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The possibility that a complex network can be brought down by attack single or a very few nodes
through the process of cascading failures is of significant concern. Here we investigate a recent model for
cascading failures in complex networks and uncover a phase-transition phenomenon in terms of the key
parameter characterizing the node capacity. For parameter value below the phase-transition point, cascading
failures can cause the network to disintegrate almost entirely. We obtain a theoretical estimate for the phase-
transition point and provide numerical support.
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Complex networks arise in natural systems and they areffect on the network because the amount of load that needs
also an essential part of modern society. Many real complefo be redistributed is small. This is typically the situation of
networks were found to be heterogeneous with power-lawandom failure of nodes. However, if the failing node carries
degree distributioil-3]: P(k) ~k?, wherek is the number @ large amount of load, the consequence could be serious
of links of a randomly chosen node in the network angs ~ Pecause this amount of load needs to be redistributed and it
the scaling exponent. This power-law, or algebraic, distribuiS POssible that for some nodes, the new load exceeds their
tion means that the probability for a subset of nodes to posc@pacities. These nodes will then fail, causing further redis-

sess a large number of links is not exponentially small, i tributions of load, and so on. As a consequence, a large frac-
on of the network can be shutdown.

contrast to random networks. Mathematically, the power—IaV\}' . . : .
distribution means that statistical moments of the degree Cascading fa."ufes can occur in many physical systems. In
variable are generally not defined, hence the name of scal?—pc’wer transmission grid, for instance, each n@dgenera-
free networks. Because of the ubiciuity of scale-free network on) deals with a Ioa_d (-)f POwer. Removal of nodes, in gen-
) : . ral, can cause redistribution of loads over all the network,
n natur_al and man_made systems, the security of th_ese N&Nhich can trigger a cascade of overloading failures. The re-
works,_ i.e., how failures or attacks affect th_e mtegnty and.ent massive power blackout caused by a series of seemingly
operation of the networks, has been of great interest since thgrejated events on August 14, 2003 in the northeastern
discovery of the scale-free property. The work by Albeft  ynited States and Canada seemed to have the characteristics
al. [4] demonstrated that scale-free networks possess the cascading breakdown. Another example is the internet,
robust-yet-fragile property, in the sense that they are robusghere the load represents data packets and a (modee) is
against random failures of nodes but fragile to intentionakequested to transmit and overloading corresponds to conges-
attacks. However, the term fragility here means that a scaleion [6]. The rerouting of data packets from a congested
free network can become disintegrated under attacks on m@uter to another may spread the congestion to a large frac-
small but still appreciable set of nodes that include a substartion of the network. Internet collapses caused by congestion
tial fraction of links in the network5]. An attack on a single have been reportefi7]. With the possibility of cascading
or a very few nodes will, in general, not bring down the failures, a realistic concern is attacks on complex networks.
network. This interesting result was actually obtained baset¢h particular, for a scale-free network, the majority of the
purely on the scale-free architecture of the network. In othenodes deal with a small amount of load, so the probability
words, dynamics in the network, i.e., how information or for a node with a large amount of load to fail randomly is
load is distributed in the network, was not taken into ac-small. This, of course, will not be the case of intentional
count. attacks that usually target one or a few of the most heavily
An intuitive reasoning based on the load distributionlinked nodes.
would suggest that, for a scale-free network, the possibility There have been a few recent studies on cascading fail-
of breakdown triggered by attack on or failure of even only aures in complex networkg8,9]. In Ref.[8], a simple mecha-
single node cannot be ignored. Imagine such a network thatism was proposed to incorporate the dynamics of load in
transports some physical quantities, or load. Nodes witlboth random and scale-free networks. The model generates
large numbers of links receive a relatively heavier load. Eachiesults that are completely consistent with the above intuition
node, however, has a finite capacity to process or transpodn cascading failures. For instance, it was demonstrated that
load. In order for a node to function properly, its load mustrandom networks are robust against cascading breakdown,
be less than the capacity at all times; otherwise the nodbut it can be easily triggered by intentional attacks in scale-
fails. If a node fails, its load will be directed to other nodes,free networks. The existing results are, however, largely de-
causing a redistribution of load in the network. If the failing scriptive and qualitative. The purpose of this work is to ad-
node deals with a small amount of load, there will be littledress theoretically and numerically the fundamental
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mechanism of cascading breakdown. To make analysis ame- L(k) ~ k7, (3)
nable, we focus on scale-free networks, use the load model in _ _ _

Ref. [8] that captures the essential features of cascading failvhereé 7> 0 is a scaling exponent. To proceed, we write the
ures, and investigate cascades triggered by attack on a sindl§9ree distribution aB(k)=ak™ and the load distribution as
node. Our finding is that cascading breakdown in scale-freé(k) =Dk, wherea andb are positive constants. Légha, be
networks can be understood in terms of a phase transition. Ifhe largest degree in the network. Before the attack, we have
particular, leta be the tolerance parameter characterizing the f

km X
capacity of nodes in the network. Cascading breakdown due a P(k)dk=N and
to attack on a single node is possible only wheis below a
critical valuea.. By making use of the degree distribution of
scale-free networks and the concept of betweenfiHgsto Kmax

characterize the load distribution, we are able to derive a f P(k)L(k)dk=S, (4)
theoretical formula for estimating the phase-transition point !

a;, which is verified by numerical experiments. In terms of whereSis the total load of the network. These two equations
practical utility, our result enables a possible implementationyive

of predicting and preventing mechanism for cascading break-

1

down in scale-free networks. _(@-yN d
The load dynamics in scale-free networks can be mod- a= [k#—avx -1] an
eled, as follows. For a given network, suppose that at each
time step one unit of the relevant quantity, which can be BS
information, energy, etc., is exchanged between every pair of b= ————, (5)
nodes and transported along the shortest path. To character- a1 ~Kna)”

ize the load distribution, the concept of betweenness is Usef%hereﬁz y-75—1. After the removal of the highest degree
[10]. The load(or betweennegsat a node is defined as the gt is only the first step of the whole cascading progess
total number of shortest paths passing through this node. T Be degree and load distributions becoRiék)=a’k-" and
capacity of a node is the maximum load that the node can ~ "~ °" _ _ .
handle. In manmade networks, the capacity is severely limt'(K/=b’k”, respectively. Since only a small fraction of
ited by cost. Thus, it is natural to assume that the cap&ity nodes are removed from the network, we expect the changes

of nodei is proportional to its initial load.; [8], in the algebraic scaling exponents of these distributions to be
negligible. We thus writeP’(k)~a’k™ and L'(k) =b’k?,
C=01+al;, (1)  where the proportional constaras andb’ can be calculated

h h ~0is the tol Wh I in the same way as foa and b. We obtaina’=(1-+)(N
where the constant= 0 is the tolerance parameter. When a —1)/[K7, - 1] and b’ = BS /a’ (1—kyae)E, whereS' is the

nodes are on, the network operates in a free-flow state inso- max

far asa=0. But, the removal of nodes in general change otal load of the network after the attack. For nodes vkith
the distribu.tion ’Of shortest paths. The load at a particula inks, the difference in load before and after the attack can be

node can then change. If it increases and becomes larger th%men asaL(k)~ (b/__ b)k”:[(b,/.b)_l]l‘(k)' Given the ca-
the capacity, the node fails. Any failure leads to a new disPacity C(k)’ the maximum |oad increase the_lt the nc_)des_ can
tribution of load and, as a result, subsequent failures caHa”dle, is C(k)~L(K)=aL (k). The n(?des still function  if
occur. The failures can stop without affecting too much ofe>[(b'/b)—1] but they fail if «<[(b’/b)-1]. The critical
the connectivity of the network but it can also propagate andalue «. of the tolerance parameter is then

shutdown a considerable fraction of the whole network. Cas- b’
cading failures can be conveniently quantified by the relative a.=—-1
size of the largest connected component b
1- —
N/ ~<kmax’ y_l) 1_kmaxB (E’)_l
G= ﬁ, (2) kmaxl_y_ 1 1- kmax’_ﬂ S

where N and N’ are the numbers of nodes in the largest _ 1—knac” \(S) 1
component before and after the cascade, respectively. The 1-k_,BJ\S
integrity of the network is maintained &=~ 1, while break- mex
down occurs ifG=0. _ _ N -k Pk By S _1

To obtain an analytic estimate of the critical value of the max max’ S
tolerance parameter, we focus on the situation where cascad- i )
ing failures are caused by attack on the node with the largest “{1-k_ Bl-1+ Kmax <§> ~1, (8
number of links and the failures lead to immediate break- max Kmax S '

down of the network. That i€3 becomes close to zero after o ) )
one redistribution of the load. For a node in the network, itsvhere the third line of Eq(6) is obtained from the second

load is a function of the degree variatte For scale-free line by using the factk .7~ 1)/ (K, "=1)=1. This is
networks, we hav§ll,12, so because botk, '™ andk__*"” approach zero when
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FIG. 1. (a) Algebraic scaling of the load.(k) for a scale-free
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FIG. 2. (a) Algebraic scaling oky,, with N. For each network

network ofN=10 000 nodesy=3, and(ky=4. The open circles and sizeN, 5000 realizations are averag¢h) Load ratioS'/Svs 1/N.
the asterisks denote the load values before and after an intentionbr each network sizBl, more than 20 realizations were averaged.

attack that removes the node with the maximum number of links.

We haven~7'~1.6.(b), (c) algebraic scaling exponents of the tarisks in Fig. 1. We see that the distribution still follows a
load in relation to network size, before and after the nodes with thepower law with approximately the same scaling exponent.

largest degree are removed, respectively. For each networlsize This justifies the approximation’

the resulting data were averaged over more than 20 realizations.

=~ gy used in our theory.
As N is increased, we expeki,., to increase following an

N—o and y>1. In the limit N—, we havekr_nix,~0, algebraic scaling law13]. This behavior is shown in Fig.

Kmax! Kmax ~ constant, andS'/S—1, so «,~0, indicating
that an infinite scale-free network cannot be brought dow

2(a). After the attack and redistribution of load, we find that
r;he ratio Kyax/ Kmax» Where K. is the new value of the

by a single attack it>>0. On the other hand, for a finite-size Maximum number of links, is constant, regardless of the net-
network. sincek™ >0. we havea.>0 suggesting that work size. We also numerically observed that the load ratio
[l ) C [l

max’

breakdown can occur for < . The practical usage of Eq.
(6) is that it provides a way to monitor the state (fihite)
network to assess the risk of cascading breakdown. In par-
ticular, the critical valuea, can be computed in time and W
comparison with the predesigned tolerance parameter val
a can be made. Ifa, shows a tendency of increase and
approachesy, an early warning can be issued to signal an
immediate danger of network breakdown.

We now provide numerical support for the theoretical pre-
diction Eq.(6). We generate scale-free networks by using the
standard Barabasi-Albert moddl], as detailed in Ref(13].
The shortest paths and the lokatk) are computed by using
the algorithm developed by Newm#h0]. Figure 1a) shows
the algebraic scaling of the load for a scale-free network. The
scaling exponent of the degree distributi®fk) is y~3 (not
shown) and the average number of links in the network is
(ky=4. The open circles in Fig. 1 indicate the values of the
load for the original network. Apparentli(k) follows the
expected algebraic distribution, with exponeyt 1.6. Fig-
ures 1b) and Xc) show the exponents in relation to system
size before and after the highest degree node is removed,
respectively. In both cases, we obtaingd 7’ =1.6(2). Com-
puter simulations show that the load distribution and cascad-
ing behavior observed above hold for varighk$. To simu-
late an intentional attack, we remove the node with the
maximum number of linkgk,,,=81 for the realization of the

numeri

S'/S (before and after the attacks approximately one for
largeN, as shown in Fig. @).
Figure 3a) shows cascading failures when a single node
ith a different degree is removed from the network. We see
L}Qat, when a node with a small degree is removed, Ghe
Value remains close to one except whetris close to zero.
However, when the node with the largest dediiaehis case
k=81) is removed, nearly total breakdown of the network, as
represented by values d& close to zero, occurs when
a<0.1. The phase-transition poiat is thus about 0.1. With
cal values 0Kz,=81, Kmayw =60, S=~1.86X 10/, and
S =~1.91x 10/, theoretically predicted value af, in Eq. (6)
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FIG. 3. Cascading failure in a scale-free network in relation to

network shown in the figupe The distribution of the load is  the tolerance parameter (a) Removal of the nodes with different
recalculated after the network stabilizes itself. That is, aftebumber of links forN=2000. In the case of the removal of the node

the attack the load on the removed node is redistributed tQjith the highest degree, the phase-transition pointxis=0.1,

the network and new load to every node is recalculated. Anyneaning that fore< a, the networks disintegrate almost entirely
node with load exceeding its capacity is removed and load iander intentional attack on a single node) Phase transitions for
recalculated, and so on, until the process reaches a new equietworks of different sizes. The resulting data points were averaged
librium. The new values of the load are denoted by the asever 30 realizations.
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givesa.~ 0.1, which is consistent with numerics. This phase
transition phenomenon seems to be robust for different sizes
of network, as shown in Fig.(B), G vs « for N=1000,N
=2000, and\N=5000, respectively.

What about attacks that target more than one node? In this
case, we expect that the phase transition will occur for higher
values of the tolerance parameter, because it becomes more =~ %4y~ \\\\\\\
difficult for the network to maintain its integrity at lower 2y
tolerance, as compared with the case of attack on a single T \\\\\\\\\\
node. Figure 4 show§ versus bothw and Nyigger, the num- ' \
ber of nodes that an attack targets. Here the removed nodes
are those with the highest numbers of links. We see that, as
Nyigger 1S increased, the phase-transition point also in-
creases. Roughly we have ~ Nyigqer- NOte that the number
of targeted nodes, while more than one, is still far smaller
compared with the total number of nodes in the network. FIG. 4. (Color onling For a scale-free network dfi=2000
Practically, this means that, even if the network is designedodes under attack targeting multiple nod8sys « andNigger, the
to have a high tolerance by stipulating high capacities for itd1umber of targeted nodes. For each parameter vélue averaged
nodes, cascading failures triggered by attack on a very smafiver 30 realizations.
subset of nodes are capable of bringing down the entire net-

work. _ _ _ _ _ where the network under attack remains largely integrated or
In summary, we investigated cascading failures triggeredisintegrated as a result of cascading failures. We obtained a
by attacks on a single or a few nodes in scale-free networkgeoretical estimate for the phase-transition point and pro-
in a more quantitative manner and focused on the fundamer;igeq a numerical check. These results should be useful in
tal and practically important question of whether such fail-fthering studies in the important area of network security.
ures can lead to the disintegration of the network. Our find-
ing is a phase-transition-like phenomenon in terms of the This work was supported by NSF under Grant No. ITR-
network tolerance parameter characterizing the node capa6312131 and by AFOSR under Grant No. F49620-01-1-
ity, where the two distinct phases correspond to the situation8317.
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