if the map is noninvertible.
small. However, for relatively large noise, the lifetime de- Thus, the bifurcation can occur in invertible maps of at least
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FIG. 1. (a) In the absence of noise, a chaotic attractor, the basin
boundary, and the pair of unstable periodic orbits. Escaping
channel induced by noise through the mechanism of unstable-
unstable pair bifurcation, converting the originally attracting motion
into a chaotic transient.

dimension three, or in flows of dimension of at least four.

Our interest is in transient chaos induced by noise. If the

attractor is close to the basin boundary, noise can induce an

unstable-unstable pair bifurcation, creating a narrow channel

through which trajectories can escape, as shown schemati-

cally in Fig. 1(b). For small noise, the probability for the = FIG. 2. For the prototype model Ed6), (a) the stable and

channel to open is small, but there can be a nonzero propnstable fixed points for the subcritical cases<0), and (b) the

ability for trajectories to move to the location of the channelsupercritical casép>0). The functionH(x) will be defined in Eg.

for some amount of time to escape through the channel whil€3:

it is open. Suppose on average, it takes tiifer a trajectory

to travel through the channel in the phasg space so that it is Xyl = xﬁ +X,+p+eé(n), (6)

no longer on the attractor, we expettto increase as the

noise amplitudes is decreased, because the probability forwherex denotes the dynamical variable in the chanpes a

channel to remain open is smaller for weaker noise. In factbifurcation parameter with critical poimt,=0, € is the noise

as we will argue below, we expedt to increase at least amplitude, and(n) is a Gaussian random variable of zero

algebraically ag: is decreased and,—» ase—0. mean and unit variance. Fpr<p.=0, the map has a stable
fixed pointx,=—V-p and an unstable fixed point,=-p.
These two collide ap, and disappear fop> p., mimicking

B. A prototype model for superpersistent chaotic transients an unstable-unstable pair bifurcation.

Let A >0 be the largest Lyapunov exponent of the chaotic We are fthus motivated to analyze the_tunne!ing time using
attractor. After an unstable-unstable pair bifurcation thelhe fgllowmg general class of one-dimensional random
opened channel is locally transverse to the attractor. In ord aps:
for a trajectory to escape, it must spend at least finae the

location of the opening on the attractor centered around an
unstable periodic orbit—thenediatingorbit involved in the wherek=3 is an odd integer S0 as to generate a pair of fixed
unstable-unstable pair bifurcation. The trajectory must comeoints with different unstable dimension. If the tunneling
to within distance of about expAT(e)] from this orbit. The  time is T>1, Eq.(7) can be approximated by

probability for this to occur is proportional to e¢p\T(e)].

The average time for the trajectory to remain on the attractor, ax .,

or the average transient lifetime, is thus dt XTEHpeg(t). (8)

H(x)
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Xn+1:Xﬁ_l+Xn+ p+eé(n), (7)

For p<0, the deterministic system for E(8) has a stable
fixed point x;=—|p|**Y and an unstable fixed point,
=|p|**=D, but there are no more fixed points fpr>0, as
We see that the dependenceTéé) on &, which is the aver- shown in Fig. 2. Lek, =X for p<<0 andx,=0 for p=0, and
age time that trajectories spend in the escaping channel, d¢et T,'§ be the tunneling time. We will show that a properly
the tunneling time is the key quantity determining the scal- formulated first-passage-time problem for this one-
ing of the average chaotic transient lifetinne dimensional stochastic process yields the scaling";ofvith

To obtain the scaling dependence of the tunneling timghe noise amplitude.
T(e) on €, we note that, since the escaping channel is ex-

tremely narrow, for typical situations whehe>0 andT(e) lIl. SCALING THEORY FOR AVERAGE TUNNELING

Iarge, the dynamics in the channel is approximately one di—nME AND AVERAGE CHAOTIC TRANSIENT LIFETIME
mensional along which the periodic orbit on the attractor is

stable but the orbit on the basin boundary is unstablepofor  Let P(x,t) be the probability density function of the sto-
<p. [Fig. 1a)]. This feature can thus be captured throughchastic process governed by E®&). This density function
the following simple one-dimensional map: satisfies the Fokker-Planck equatidiv]:

T~ exgAT(e)]. (5

046208-3



Y. DO AND Y.-C. LAI

P(x, - &2 PP
J L(;t(t) __ dix[(xk 14 PIP(x,t)]+ E% (9

Let | be the effective length of the channel in the sense that
a trajectory withx>1I is considered to have escaped the
channel. The time required for a trajectory to travel through
the channel is equivalent to the mean first passage time T
from x; to I. Our interest is in the trajectories that do escape.
For such a trajectory, we assume that once it falls into the
channel throughx;, it will eventually exit the channel at

=| without even going back to the original chaotic attractor.
This is reasonable considering that the probability for a tra-
jectory to fall in the channel and then to escape is already

[ by¥)"
=23 O
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0 meo NH(kn+ 1)y exp(- bydy

oo

~ 2 1 |’ . 1 q>—(k—2)/k
"s%o n!(kn+1)j0 o expl q)kb(b da

o] 1 I,
244K n-(k=-2)/k —a)d
¢ g{)n!(km 1)|J0 d exp-a)dg

- 1
~g 2 T(n+2kK),

=0 N!(kn+ 1)k (149

exponentially smal[Eq. (5)] and, hence, the probability for \wherel’ =blk andT'(x) = [5t*"! exp(—t)dt is the gamma func-
any “second-order” process to occur, where a trajectory fallgion. In order to prove that the infinite series

in the channel, moves back to the original attractor, and falls
back in the channel again, is negligible. For trajectories in
the channel there is thus a reflecting boundary condition at

X=X,
aP
[”X’”‘&}

That trajectories exit the channebat| indicates an absorb-
ing boundary condition at=I:

=0. (10)

X=X,

P(l,t)=0. (11

Assuming that trajectories initially are near the opening of
the channel(but in the channg] we have the initial condition

bb—l
o= expa-b) < ——<

o

(n+2/k) (15

1
—T
g, n!(kn+ 1)k

is convergent, we make use of the double-inequality lemma
for the gamma function18],

F(b) bb—l/2

=T expa—-b) (b>a=1).

I'(a)

We thus obtain the upper bound Bfn+2/k):

(n + 2/k)n—1+2:k

I'(n+2/k) <T'(n+1)expl - 2k) (n+1)"

P(X,X,) = 8(x = X). (12 <T(n+Dexpl-2K)(n+2K) 12k (16)
Under these boundary and initial conditions, the solution t05incel(n+1)=n!, we have
the Fokker-Planck equation yields the following mean first- '
passage timgl7] for the stochastic process): o o
S g SIS 1
. 2 y e —onl(kn+ 1k K = (n+1/k)22k
Tole)=— | dyexd-bH(y)]| exgbH(y')ldy’,
€ Xy Xy < 0, (17)

(13
The convergence of the infinite seri€kb) implies the fol-
lowing scaling relation between the tunneling time and the
noise amplitude for the critical case:

whereH(x) = (x*+kpx) andb=2/(ke?).

A. The critical case p=p,=0
X TIS(s) ~ g= (2740 (18)

In the critical case, we havd(y)=yX. The series expan-

sion Clearly we havel(e) — o ase — 0, which is consistent with
" the dynamics in the deterministic case. Substituting this re-
_ < (bwH" sult, for instance fork=3, in Eq. (5) gives the following
explbwk) = > . o . )
= n scaling law for noise-induced superpersistent chaotic tran-
sient in the normal sense:
yields

Tp=0 ~ eXP(Coe2). (19

n, kn+1

y o by
o oni(kn B. Supercritical regime (p>p,=0)

Letting g=by*, we have In the supercritical regime, we have

046208-4
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|
Ts= %f dyexd- bH(y)]fy exp bH(w)]dw
to 0 0

|
éj dy exd - b(y*+ kpy)]Jy exg b(wWX + kpw) Jdw
0

%f dy exp - b(y* +kpy)]exp(kbp)bf exf bwf]dw

=TE.

That is,T'g is an upper bound foT,k). Using binomial expan-

sion, we obtain, for 8sy=<I, the following inequality:

y(y<+kpy)"

y(y*+kpy)"
kn+1 '

y
< K+ kpw)"dw <
fo (W +kpw)"dw 1

Using the series expansion

o

Jy exd b(wX + kpw) Jdw ~ E
0

‘(n+ 1),b”y(y +kpy)",

letting r=b(y*+kpy) =0, and noticing that &y/(y**+p)
<p 2/ for y=0, we obtain

2 |
= f exd — bH(y)Iy[b(y* + kpy) ]"dy
€ Jo

IV
sf exp(— r)r"p k=2/<Dqr

0

It implies that
oo |,
Te) < D) J exp(— r)r"p k-2/Dqy
pl8) = 2 ), SR
I/
~(k-2)/(k-1) —p)en
%(n+l)'f exp(-r)r'dr
~ prikReD),

Utilizing the upper bounds foT, i.e., T§(e) <& *k and
Tk(s)<p (k=2/(k-1) " we obtain the scallng relation between
the critical noise strength and the bifurcation parameter:

g~ PRI, (20)

For the large noise regime> ¢, sincepb— 0 ask— o, we

have exp(bwf+kpbw) ~exp(bwX), which implies
TS~ To.

Thus, in the supercritical regim@>0), we have the follow-

ing scaling results for the average tunneling time:

Pace 4’k) e>g;
p(S) —(k 2)/(k 1), & < ec, (21)

whereg,~ p¥@k-1),

Note that in the supercritical regime, an unstable-unstable
pair bifurcation has already occurred so that the correspond-
ing dynamical system in the absence of noise already exhib-

PHYSICAL REVIEW E 71, 046208(2005

lifetime is determined by the average tunneling time as
exp[A-T‘;,(s)], where A is a constant. The scaling result in
Eqg. (21) implies that the average transient time becomes con-
stant in the small noise regime and decreases in the large
noise regime as the noise amplitude is increased. That is, the
role of noise is to reduce the chaotic transient lifetime.

C. Subcritical regime p<p.=0

In the subcritical regime, we have

' y
Tp= 32 J dy ex - b(y*+ kpy)] f exd b(wX + kpw) Jdw
& Jxs Xs
2 [ y
=2 f dy exp{ - b(y* + kpy)Jexp(kpyb f exd bwdw
0 0

|
= éj dyeXp(byk)Jy ex bw<dw=T§. (22)

That is, T§ is now a lower bound off¥, in contrast to the
supercritical regime. Fog>|p| ¥2&-D] we have exp-by
+kbpy) ~ exp(by¥). This impliesTs~ T" for &> |p|WRk-DI,
That is, in the large noise regime, the scaling of the average
transient lifetime is normally superpersistent.

Note that the functiomd in the subcritical regime changes
from being positive to negative and then to positive on the
interval [x,1], versus the supercritical case wheieis al-
ways positive and an increasing function on the interval
[0,I], as shown in Fig. 2. The technical consequence is that,
for the supercritical regime, ekpbH(x)] is a decreasing
function andf{exgdbH(w)]dw is an increasing function on
the integration interva[0,l], while for the subcritical re-
gime, exp-bH(x)) changes from being decreasing to in-
creasing on the integration interval[x|] and
f{sex;{bH(w)]dw is an increasing function with varying
rate. In order to calculate the mean first-passage time, it is
convenient to partition the integral interval and write the
integral in Eq.(22) as

|
T,‘j = éj dyexpg - bH(y)]Jy exd bH(w) Jdw

0
= éj dy exd - bH(y)]fy exdbH(w)ldw (23)
2 0
t2 J dy exf - bH(y)] f exgd bH(w)Jdw (24)
e Jy %

* é J § dy ex - bH(y)] f y exp bH(w)]dw
0 0

(25

| Xy
+ éf dy exd - bH(y)]J exg bH(w)]dw
Xy 0

its a superpersistent transient behavior. The average transient (26)
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I
* é f dy exf— bH(y)] f y exg bH(w)Jdw.
(27)

Since the functiod is locally quadratic at the stable and the

unstable points, we can approximate it ngatxs as
H(X) = Hy(x) = H(x) + [H"(x)/2](x = x5)?

k(k-1)

=(k-1 k/(k=1) _
(k=1)|p| >

|p|(k—2)/(k—l)(x _ Xs)z.

Nearx=x,, we have
H(X) = Ha(x) = H(x) + [H"(x,)/2](x = x,)?
= - (k= D|p[Y
+ M|p|(k—2)/(k—l)(x —x,)>.
2

Using the approximations fdtl, andH,, the five integrals in
Egs.(23)—27) can be carried ousee Appendix We obtain,

for the small noise regimé <|p|¥12k-1]), the average tun-
neling time:

‘ 1 |p|k/(k—1)
Tole) ~ |p] 27D exp( 2 ) (28)
The tunneling time at the critical noise amplitueleis
Tp(ec(p)) ~ [p 2, (29)

D. Summary of scaling laws

The scaling laws of the average tunneling ti?lf‘gés) with
noise can be summarized, as follows.

(1) For the small noise regimé <g,~ |p|M2&D]), we
have

p—(k—2)/(k—1)’ p >0
. 8—(2—44()' p= 0
Tp(s) -~ |p|k/(k_1) (30)
e el P <o
(2) For the large noise regime> ¢.), we have
T~ e @, (31)

PHYSICAL REVIEW E 71, 046208(2005

75 ~ exp(Dge™24h), (33)

whereD, is a constant. The general observation is that for
large noisge > ¢.), the transient is normally superpersistent.
For small noise, three behaviors arise depending on the bi-
furcation parametep: constant(independent of noigefor

the supercritical regime, normally superpersistent for the
critical case, and extraordinarily superpersistent for the sub-
critical regime.

E. Remark: relation to Kramer’s law

The scaling law(33), which holds generally for all three
regimes (subcritical, critical, and supercritidaland for ¢
> g, resembles the Kramers’ laj9] in statistical physics.
This law states that, for a heavily damped patrticle in a po-
tential well with barrier heighAE, under Gaussian noise of
amplitudee, in the weak noise regime?<AE the rate of
transition for the particle to cross over the potential barrier is

K ~ exp(— AE/€?), (34)

so the average dwelling time of the particle in the potential
well is

(t) ~ exp(AE/€?). (35)

The similarity between Eqg33) and (35) suggests that our
noise-induced transient chaos problem, particularly in the
subcritical regime where it is essentially a problem of noise-
induced escape from a chaotic attractor, can be understood
based on the picture of particle escape from a potential well.
This further suggests that in the regime> ¢, where the
scaling law(33) is valid, the theory of quasipotentig20-23

may be applicable to the problem of superpersistent chaotic
transients.

Notice, however, in the extremely small noise regime
<g,, the scaling law(32) deviates from that for the Kramers
time, except for the critical caggp=0). (The deviation can
also be seen clearly in numerical experiments, as in Fjg. 9.
This suggests that the picture of particle escaping from po-
tential well may not be applicable. At the present we do not
understand the failure of the Kramers theory in this case.

IV. NUMERICAL SUPPORT
A. Average tunneling time

We use the prototype model E() to numerically verify
the scaling laws of the average tunneling time in different

These laws imply the following scaling laws for the averageregimes.

lifetime of the chaotic transients in various reginjesbsti-
tuting the expressions dfk in Eqg. (5)].

(1) For the small noise regimée <e.~ |p[M2&-D]), we
have

exp(D,pk2/kD) p>0
() ~ { exp(Doe" ™), p=0
exp(Dalp| 2" exf|p[*V/e?]), p<o0,
(32

whereD;, D,, andD3 are constants.
(2) For the large noise regime > ¢.), we have

1. The critical case

Figure 3 shows, fop=p.=0, scaling of the average tun-
neling timeTg(s) with noise on a logarithmic scale, where
the lower, middle and upper curves correspon#+@3,5,7,
respectively. The solid lines represent the theoretical predic-
tion. There is a good agreement between the numerical com-
putation and the theoretical resqis).

2. Supercritical regime

Figure 4 shows, fop=exp-15) >0, scaling of the aver-
age tunneling timél'(k)(s) with noise on a logarithmic scale,
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FIG. 3. Verification of the scaling lawl8) for the critical case
for three choices of the powérin the prototype model Eq8): k
=3 (the lower tracg k=5 (the middle trace andk=7 (the upper
trace.

n
N

1.2 . ’
where the lower, middle and upper curves corresponl to 2 naey 112
=3,5,7,respectively. The critical noise leveds that can be

used to distinguish small and large noise regimes for these FIG. 5. Verification of the scaling laws of the average tunneling
cases areec~p3’4:equl.25 sczp5’8:exp(9.375 and time for the subcritical case whem=-expg-15) <0. Shown in

— 712 . Co : each panel are the times for three choices of the pdwier the
&P =exp(8.79, which are indicated bY the vertical prototype model Eq(8): k=3 (the lower tracg k=5 (the middle
solid, dashed, and dot-dashed lines, respectively. We obsery,%Ce’ andk=7 (the upper trace (a) '“(TE) versus Iii1/e) and (b)

that the average tunnelir!g tirﬂ_%(s) scal_es algebraically for In[In(T';)] versus lif1/¢). We see that for large noise, the scaling is
e<egc but for > ¢ the time is approximately constant, as algebraic but for small noise, the tunneling time itself appears to
predicted by Eq(21). obey the superpersistent scaling law, as predicted by(ZB).

3. Subcritical regime sistent, as suggested by the theoretical predid2® Note
Figure Ha) shows, forp=-ex-15)<0, scaling of the that the linear regions are narrow. This is due to computa-

average tunneling timé";(s) with noise on a logarithmic tional constrai?ts as3t_he average transient time_ is alre_ady of
e order ofe?*~ 10" iterations in the small noise regime.

scale, where the lower, middle, and upper curves correspor{ﬁ] . | : )
tok=3,5,7,respectively. The vertical solid, dashed, and dot- e scaling relatior28) predicts that the slope of the linear

: K
dashed lines indicate the critical noise level for these casedt Petween liiin(Ty)] and In(1/s) should be 2, regardless of
respectively. We see that fer> ., the scaling is algebraic the value ok. While the linear fits for different values &fin

as in the critical case. However, fer< ¢, the average tun- F19- 9(b) indeed appear to be parallel to each other, the slope
neling time increases much faster than that given by the als al_aout 1.2,_ Wh|ch_|s bel_ow the theoretical value_. Since the
gebraic scaling as the noise amplitude is decreased. Figuf€aling relation(28) is derived under the assumptier<e,

5(b) shows the same cases but the vertical axis is on W€ Suspect that going into smalleregime may yield slopes
double-logarithmic scale. The approximately linear behavioCl0Ser to that predicted by theory. However, this is computa-

for £ <. indicates that the tunneling time itself is superper-tionally infeasible at the present. _ _
Figure 6 shows, for the subcritical regime, the relation

between the average tunneling time at the critical noise level
and the parametep for k=3 (the lower tracg k=5 (the
middle trace, andk=7 (the upper trace The robust linear
behaviors verify the algebraic scaling relati29).

B. A two-dimensional map

We consider the class of two-dimensional maps that were
used by Grebogi, Ott, and YorKé] to first report superper-
sistent chaotic transients:

% 10 ne ® 61 = 26, mod 2, (36)

I_:IG. 4. Verificatiqn of the scaling _Iav(JZl) in the supercritical Zy = az, + Zﬁ + B COSH,,
regime for three choices of the powlein the prototype model Eq.
(8): k=3 (the lower track k=5 (the middle trace andk=7 (the = wherea and 3 are parameters. Because of ﬂﬁeterm in the
upper tracg z equation, for largéz,| we havez,,,>z, There is thus an
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K °'6m
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-0.6
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FIG. 6. Verification of the theoretical predictiof29) for the FIG. 7. For the two-dimensional map mod#8b), in the absence

scaling of the average tunneling time at the critical noise level withof noise, a chaotic attractor nez 0, its basin of attractiofblank),
the bifurcation parametgr. The three curves are fé=3 (the lower  and the basin of the attraction of the attractozat+o (black).
trace, k=5 (the middle tracg and k=7 (the upper tracein the
prototype model Eq(8). variation assumes the value of 1/2, which was verified nu-
merically[6].

The above heuristic analysis indicates that the dynamics
@ the escaping channel is governed approximately by the
one-dimensional equatiof87) with a single bifurcation pa-
rameter b. The critical pointa=a; in the original two-
dimensional map Eq36) corresponds td=b,=0. This jus-
tifies our use of Eq(6) and its generalization Ed7) as
paradigmatic model for analytically obtaining the scaling
laws of the average tunneling lifetime with noise.

attractor atz= +o. Nearz=0, depending on the choice of the

parameters, there can be either a chaotic attractor or non
For instance, for & 8<1, there is a chaotic attractor near

z=0 for a<a,=1-2yB and the attractor becomes a chaotic
transient fora>a. [6]. The transient is superpersistent for

a>a., which can be arguefb], as follows.

For a<a, there are two fixed pointg#;,z;)=(0,z,) and
(_HZLZOZC) where .Zc'b_(l_air)/z and Figure 7 shows, fo3=0.04 anda=a.=0.6, the chaotic
=\(1-a)7-4p. The fixed pointd0,2,) and(0,z;) are onthe i near=0, its basin of attractior{blank), and the
basin boundary and on the chaotic attractor, respecnvel;basin of the attraction of the attractors zt +oo (black).

Lhey (k:]oalﬁ_s%e ab=a. _For a>hac, a 9ha|nnel is created Signature that an unstable-unstable pair bifurcation is about
through which trajectories on the original attractor can €s3,"occur can be seen by the vertical, downward tigao,

cape to an attractor at infinity. At the location of the channel,ic is close to the chaotic attractor. For convenience we
where §=0, thez mapping can be written as write p=a-—a,.. Figure §a) shows the behaviors of the tun-
—7z =(a-1)z + 2+ 8. neling time for five cases in the subcritical regime
Zw1 = 2= 1z Zﬁ A (p=-0.0001, p=-0.001, p=-0.01, p=-0.1, andp=-0.2,
Letting =z-z., wherez. is the minimum of the quadratic and the five vertical dashed lines from right to left indicate

function ofz on the right-hand side, yields the values of In 1¢, for these five cases, respectiveljor
the critical casdp=p.=0), and for the supercritical cage
811 = Gyt S+ D, (37)  =0.0002. We observe a robust algebraic scaling with the

—In 2/3 exponent for the critical case. For large naisee,, the
where b=+\g(a-a,)-[(a-a,)/2]> and for a>a., we have ) " - o U
b~ a3, In th coninuous-tme appromation, he y. SET0% (1 he stbeica ang supereica coses concde
namics ind can be described bys/dt=6°+Db. Thus the time X P '

T required to tunnel throuah the escaping channel is ever, the tunneling time plateaus fexe.. Since the pla-
q 9 Y teaued value oT is approximately the tunneling time in the

1 (* ds - absence of noise, we see that as the noise amplitude is in-
T= o2 ) #i1 = PYSTER creased, the tunneling time decreases, as predicted by our
0 theory. For the subcritical cases, the tunneling time increases

Since thed dynamics is uniformally chaotic with Lyapunov Substantially fore<e; as compared with that in the critical
exponeni=In 2> 0, the probability for a trajectory to fall in case. Flgure ®) shows, on a double-logar_lthm_|c VErsus
the opening of the channel and to stay near there inéthe nganthmlc. scale, the pc_ahawor; of the tunnelmg time for the
direction for consecutivelyT iterations is proportional to f!ve_cases in the sqbcrmcal regime. The approanate]y linear
e T2 Fora>a, the average chaotic transient time is thusfits in the small-noise range indicate that thenelllng times
given by themse_lveior those cases o_bey the superpersistent scaling
law. This can be considered amlirect evidence for extraor-
r~elh2 . gmin 22b712 _ eC(a—ac)_l/z, (38) dinarily superpersistent chaotic transient. Note that the
slopes of the linear fits between[In(T,)] and In(1/e) are
where C=71In2874/2 is a positive constant. Thus in the approximately the same for different values mf as pre-
noiseless situation, foa>a, the exponent appeared in the dicted theoretically, but the values of the slopes are less than
scaling of the average transient lifetime with the parametethe theoretical value of 2, for the same reason that we specu-
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T Ts peooot & peod e<<g. and then levels off, approaching a constantasO.

© =000t © P=-02 In the subcritical regime, for small noise, the chaotic tran-
sient lifetime increases much faster as compared with the
critical case. This behavior, in combination with FigbhB
represents numerical evidence for our predicted extraordinar-
ily superpersistent chaotic transients. Note that the ordinate
of Fig. 9 is already on a double-logarithmic scale. Because of
the scaling constants in E@4), a triple-logarithmic scale
plot would be inappropriate because such a plot still would
not yield a linear behavior.

V. DISCUSSIONS

In summary, we have addressed the phenomenon of noise-
induced superpersistent chaotic transients and derived scal-
ing laws governing the dependence of the average transient
. lifetime on noise amplitude. To make analytic treatment pos-
6 8 sible, we constructed a prototype map that captures the es-

sential dynamical features for superpersistent chaotic tran-

FIG. 8. For the two-dimensional map mod@6): (a) scaling ~ Sients. We argue that noise can induce the opening of a
behaviors of the average tunneling tim&s(c) with noise on a  narrow channel through which trajectories on a original cha-
logarithmic scale for five cases in the subcritical regimeOtiC attractor can escape. As a result, the average transient
(p=-0.0001,p=-0.001,p=-0.01, p=-0.1, andp=-0.2), for the lifetime has an exponential dependence on the average time
critical case(p=p.=0), and for the supercritical cage=0.000),  that escaping trajectories spend in the channel. We propose
where p=a-a.. (b) Replots of the tunneling times on a double- that the noisy dynamics in the channel can be modeled by a
logarithmic versus logarithmic scale for the five cases in the subelass of one-dimensional stochastic differential equations and
critical regime in(a). the tunneling time can be approximated by the first-passage

time of the underlying stochastic process. This picture holds
lated for Fig. b). That is, because of the extremely rapid in subcritical, critical, and supercritical parameter regimes.
increase in the tunneling time ads decreased from,, itis ~ We find that at the critical point, the scaling of the average
difficult to extend the range of the noise variation in Fig. transient lifetime follows the superpersistent scaling law in
8(b). [For instance, decreasirgby one order of magnitude the normal sense. However, in the subcritical regime, the
increasesT,(¢) by a factor ofel%] lifetime can be substantially longer than that given by the

Figure 9 shows, for the numerical mod8b), the scaling normal superpersistent scaling law. In contrast, in the super-
of the average chaotic transient lifetime with the noise amdcritical region where there is already a superpersistent cha-
plitude £ on a proper scale. The scaling in the critical caseotic transient, noise tends to reduce the transient lifetime.
follows the normal superpersistent I&®). For the subcriti- These results can be relevant to physical situations. For
cal and supercritical cases, the scalings coincide with théstance, we recently discovergt#] that noise-induced su-
normal superpersistent law only for large noige> e, perpersistent chaotic transients can occur in the physical
~(0.1VB8)%4]. In the supercritical regime, the transient life- space in the context of advection of inertial particles in open

time deviates from the normal superpersistent scaling law fofhaotic flows. In particular, it has been known that ideal
particles with zero mass and size simply follow the velocity

3 : of the flow and, as such, the advective dynamics can be
described as Hamiltoniaf24—2§ in the physical space for
which chaos can arise but not attractors. Thus, in an open
Hamiltonian flow, ideal particles coming from the upper

In{In(T )|

4
In(1/¢)

:2' st : ] stream cannot be trapped and they must necessarily go out of
T 4 the region of interest in finite time. However, the inertia of
z ot the advective particles can alter the flow locdlB7]. As a

result, the dynamical system underlying the advection of
such particles becomes dissipative for which attractors can
arise. This means that, due to the presence of an attractor,
‘ particles can be trapped permanently in some region in the

0 3 In(1/e) 6 physical spacé28]. This interesting phenomenon has been
demonstrated recently in a model of two-dimensional flow

FIG. 9. For our numerical model, noisy scaling laws of the past a cylindrical obstaclgl5]. As the authors of Ref.15]

average chaotic transient lifetime for the subcriti¢at0.5<a,, pointed out, this result has implications in environmental sci-
triangles, critical (a=a,, filled circles, and supercriticala=0.7  ence where forecasting aerosol and pollutant transport is a
> a,, asterisks cases. basic task. The possibility that toxin particles can be trapped

-
*
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in physical space is particularly worrisome. We were thus
motivated to study the structural stability of such attractors
[29]. In particular, we ask, can chaotic attractors so formed

J.

PHYSICAL REVIEW E 71, 046208(2005

k/(k-1)
exgb(H(w) Jdw~ \27/|p[& /%D eXp<||0| : )
&

be persistent under small noise? We find that, indeed, th@e obtain, for the integral in Eq24),

attractor can be destroyed by small noise and replaced by a
chaotic transient, whose lifetime versus noise appears to
obey the superpersistent scaling law. An implication is that,
for small noise, the extraordinarily long trapping time makes
the transient particle motion practically equivalent to an at-
tracting motion with similar physical or biological effects.
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APPENDIX

We calculate the five integrals in E@3)—(27). Using the
approximationH, of H, the integral in Eq(23) can be com-
puted as

2 (° y
2 f dy exd - bH(y)] f exf bH(w)Jdw

~—f dyexd- le(y)]f exd bH;(w) Jdw

o e

where y=[k(k-1)/2]|p|*2/&D, Let (y-xo/e=x and (w

-Xs)/e=z. We have

= f dyexp[
dxexd yx?] f exfd - yZ]dz
0

f_XSIS
0
J~—xs/a
0

For calculating the integral in E¢24), we use the approxi-
mationsH; andH, of H and the fact

(y- (w-— xs)

(y-

- xg]

(k-1
Th
x exg yx2]dx ~ |p| k2D exp<|p|—2) : €
&

f exf— (x - a)2/b2]dx = \2mb.

Since

’ [plt
f_ exd - sz(y)]dy~ex;< 2 )

X f ex - Ay - x)?/e’]dy

ety SO )
~ &\ 2| p| DT ex —2>

and similarly and
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Since %<
+x2)| < |p[¢ Y. This implies that

|
f exd - bH(y)]dy ~ J

f * dy extl— bH(Y)] f " exebHW)Jdw
0 0

-

-2xy+x2<x% on [0,x.], we have|-y(-2xy

|p[ Y

) f y exd— Ay - x,)%£*]dy.
0

e

o
LT

) f y exi— y(y? - 2x,y + x3)/?]dy

|p|k/k 1)

) f y exp(= yy/e?)dy.

Letting y/e=z, we have

oo

XU
f y exp(— yy?le?)dy ~ szf zexp(— yZ2)dy
0

0
_ 82/|p|(k—2)/(k—l)_

Thus the integral in Eq(25) is

K(k-1)
|p| -2k exp(|p| )

integral in Eq(26) can be calculated as follows:

|
exd ~ bH,(y)]dy

bl
82

o

|
X f exd— Uy - x,)¥e%]dy
XLJ

()
82

X f exf— 1y - x,)%e%]dy

o flpes
~ |p|(2/E=2 ex 2
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Xy Xy Xy
f exd bH(w)]Jdw ~ J exd bH,(w) Jdw f exfd (- 2yx,w)/e2]dw ~ £2/|p|,
0 0 0
XU . . . .
. f expl[- (k= 1)|p|K®k-D the integral in Eq(26) is approximately
0
€ _
+ y(w = x,)*]/e?}dw FERE= exp(|p/“¥ Y/e?).
Xy
~ J exyd (yw? - 2yx,w Since H is increasing on(x,,»), we have G<H(y)
0 —H(w) for x,<w=<y, which implies that the integral in Eq.
+ |p[Y*D)/e?]dw (27)is
e o
~ ex 2 f dyf exp{— b[H(y) - H(w)]}dw=C,
% Xy Xy
X f . expl (= 2yx,w)/e?]dw. whereC is a constant.
Combining the results of these five integrals and uging
Since <1, we obtain the scaling relatioi28).
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