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The possibility that a complex network can be brought down by attack on asingle or a very few nodes
through the process of cascading failures is of significant concern. Here we investigate a recent model for
cascading failures in complex networks and uncover a phase-transition phenomenon in terms of the key
parameter characterizing the node capacity. For parameter value below the phase-transition point, cascading
failures can cause the network to disintegrate almost entirely. We obtain a theoretical estimate for the phase-
transition point and provide numerical support.
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Complex networks arise in natural systems and they are
also an essential part of modern society. Many real complex
networks were found to be heterogeneous with power-law
degree distribution[1–3]: Pskd,k−g, wherek is the number
of links of a randomly chosen node in the network andg is
the scaling exponent. This power-law, or algebraic, distribu-
tion means that the probability for a subset of nodes to pos-
sess a large number of links is not exponentially small, in
contrast to random networks. Mathematically, the power-law
distribution means that statistical moments of the degree
variable are generally not defined, hence the name of scale-
free networks. Because of the ubiquity of scale-free networks
in natural and manmade systems, the security of these net-
works, i.e., how failures or attacks affect the integrity and
operation of the networks, has been of great interest since the
discovery of the scale-free property. The work by Albertet
al. [4] demonstrated that scale-free networks possess the
robust-yet-fragile property, in the sense that they are robust
against random failures of nodes but fragile to intentional
attacks. However, the term fragility here means that a scale-
free network can become disintegrated under attacks on a
small but still appreciable set of nodes that include a substan-
tial fraction of links in the network[5]. An attack on a single
or a very few nodes will, in general, not bring down the
network. This interesting result was actually obtained based
purely on the scale-free architecture of the network. In other
words, dynamics in the network, i.e., how information or
load is distributed in the network, was not taken into ac-
count.

An intuitive reasoning based on the load distribution
would suggest that, for a scale-free network, the possibility
of breakdown triggered by attack on or failure of even only a
single node cannot be ignored. Imagine such a network that
transports some physical quantities, or load. Nodes with
large numbers of links receive a relatively heavier load. Each
node, however, has a finite capacity to process or transport
load. In order for a node to function properly, its load must
be less than the capacity at all times; otherwise the node
fails. If a node fails, its load will be directed to other nodes,
causing a redistribution of load in the network. If the failing
node deals with a small amount of load, there will be little

effect on the network because the amount of load that needs
to be redistributed is small. This is typically the situation of
random failure of nodes. However, if the failing node carries
a large amount of load, the consequence could be serious
because this amount of load needs to be redistributed and it
is possible that for some nodes, the new load exceeds their
capacities. These nodes will then fail, causing further redis-
tributions of load, and so on. As a consequence, a large frac-
tion of the network can be shutdown.

Cascading failures can occur in many physical systems. In
a power transmission grid, for instance, each node(a genera-
tor) deals with a load of power. Removal of nodes, in gen-
eral, can cause redistribution of loads over all the network,
which can trigger a cascade of overloading failures. The re-
cent massive power blackout caused by a series of seemingly
unrelated events on August 14, 2003 in the northeastern
United States and Canada seemed to have the characteristics
of cascading breakdown. Another example is the internet,
where the load represents data packets and a node(router) is
requested to transmit and overloading corresponds to conges-
tion [6]. The rerouting of data packets from a congested
router to another may spread the congestion to a large frac-
tion of the network. Internet collapses caused by congestion
have been reported[7]. With the possibility of cascading
failures, a realistic concern is attacks on complex networks.
In particular, for a scale-free network, the majority of the
nodes deal with a small amount of load, so the probability
for a node with a large amount of load to fail randomly is
small. This, of course, will not be the case of intentional
attacks that usually target one or a few of the most heavily
linked nodes.

There have been a few recent studies on cascading fail-
ures in complex networks[8,9]. In Ref. [8], a simple mecha-
nism was proposed to incorporate the dynamics of load in
both random and scale-free networks. The model generates
results that are completely consistent with the above intuition
on cascading failures. For instance, it was demonstrated that
random networks are robust against cascading breakdown,
but it can be easily triggered by intentional attacks in scale-
free networks. The existing results are, however, largely de-
scriptive and qualitative. The purpose of this work is to ad-
dress theoretically and numerically the fundamental
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mechanism of cascading breakdown. To make analysis ame-
nable, we focus on scale-free networks, use the load model in
Ref. [8] that captures the essential features of cascading fail-
ures, and investigate cascades triggered by attack on a single
node. Our finding is that cascading breakdown in scale-free
networks can be understood in terms of a phase transition. In
particular, leta be the tolerance parameter characterizing the
capacity of nodes in the network. Cascading breakdown due
to attack on a single node is possible only whena is below a
critical valueac. By making use of the degree distribution of
scale-free networks and the concept of betweenness[10] to
characterize the load distribution, we are able to derive a
theoretical formula for estimating the phase-transition point
ac, which is verified by numerical experiments. In terms of
practical utility, our result enables a possible implementation
of predicting and preventing mechanism for cascading break-
down in scale-free networks.

The load dynamics in scale-free networks can be mod-
eled, as follows. For a given network, suppose that at each
time step one unit of the relevant quantity, which can be
information, energy, etc., is exchanged between every pair of
nodes and transported along the shortest path. To character-
ize the load distribution, the concept of betweenness is useful
[10]. The load(or betweenness) at a nodei is defined as the
total number of shortest paths passing through this node. The
capacity of a node is the maximum load that the node can
handle. In manmade networks, the capacity is severely lim-
ited by cost. Thus, it is natural to assume that the capacityCi
of nodei is proportional to its initial loadLi [8],

Ci = s1 + adLi , s1d

where the constantaù0 is the tolerance parameter. When all
nodes are on, the network operates in a free-flow state inso-
far asaù0. But, the removal of nodes in general changes
the distribution of shortest paths. The load at a particular
node can then change. If it increases and becomes larger than
the capacity, the node fails. Any failure leads to a new dis-
tribution of load and, as a result, subsequent failures can
occur. The failures can stop without affecting too much of
the connectivity of the network but it can also propagate and
shutdown a considerable fraction of the whole network. Cas-
cading failures can be conveniently quantified by the relative
size of the largest connected component

G =
N8

N
, s2d

where N and N8 are the numbers of nodes in the largest
component before and after the cascade, respectively. The
integrity of the network is maintained ifG<1, while break-
down occurs ifG<0.

To obtain an analytic estimate of the critical value of the
tolerance parameter, we focus on the situation where cascad-
ing failures are caused by attack on the node with the largest
number of links and the failures lead to immediate break-
down of the network. That is,G becomes close to zero after
one redistribution of the load. For a node in the network, its
load is a function of the degree variablek. For scale-free
networks, we have[11,12],

Lskd , kh, s3d

whereh.0 is a scaling exponent. To proceed, we write the
degree distribution asPskd=ak−g and the load distribution as
Lskd=bkh, wherea andb are positive constants. Letkmax be
the largest degree in the network. Before the attack, we have

E
1

kmax

Pskddk= N and

E
1

kmax

PskdLskddk= S, s4d

whereS is the total load of the network. These two equations
give

a =
s1 − gdN
fkmax

1−g − 1g
and

b =
bS

as1 − kmaxd−b , s5d

whereb;g−h−1. After the removal of the highest degree
node(it is only the first step of the whole cascading process),
the degree and load distributions becomeP8skd=a8k−g8 and

L8skd=b8kh8, respectively. Since only a small fraction of
nodes are removed from the network, we expect the changes
in the algebraic scaling exponents of these distributions to be
negligible. We thus writeP8skd<a8k−g and L8skd<b8kh,
where the proportional constantsa8 andb8 can be calculated
in the same way as fora and b. We obtaina8=s1−gdsN
−1d / fkmax8

1−g −1g and b8=bS8 /a8s1−kmax8d
−b, whereS8 is the

total load of the network after the attack. For nodes withk
links, the difference in load before and after the attack can be
written asDLskd<sb8−bdkh=fsb8 /bd−1gLskd. Given the ca-
pacity Cskd, the maximum load increase that the nodes can
handle is Cskd−Lskd=aLskd. The nodes still function if
a. fsb8 /bd−1g but they fail if a, fsb8 /bd−1g. The critical
valueac of the tolerance parameter is then

ac =
b8

b
− 1

< Skmax8
1−g − 1

kmax
1−g − 1

DS 1 − kmax
−b

1 − kmax8
−bDSS8

S
D − 1

< S 1 − kmax
−b

1 − kmax8
−bDSS8

S
D − 1

< h1 − skmax
−b − kmax8

−bdjSS8

S
D − 1

= H1 − kmax8
−bF− 1 +S kmax

kmax8
D−bGJSS8

S
D − 1, s6d

where the third line of Eq.(6) is obtained from the second
line by using the factskmax8

1−g−1d / skmax
1−g−1d<1. This is

so because bothkmax8
1−g and kmax8

1−g approach zero when
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N→` and g.1. In the limit N→`, we havekmax8
−b ,0,

kmax/kmax8,constant, andS8 /S→1, so ac<0, indicating
that an infinite scale-free network cannot be brought down
by a single attack ifa.0. On the other hand, for a finite-size
network, sincekmax8

−b
.0, we haveac.0, suggesting that

breakdown can occur fora,ac. The practical usage of Eq.
(6) is that it provides a way to monitor the state of(finite)
network to assess the risk of cascading breakdown. In par-
ticular, the critical valueac can be computed in time and
comparison with the predesigned tolerance parameter value
a can be made. Ifac shows a tendency of increase and
approachesa, an early warning can be issued to signal an
immediate danger of network breakdown.

We now provide numerical support for the theoretical pre-
diction Eq.(6). We generate scale-free networks by using the
standard Barabási-Albert model[1], as detailed in Ref.[13].
The shortest paths and the loadLskd are computed by using
the algorithm developed by Newman[10]. Figure 1(a) shows
the algebraic scaling of the load for a scale-free network. The
scaling exponent of the degree distributionPskd is g<3 (not
shown) and the average number of links in the network is
kkl=4. The open circles in Fig. 1 indicate the values of the
load for the original network. ApparentlyLskd follows the
expected algebraic distribution, with exponenth<1.6. Fig-
ures 1(b) and 1(c) show the exponentsh in relation to system
size before and after the highest degree node is removed,
respectively. In both cases, we obtainedh=h8=1.6s2d. Com-
puter simulations show that the load distribution and cascad-
ing behavior observed above hold for variouskkl. To simu-
late an intentional attack, we remove the node with the
maximum number of links(kmax=81 for the realization of the
network shown in the figure). The distribution of the load is
recalculated after the network stabilizes itself. That is, after
the attack the load on the removed node is redistributed to
the network and new load to every node is recalculated. Any
node with load exceeding its capacity is removed and load is
recalculated, and so on, until the process reaches a new equi-
librium. The new values of the load are denoted by the as-

terisks in Fig. 1. We see that the distribution still follows a
power law with approximately the same scaling exponent.
This justifies the approximationh8<h used in our theory.

As N is increased, we expectkmax to increase following an
algebraic scaling law[13]. This behavior is shown in Fig.
2(a). After the attack and redistribution of load, we find that
the ratio kmax/kmax8, where kmax8 is the new value of the
maximum number of links, is constant, regardless of the net-
work size. We also numerically observed that the load ratio
S8 /S (before and after the attack) is approximately one for
largeN, as shown in Fig. 2(b).

Figure 3(a) shows cascading failures when a single node
with a different degree is removed from the network. We see
that, when a node with a small degree is removed, theG
value remains close to one except whena is close to zero.
However, when the node with the largest degree(in this case
k=81) is removed, nearly total breakdown of the network, as
represented by values ofG close to zero, occurs when
a,0.1. The phase-transition pointac is thus about 0.1. With
numerical values ofkmax=81, kmax8=60, S<1.863107, and
S8<1.913107, theoretically predicted value ofac in Eq. (6)

FIG. 1. (a) Algebraic scaling of the loadLskd for a scale-free
network ofN=10 000 nodes,g=3, andkkl=4. The open circles and
the asterisks denote the load values before and after an intentional
attack that removes the node with the maximum number of links.
We haveh<h8<1.6. (b), (c) algebraic scaling exponents of the
load in relation to network size, before and after the nodes with the
largest degree are removed, respectively. For each network sizeN,
the resulting data were averaged over more than 20 realizations.

FIG. 2. (a) Algebraic scaling ofkmax with N. For each network
sizeN, 5000 realizations are averaged.(b) Load ratioS8 /S vs 1/N.
For each network sizeN, more than 20 realizations were averaged.

FIG. 3. Cascading failure in a scale-free network in relation to
the tolerance parametera. (a) Removal of the nodes with different
number of links forN=2000. In the case of the removal of the node
with the highest degree, the phase-transition point isac<0.1,
meaning that fora,ac, the networks disintegrate almost entirely
under intentional attack on a single node.(b) Phase transitions for
networks of different sizes. The resulting data points were averaged
over 30 realizations.
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givesac<0.1, which is consistent with numerics. This phase
transition phenomenon seems to be robust for different sizes
of network, as shown in Fig. 3(b), G vs a for N=1000,N
=2000, andN=5000, respectively.

What about attacks that target more than one node? In this
case, we expect that the phase transition will occur for higher
values of the tolerance parameter, because it becomes more
difficult for the network to maintain its integrity at lower
tolerance, as compared with the case of attack on a single
node. Figure 4 showsG versus botha andNtrigger, the num-
ber of nodes that an attack targets. Here the removed nodes
are those with the highest numbers of links. We see that, as
Ntrigger is increased, the phase-transition pointac also in-
creases. Roughly we haveac,Ntrigger. Note that the number
of targeted nodes, while more than one, is still far smaller
compared with the total number of nodes in the network.
Practically, this means that, even if the network is designed
to have a high tolerance by stipulating high capacities for its
nodes, cascading failures triggered by attack on a very small
subset of nodes are capable of bringing down the entire net-
work.

In summary, we investigated cascading failures triggered
by attacks on a single or a few nodes in scale-free networks
in a more quantitative manner and focused on the fundamen-
tal and practically important question of whether such fail-
ures can lead to the disintegration of the network. Our find-
ing is a phase-transition-like phenomenon in terms of the
network tolerance parameter characterizing the node capac-
ity, where the two distinct phases correspond to the situations

where the network under attack remains largely integrated or
disintegrated as a result of cascading failures. We obtained a
theoretical estimate for the phase-transition point and pro-
vided a numerical check. These results should be useful in
furthering studies in the important area of network security.
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FIG. 4. (Color online) For a scale-free network ofN=2000
nodes under attack targeting multiple nodes,G vs a andNtrigger, the
number of targeted nodes. For each parameter value,G is averaged
over 30 realizations.
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