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Particles having finite mass and size advected in open chaotic flows can form attractors behind structures.
Depending on the system parameters, the attractors can be chaotic or nonchaotic. But, how robust are these
attractors? In particular, will small, random perturbations destroy the attractors? Here, we address this question
by utilizing a prototype flow system: a cylinder in a two-dimensional incompressible flow, behind which the
von Karman vortex street forms. We find that attractors formed by inertial particles behind the cylinder are
fragile in that they can be destroyed by small, additive noise. However, the resulting chaotic transient can be
superpersistent in the sense that its lifetime obeys an exponential-like scaling law with the noise amplitude,
where the exponent in the exponential dependence can be large for small noise. This happens regardless of the
nature of the original attractor, chaotic or nonchaotic. We present numerical evidence and a theory to explain
this phenomenon. Our finding makes direct experimental observation of superpersistent chaotic transients
feasible and it also has implications for problems of current concern such as the transport and trapping of
chemically or biologically active particles in large-scale flows.
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I. INTRODUCTION cal space is of great interest or concern. A natural question is

. . . . . . whether such attractors are structurally stable, i.e., whether
The advective dynamics of idealized particles in tWO'they can persist under random perturbations.

dimensional, incompressible flows can be described as |, this paper, we are interested in the stability of attractors
Hamiltonian[1,2]. In particular, consider such a flow char- of inertial particles in open flows whose corresponding La-

acterized by a stream functioi(x,y,t). For a particle with  grangian dynamics is chaotic. That is, for idealized particles,
zero mass and size, its trajectory in the flow obeys the folthe equations of motion that they obey, namely E, can

lowing equations: exhibit chaos. We shall use the model of a two-dimensional
flow passing a cylindrical obstacle, which was originally de-
dx _ dav(xy,t) veloped by Junget al. [10]. The Reynolds number of the
dt ay fluid and the geometrical parameters of the system are cho-
(1) sen such that behind the cylinder, chaotic vortjc(esn
dy AV (XY,1) Karman vortex streg¢tform. Recent work by Benczikt al.
= [9] showed that for inertial particles in such a flow, attractors
dt X can be formed in the regions immediately behind the cylin-

which are the standard Hamilton’s equations of motion genger, but the attractors are usually not “stuck” on the cylinder.
erated by the Hamiltoniabi(x,y. ) =W(x.y.t). That is, the We call such attractormertial attractors By varying a sys-

) . tem parameter, periodic and chaotic attractors, and in fact a
particle velocityv(x,y,t)=(dx/dt,dy/d?) follows exactly the  complete cascade of period-doubling bifurcations to chaos,

flow velocity u(x,y,t), as given by the right-hand side of Eq. can be observed. As Benczik al. pointed out, this result has
(1). This idealized picture changes completely when particlesmplications in environmental science where forecasting
have finite mass and size. In this realistic case, the particlaerosol and pollutant transport is a basic task, or even in
velocity is generally not the same as the flow velocity, anddefense applications where the spill of a toxin or biological
the equations of motion are no longer Hamilton’s equationspathogen in large-scale flows is of critical concern. The focus
Maxley and Riley were the first to consider this problE8h  of this paper will be on the effect of noise on inertial attrac-
by deriving a set of equations for the particle velocity tors in this von Karman vortex-street flow model. To make
v(x,y,t), taking into account physical effects due to finite numerical computations and analysis feasible, we shall re-
mass and size such as the buoyancy force, the Stokes dragrict our study to additive noise that is bounded in physi-
the added inertia effect, and other correcti¢®ss]. The re-  cally meaningful time. That is, we will consider Gaussian
sulting dynamical system is no longer Hamiltonian but dis-noise(white), but we restrict quantities of interest to time far
sipative instead. As such, attractors can af&se9]. Consid- less than the time to observe a rare, large amplitude realiza-
ering that, in an open Hamiltonian flow, ideal particlestion of the Gaussian noigé1]. Under these considerations a
coming from the upper stream must necessarily go out of thaoise amplitude can be meaningfully defined.

region of interest in a finite amount of time, the formation of ~ Our result is that under small noise, inertial attractors are
attractors of inertial particles is remarkable. Suppose thesgypically destroyed, leaving behind a transient. If the original
physical particles are biologically or chemically active. Thatattractor is chaotic, the transient is chaotic. However, we find
they can be trapped permanently in some region in the physthat even if the attractor is nonchaotic, under noise the re-
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sulting transient can still be chaotic. In both cases, the aver- The rest of the paper is organized as follows. In Sec. I,
age lifetime 7 of the chaotic transient obeys the following we describe the flow model and the corresponding dissipa-

scaling law with noise amplitude: tive dynamical system that governs the motion of inertial
~ particles. In Sec. Ill, we present numerical results of super-
T~ expCe™), fore> e, (2)  persistent chaotic transients for the two cases where the

original attractor is chaotic and periodic, respectively. Sec-

whe_reC>0_ andy>0 are constants, ane} is re_Iated t_o the ion IV presents a theory to account for the numerically ob-
minimum distance between the attractor and its basin bound-

) . i erved scaling laws for the average lifetime of the chaotic
ary [12]. The scaling law?) is nur_nerlcally obseryed to hol_d transients. Finally, a brief summary and a discussion of po-
for clos_e to two ordgrs of magnitude of the noise variation g iq| experimental systems for direct observation of super-
Here, 7 is measured in terms of the natural time scale of th ersistent chaotic transients are offered in Sec. V.
underlying flow, i.e., the cycle time of the vortices in the von U
Karman street. Fog> ¢, the average transient time is short.

As ¢ is decreased the transient time increases following the Il. MODEL OF ADVECTIVE DYNAMICS OF
scaling law(2) and, fore~ s, the time can be as long as INERTIAL PARTICLES
1.5x 10 flow cycles. The scaling law holds, regardless of A. Open-flow model

whether the original attractor is chaotic or periodic. To ac- e
count for the scaling law, we develop a physical theory, mod- We use the open-flow model of the von Karman vortex
eling the noise-induced escaping dynamics of trajectorieStreet in the wake of a cylinder, as detailed in R&0]. The
from attractor by a class of stochastic differential equationsCYlinder has radius and is located in the middle of an infi-
We will show that a properly formulated first-passage timehite channell qf width & The c.enter.of the cylinder is chosen
problem of the corresponding stochastic system, in combind® Pe the origin of the two-dimensional plarfe:,y)=(0,0).
tion with the chaotic nature of the attractor under noise, leadd € flow is incompressible and the Reynolds numbeRds
to the scaling law(2). =UL/v, whereU is a typical large-scale velocity andis
The scaling law(2) is characteristic ofsuperpersistent the kinematic viscosity of the fI_wd. For not-too_—small Rey-
chaotic transients By definition, a superpersistent chaotic N0lds numbergsay, R.~250 as in Ref[10]), vortices form

transient is defined by the following scaling law for its life- in the wake of the cylinder. The motions of the vortices in a
time [13]: background flow of velocity, can be described by a time-

periodic stream functionV(x,y,t) (period T;=1 in a stan-
7~ expla|p—pd™), (3) dard dimensionless formwhich was written heuristically to
qualitatively describe the chaotic motion of Lagrangian pas-
wherep is a system parametet,>0 andy>0 are constants. sive tracers in the flow. The flow velocity(x,y,t) can be
We see that ap approaches the critical valyg, the tran-  obtained fromW(x,y,t) according to the Hamilton’s equa-
sient lifetime~ becomes superpersistent in the sense that thgons (1). By measuring the length in units of the cylinder
exponent in the exponential dependence diverges. This typ@diusr, which is also the characteristic linear size of the

of chaotic transient was discovered by Grebegial. [13].  flow, the dimensionless model stream function can be written
They showed that the transients can generically occugg

through the dynamical mechanism of unstable-unstable pair

bifurcation, in which an unstable periodic orbit in the bound- ¥ =fg,
ary of a chaotic invariant set coalesces with another unstab
periodic orbit pre-existing outside the set. The transients
were also identified in a class of coupled-map lattices, lead- f=f(x,y) =1 -exg— (\*+y?>-1)?]

ing to the speculation that asymptotic attractors may not be

relevant for turbulencél4]. The unstable-unstable pair bi- €nsures the presence of a boundary layer

furcation mechanism was later shown to be responsible for — - _

the riddling bifurcation{15] that creates a riddled basité] 9=00y.0) = =WhiOg:(xy,) + Whr(0)g>(xy, 1

in dynamical systems with symmetry. The mathematical + UgYoS(X,Y)

mpdels in_ Refs[13,15.used to.analyze superpersistent Cha'describes the periodic detachment of the vortizesepre-
ofic transients were .dlscrete-tlme maps. Rece_ntly, SUPETPeLy is the average strength of vortices

sistent chaotic transients were demonstrated in systems de-

here

scribed by differential equations, makingindirect hy(t) = siré(mt),
experimental observation of the transients possjiig. In
all these works, the transients occur in higase spaceef hy(t) = co(t),

dynamical systems. Our finding of superpersistent chaotic

transients in a two-dimensional fluid system means that i@ire functions characterizing the time evolution of the vortic-
may be possible to observe these transients directly, as fdy, Uo is the dimensionless background velocity, and

such a system the phase space and the physical space coin- 4 e M22 2

cide. A short account of the work emphasizing this physical- Sxy) =1 -exp= (x=D%e - y’)

space aspect of superpersistent chaotic transients has bdsra shielding factor suppressing the background velocity in
published recently18]. the wake. The factors
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g1(x,y,t) = expl— Ry (X = X4(1))? + c*(y = yo)°T}, 1 1

02Xy, 1) = expl— Ryl (X = Xx(1))? + c*(y + yo)?T},

describe the Gaussian forms of the vortices of dimensionless
size, whose positions in the wake drg(t),y,] and [X,(1),
-Yol- The functionsx; andx, are defined by

Xl(t) =1+ LO mOC{t, 1),

¥o(t) =1 +Lo mod(t - %1)

wherel, is the dimensionless distance a vortex passes dur- >
ing its lifetime. In our numerical simulations we use the set
of parameters in Refqd9,10: uy=14.0, Ry=0.35, y=0.3, ©

andLy=2.0. 0.4 N
0.4 X 1

B. Inertial dynamics FIG. 1. Attractors in the configuration space. Periodic attractors

. - . . . with period (a) T,=1 for R=1.70; (b) T,=2 for R=1.60; and(c)

prezng?:r?lglvis 3{822'52 Tri:siiso?ngriss:éi Zdn\aecgid ;n raer;lljrl]tcotrr?(-ﬁ:pﬂ' for R=1.50.(d) Chaotic attractor foR=1.47. The dashed line
. . o .. Ihdicates the cylinder in the upper half plane.

particle velocities differ from those of the fluid. Consider a y PP P

spherical particle of radiua and massn,, and fluid of dy- o .

namic viscosityx and element massy. The equation of the systgm Ile_lnthe full phase space, they can be observed in

motion for the advective particle derived by Maxley and Ri- the configuration or physical spafe,y) plang.

ley [3] is

C. Attractors

a_a) — 6mrau(v-u), It was demonstrated in Ref9] that attractors can be
formed in the bubble regime, indicating that inertial particles
where on the right-hand side, the first term is the force froncan be trapped forever in the wake of the cylinder. We shall
the undisturbed fluid flow, the second term is the force due tdocus on the bubble regime by choosing the mass-ratio pa-
the added mass effect, and the third represents the Stokesmeter from the range 23R < 2. For concreteness, we fix
drag. While in principle the fluid velocity is disturbed by  the inertial parameter a=30. Typically, there are three at-
the particle motion, if the particle sizes are relatively smalltractors[9]: two located symmetrically with respect to the
and their concentration is low can be considered as un- axis near the cylinder but not stuck on it, and the third one at
changed[3]. For convenience, one can introduce the mask=+x (for flows from x=-x). Some representative ex-
ratio parameter amples of the attractors are displayed in Figg)-21(d). For
5 instance, forR=1.70 we observe limit-cycle attractors, as
:L, (4) shown in they>0 plane in Fig. 1a). As R decreases, a
pt * 2pp cascade of period-doubling bifurcations occurs, leading to
chaotic attractors foR=<1.475. See Fig. 2.
The largest Lyapunov exponents of the attractors can be
_ R conveniently calculated by using the standard time-series
A= (2/19)(alL)?R,’ (5) method[19]. This is particularly useful for experimental situ-
ations where the equations of motion are not available, or for
wherep, andp; are the densities of the particle and the fluid, sophisticated numerical models for which the evaluation of
respectively, andl is a typical large-scale mixing length. The the Jacobian matrices is difficult. Figure 3 shows, Rr
equation of motion can then be cast in a dimensionless forma 1.47, a histogram of the largest exponent estimated from
dv  3Rdu 250 trajectories in finite timéL000 flow cycles The center
— —-——=-A(V-u). (6)  of the distribution is\;=0.55, which is a good approxima-
de 2 dt tion of the largest Lyapunov exponent of the chaotic attrac-

Inertial particles areaerosolsif 0 <R<2/3, and they are tor.
bubblesif 2/3<R<2. For the aerosolbubble case, the

and the inertial parameter

particle is heavierlighter) than the surrounding fluid. The lIl. NOISE-INDUCED SUPERPERSISTENT CHAOTIC

limit A— o corresponds to the situation of ideal particles TRANSIENTS

(passive advection The contraction rate of Eq6) is not

zero so that the dynamical system as given by @&.is To simulate random forcing due to the flow disturbance or

dissipative, allowing attractors to exist in the phase spaceother environmental factors, we add teretg(t) and e&,(t)
Although the attractors or other dynamical invariant sets ofo the force components in the and y-directions, where
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0.95

1.45 1.5 1.55 1:6 1.65 1.7
R

FIG. 2. Atypical bifurcation diagram as a function of the mass-
ratio parameteR. A complete cascade of period-doubling bifurca-
tions to chaos is present.

&(t) and§ (1) are independent Gaussian random variables of
zero mean and unit variance, aads the noise amplitude.
We stress that we focus on time scales that are much shorter
than the time to observe any large amplitude events from the
Gaussian distribution. The equations of motion under noise

PHYSICAL REVIEW E 70, 036203(2004

0.88

0.94

are

dx

T

dy _

dt Y

(7)

dv, 3Rdu
d_tx = ?d_tx _A(Vx_ ux) + ng(t)y
dv, 3Rdu
Ny oy _
gt 2 dt A(vy —uy) +g&/(1).

A standard second-order meth§20] was utilized to inte-
grate the set of stochastic differential equati¢ns In what

8.4 0.5 0.6 0.7
A

(b)

FIG. 4. (a) Basins of attraction of two chaotic attractqgray
and black, respectivelyin the absence of noise. The white region
denotes the basin of the attractoxat and the meshed region the
cylinder. (b) Upper chaotic attractaiblack in gray, which appears
to be close to the basin boundary.

follows we present numerical evidence for noise-induced su-
perpersistent chaotic transients for the two cases where the
deterministic attractor is chaotic and periodic, respectively.

A. Chaotic attractors

To gain insight as to what might happen to the chaotic
attractors under noise, we examine the basins of attraction of
these attractors aR=1.47. To do so we choose a 1000
X 1000 grid of initial conditions in the regiof+2.0<x(ty)
<1.5,-1.5<y(ty) < 1.2] covering the cylinder and,=0.2,
and set the initial velocities to be,(tp) =u,(x,y,ts) and
vy(to) =uy(X,Y,tp), and then compute toward which attractor
every initial particle is attracted. Figurg@ shows, on a
stroboscopic section in the two-dimension configuration
space, the basins of attraction of the two chaotic attractors
(gray and black, respectivelywhere the blue region denotes
the basin of the attractor at infinity. Figur¢bd is a blowup
of part of the basin that contains the chaotic attractor in the
upper half plane. It is apparent that the attractor is close to
the basin boundary.

Note that the phase space is five-dimensional, so what is
shown in Figs. &) and 4b) is in fact a two-dimensional
slice of the basin structure in the full phase space, which

FIG. 3. Histogram of the largest Lyapunov exponent of the cha-corresponds to the physical space. Near the cylinder, the ba-

otic attractor forR=1.47, estimated in finite time.

sin boundaries among the three attractors are apparently frac-
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FIG. 5. ForR=1.47 ande=exp(-2.2), an escaping chaotic tra- —22 0 > 4 6
jectory in time sequendda) — (d)]. The cylinder is denoted by the - X
dashed line.

FIG. 6. (a(c) At three different instants of timel;/4 apart,

tal [21]. Because of the explicit time dependence in thelocations of the temporally trapped and escaping particles in the
stream function and therefore in the flow velocities, the atphysical space.
tractors and their basins oscillate around the cylinder. The
remarkable feature is that in the physical space, there are
time intervals during which the attractors come close to theare symmetric to each other with respect toxteis, as can
basin boundaries. Thus, under noise, we expect permanenthe seen from Figs.(6) and Gc). While there are particles
trapped motion on any one of the two chaotic attractors testill trapped in the original attractors, many others are al-
become impossible. In particular, particles can be trappedeady away from the cylinder. Since this is a two-
near the cylinder, but this can last only for a finite amount ofdimensional projection of a five-dimensional dynamics,
time: eventually, all trajectories on these attractors escapsome fractal-like features overlap. The channels through
and approach the=< attractor. That is, chaos becomes tran-which they escape are a set of thin openings surrounding the
sient under noise. cylinder and extending to one of the vortices in the flow.

We have seen that due to the symmetry of the flow withAfter wandering near the vortex, particles go to ttre+w
respect to thex axis, there are two attractors located sym-attractor. Because of the time-dependent nature of the flow,
metrically in the upper- and lower-half planes, respectively.in the physical space the locations of these openings vary in
Because of the convoluted basins of attraction of these atime, but the feature that they are narrow is shared. For a
tractors[Fig. 4@)], under noise of proper amplitude we ex- fixed noise amplitude, numerically we find that the lifetimes
pect to see a switching behavior in a typical trajectory be-of the particles near the cylinder obey an extremely slow,
tween the two original attractors, before it escapes to thexponentially decaying distribution, from which the average
attractor atx=+o0. Figures %a)-5(d) show such a trajectory lifetime 7 is obtained. Figures(@ and {b) show 7 versus
in four intervals of time fore=exp(—-2.2). Specifically, in  the noise amplitudes on two different scales, where is
Fig. 5a), the trajectory comes from the upper stream of themeasured in units of the period of the flow cycle. Note that
flow (to the left-hand side of the cylindeand gets attracted for £=0, there is an attracting motion so thatdiverges.
to the original attractor in the lower half plane. In Fighgy  Figure {b) suggests, however, the way thaincreases fol-
the trajectory begins to switch to the original attractor in thelows the superpersistent transient scaling (&vase is de-
upper half plane. The switching behavior can be seen morereased. The scaling is valid in a finite range of the noise
clearly in Fig. %c). Eventually, the trajectory escapes to theamplitude. In particular, in order to observe the escape of
infinity attractor along the down stream of the flow, as shownparticles in realistic time, the noise amplitude should be large
in Fig. 5d). enough for a trajectory on a chaotic attractor to cross its

To understand the nature of the noise-induced transieriiasin boundary. Roughly, to induce escape, the minimum
chaos, we distribute a large number of particles in the originoise amplitudes, required is proportional to the minimum
nal basins of the chaotic attractors, and examine the chamlistance between the attractor and its basin boundary. Nu-
neks) through which they escape to the + attractor un-  merically we finde.~ e 25, for which the transient lifetime
der noise. Figures(6)—6(c) show, for three instants of time is on the order ofe'?~10° flow cycles. The numerically
(t, t+T;/4, andt+T;/2, respectively, locations of an en- obtained superpersistent transient scaling law holds in the
semble of particles in the physical space. Due to the symmeange that spans over one order of magnitude of the noise
try of the flow[10], the particle trajectories atandt+T;/2  variation aboves.
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0
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0
In(1/¢)

In(1/e) FIG. 9. ForR=1.60, scaling of the average lifetime of tempo-
rally trapped trajectories near the periodic attractors with noise,
plotted on two different scales. The transient behavior can appar-
aéntly be classified as superpersistent.

FIG. 7. Scaling of the average lifetime of the trapped chaotic
particles versus the noise amplitude on two different scales. Aline
plot in the double logarithmic versus logarithmic scalglm sug-

gests that the chaotic transients are superpersistent. shows the trajectory before it escapes. We notice that the
behaviors are similar to those in Fig. 5 where the original
B. Periodic attractors deterministic attractor is chaotic. The interesting result is that

the scaling of the average transient lifetime with the noise

When the deterministic attractor is periodic, we find thatamplitude appears to be superpersistent as well, as shown in
noise can also induce transient dynamics in that particlefig. 9, where the approximately linear behavior(iy indi-
initially trapped in the attractor will eventually escape whencates the scaling la\2) for over at least one order of mag-
noise amplitude is larger than a threshold value. To illustrataitude of the noise variation.
this behavior, we plot in Figs.(8-8(d) a deterministic pe- To test whether the transient dynamics is chaotic, we
riodic attractor in the physical space fB=1.6, and an es- compute the finite-time distribution of the largest Lyapunov
caping, noisy trajectory in three intervals of time before itexponent, as shown in Fig. (), where the number of tra-
exits the wake region fat=e"2. In Fig. §b), the trajectory jectories used is 250, the time is 1000 flow cycles, and the
comes from the upper stream of the flow and is temporallyexponent is again estimated from the time-series method. We
trapped in the region where the original periodic attractorsee that the distribution is on the positive side, with center at
resides. Figure @) shows the switching behavior between \;~=0.118, indicating a chaotic transient. We also find that as
the two symmetric attractors due to noise, and Figd) 8 the noise amplitude is increased, the center of the distribu-
tion increases as well, as shown in Fig(ld0 Thus, in the
parameter regime where the deterministic attractor is not

1
chaotic, noise can still induce superpersistent chaotic tran-
> sients.
0.7 0.3 0.14
0. 0.2 1 012
)
=<
1.2 1.2 E -
© 0.1 1 o1
> >
0 0
0 0.08
01 012 0.14 1.7 2.6
B (@) 2 (b) In(1/€)
1'6_4 08 x 1.2 _1'8_4 09 x 1.4 FIG. 10. (a) Finite-time distribution of the largest Lyapunov

exponent fore=exp(-2.0) and R=1.6 where the deterministic at-
FIG. 8. ForR=1.60 (a) periodic attractor in the absence of tractor is periodic. The distribution is on the positive side, indicat-
noise. (b),(c) For e=exp—-2.1), behaviors of a typical trajectory ing that the transient dynamics is chaofib) Center of the distri-
near the original attractor before it exits downstream in the flow. bution versus the noise amplitude.
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IV. SCALING THEORY namics ind can be described bys/dt= 82+b. Thus, the time

We shall provide a physical theory for the scaling of the T 'équired to tunnel through the escaping channel is

average lifetime of noise-induced superpersistent chaotic 1 (* ds -
transients. Previous works suggest unstable-unstable pair bi- T= bT’zf I = psTEE
furcation as the generic mechanism for the transigisly. 0

One can imagine two un_stable periodic orbits of the SaM&ince thed dynamics is uniformly chaotic with Lyapunov
periods, one on the chaotic attractor and another on the basé?(ponenmzln 2>0, the probability for a trajectory to fall in

boundary. In a noiseless situation, as a bifurcation parametegq opening of the channel and to stay near there inéthe
p passes through a critical valyg(p=pc), the two orbits  girection for consecutivelyT iterations is proportional to

coalesceand disappear simultaneously, leaving behind a se§-Tin2 Fora>a,, the average chaotic transient time is thus
of narrow “channels” in the phase space through which tragjyen py

jectories on the chaotic attractor can escape. There is super- n

persist((ajnt chaor:ic transient fpe>pe. Our flguid pzoblg—:-m porl- r~e' N2~ gmh 2267 aygc(a-a) 2], (10)
responds to the parameter regime p&p, (subcritica ~ P g .
regime because, in the absence of noise, there are attractordhereC=m(In2)5™"/2 is a positive constant. Thus, in the

In this case, noise can induce a set of channels that opens afj@iSeless situation, faa>a. the exponent in the scaling of
closes stochastically in time, through which trajectories orf’® average tunneling time with the parameter variation as-
the attractors can escape. In what follows, to gain insight wUMmes the value of 1/2, which was verified numericglly].
first describe the scaling of the average lifetime of superper- N the above example, the two periodic orbits involved in
sistent chaotic transient with paramegein the deterministic  the unstable-unstable pair bifurcation that induces a super-
case. We then develop a model based on a class of first-ord@grsistent chaotic transient are a saddle and a repeller, which
stochastic differential equations to account for the scaling® allowed if the two-dimensional map is noninvertible. For
law governing noise-induced superpersistent chaotic trarflVertible maps, the required phase-space dimension for the

sients. bifurcation is at least thre@r at least four for flowgs Thus,
for most commonly studied low-dimensional chaotic systems
A. Scaling law of superpersistent chaotic transients in the such as two-dimensional invertible map or three-dimensional
deterministic case flows, unstable-unstable pair bifurcation and hence superper-

Grebogi, Ott, and York¢13] used the following class of sistent chaotic transients cannot occur. For simplicity, to
two-dimensional, noninvertible maps on cylinder to first re-Study the effect of noise, we will use two-dimensional non-
port superpersistent chaotic transients: invertible maps as prototype models.

0n1 = 26, mod 27, ] o )
B. Scaling law of noise-induced superpersistent
chaotic transients

(8)

Zne1=Z,+ 23+ B COSO,,
) In our fluid-flow problem, transient chaos is induced by
wherea'andﬁ are parameters. Because of ﬂﬁe;e'rm inthe  noise. As can be seen in Figlg, the existence of attractors
z equation for largez,| we havez,,,>z, There is thus an g their closeness to the basin boundary in the absence of
attractor ag= +. Nearz=0, depending on the choice of the 556 imply that the setting belongs to the subcritical case.

parameters, there can be either a chaotic attractor or nongnger noise, an escaping channel may open at the location of
For instance, for &g<1, there is a chaotic attractor near 5 ynstable periodic orbit. For small noise, the probability

z=0 fora<a,=1-2/B and the attractor becomes a chaoticfor the channel to open is small. Particles can move, how-
transient fora>a. [13]. The transient is superpersistent for ¢yer o the location of the channel and remain there for a
a>ac, which can be arguefl.3] as follows. finite amount of time to escape through the channel while it
Fora<a, there are two fixed points#;,2,)=(0,2,) and s gpen. Suppose, on average, it takes i for a particle
(62,2)=(0,2),  where zp=(1-atr)/2 and T {o travel through the channel. We expd¢t) to increase as
=/(1-a)?-4p. The fixed point40,2,) and(0,z) are onthe  the noise amplitude is decreased, because the probability
basin boundary and on the chaotic attractor, respectivelyor the channel to remain open is smaller for weaker noise. In
They coalesce aa=a;. For a>a; a channel is created fact, as we will argue below, we expette) to increase at
through which trajectories on the original attractor can esyeast algebraically as is decreased to a critical noise ampli-
cape to an attractor at infinity. At the location of the Cha””eltudesc. The analysis below assumes the existence of a cha-
where #=0, thez mapping can be written as otic attractor, but it also applies to the case where the attrac-
Zn1—Zn= (- 1)z, + 22+ B. tor is periodic, insofar as noise can induce chaotic motion
before escaping, as observed in our fluid problem.
Letting 6=z-z., wherez. is the minimum of the quadratic ~ Suppose the largest Lyapunov exponent of the chaotic at-
function of z on the right-hand side, we have tractor is\>0. After an unstable-unstable pair bifurcation
S =5 +82+Db (9) the opened channel is locally transverse to the attractor. In
n+l = “n n ! H H H
_ order for a trajectory to escape, it must spend at least time
where b=\B(a-a,)-[(a-a,)/2]*> For a>a, we haveb  T(e) at the location of the opening on the attractor. The tra-
~B(a-ay). In the continuous-time approximation, the dy- jectory must come to within a distance of about
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exd—AT(e)] from the location of the channel. The probabil- ~exd-H(z)/&?], if £>|p|’, whereo=k/(2k-2). Thus, we
ity for this to occur is proportional to ekpAT(e)]. The av-  have
erage time for the trajectory to remain on the attractor, or the | y
average transient lifetime, is thus-exg\T(e)]. T(e) ~ %f dy ex- H(y)/az]f exdH(2)/s%]dz.
To obtain the dependence @fs) on e, we consider a e Jo 0
small region about the “root” of the channel, or the IocationU . h . . f th tal t
of the mediating periodic orbit. Letj and z be the local sing /e2 Series eﬁpansuin 0 eh expone(rj] al - term
coordinates on the attractor and in the channel, respectivelﬁde(z) &°], T(e) can be evaluatetsee the Appendjx We
We consider the following model: ave
-2+4k
dq ) T=e¢ ,
dt =f(a), which, when substituted inte~exg\T(e)], gives the scal-
ing law (3) that is characteristic of superpersistent chaotic
dz transients. We see that the exponenyi2 —4/k. In general,
—=g&(t)+g(q)p+h(z), we have < y<2. In principle, the scaling law3) holds
dt only when the noise amplitude exceeds the critical value
=|p|°. For a realistic problem, the critical noise amplitugle
is related to the minimum distance between the attractor and
its basin boundary in the deterministic case.

wherep is a parametef(q) is a vector field that generates a
chaotic attractorg&(t) is noise, the lowest order of the func-
tion h(z) is z2. The functiong(q) satisfies the condition
lo(q)||<D for g+ 0, g(0)=1, whereD is a positive constant
and|-|| denotes a proper norm. Fer0 andp=<0, we have V. DISCUSSION
lo(q)lp=0, so that the channel is closed and no trajectory
can escape. F@= 0, the probability for the channel to open
is finite, and so is the probability for trajectories to escape. |
is thus convenient to sg.=0, wherep= p, corresponds to
the subcritical case, as in our fluid problem.

We have investigated the stability of attractors formed by
f'nertial particles behind structures in a prototype open-flow
system consisting of a cylindrical obstacle in an infinite

channel. We consider the setting where fluid is incompress-

In order to construct a model that captures the essentié?let.alnd ch?honc vortices fo:jm _beh[[rrl]d b cyllndedr_. FO(; |deal_
transient dynamics, while at the same time is amenable tgarticies with zero mass and size, the corresponding dynami-

analysis, we assume that the escaping channel is appro>855lI system is open Hamiltonian SO th‘.’ﬂ. particles from the
mately one-dimensional and the length of the channél is upper stream of the flow can be in the vicinity of the cylinder

> g. This picture can be justified for the typical case WhereOnly for a finite amount of time before exiting this region

the periodic orbit at the opening of the channel in the originaldownStream' Recent wark showed that for physical particles

attractor is strongly unstable in the direction of the channeYV'th finite inertia and size, attractors, chaotic or nonchaotic,

so that the escaping dynamics in the channel is approxf-:an form behind the cylindef9]. This raises concern for

mately one-dimensional. Once a trajectory on the chaotisituations where, for instance, advective particles in the at-
attractor falls into the opening of the channel, i@=0, its mosphere are chemically or biologically active and can be

motion is governed by a stochastic differential equation Oitr_apped behind some structures. The resultlof this paper in-
9 y q dicates that such attractors are not stable in the sense that

the form . .
they can be destroyed by small noise. However, the resulting
dz transient can be extremely long in that its average lifetime
P h(z) + p+e&(t). obeys the scaling law that is characteristic of superpersistent

chaotic transients. As a practical matter, the extraordinarily
The probability density functiom(z,t) of the corresponding long trapping time makes the transient particle motion prac-

stochastic process obeys the Fokker-Planck equation tically equivalent to an attracting motion with similar physi-
cal or biological effects. We wish to remark that, while there
ap 9 &2 P are numerous results in the mathematics literature concern-
g a—z([h(z) *plo)+ 2 02’ ing the persistence of attractors under n¢&25, the issue

addressed in this paper concewlisat can happephysically
wheree? is the diffusion coefficient. For smatlwe consider to an attractor when it cano longerpersist under random
the lowest order oh(z) and writeh(z) =aZ!, wherea>0 perturbations.

andk= 3. The time required for a trajectory to travel through  As a by-product, our result represents evidence of super-

the channel is roughly the mean first passage {i2% persistent chaotic transients in the physical or configuration
5 [ y space, whereas to our knowledge, most previous works on
_ £ _ 2 2 this type of chaotic transients focused on the phase space of
T(e) szfo dy exil - W(y)/e ]JO X W(2/e7]dz dynamical system$l13-15,17. It may then be possible to

observe superpersistent chaotic transients directly in fluid ex-
where W(z)=H(2)+2pz and H(z)=/2h(z)dz Depending periments using open chaotic flows. While we recognize that
on the noise amplitude, the exponential terms inside théo confirm a scaling law from experimental data can be ex-
integral can be approximated as €xfH(z)+2pz]/e?}  tremely difficult in fluid dynamicgsee, for example, the con-
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tradictory conclusions in Ref§26,27 and on whether the 2= I’ 1 [q\ (k20
scaling of velocity profiles in a turbulent boundary layeris T= f q" exp(— q)—(—) dq
Reynolds-number dependgntve think it is possible to ex- 0 kb
perimentally observe the chaotic-transient scaling @y

For instance, in the experimental system in R28], a wake

is created in the flow passing a cylinder, and dyes are used to
allow chaotic scattering dynamics to be traced. We can imag-
ine using dyes of finite mass to generate attracting motions
behind the cylinder. As perturbations of controllable magni-
tude(such as small, forced random vibration of the cylinder
are applied, the dyes trapped behind the cylinder will escape
down the flow. By measuring the average time for which thewherel’ =bl* andI'(x) = [5t*"* exp(-t)dt is the gamma func-
dyes stay near the cylinder as a function of the magnitude dfon. In order to show that the infinite series

the perturbations, the scaling la\®) can be tested. Another o 1

possible experimental setting is the fluid mixing system in a > ——T

stirred tank[29]. nmo ! (kn+ 1)k

2 1

g?ron! (kn+1) b

o0 1 I’
~g Yy n-(k-2)/k _
’ Eom (kn+ 1)kJ0 q exp(— g)dq,

- 1
~ g 2Ky~ T(n+ 2k
© ngon! (kn+ 1)k (n )

(n+2/K) (A1)
converges, we use the following property of the gamma
function [23]:

bb—l
1 expla-h) <
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APPENDIX
(n + 2/k)n—1+2,k
(n+1)"

The series expansion T(n+2/K) < T(n+ Dexpl - 2K)

<n! exp(l-2K)(n+2/k) 2k,
Substituting this upper bound into the infinite selid4), we

exgdH(2)/e2]= >, M,
n=0 n!

gives can show that the series is convergent, as follows:
J‘y oy 2]d i bnykn+1 o
exgH(2/e“ldz= 2, ——, —— I'(n+ 2k
. < ni(kn+1) 2 s DRl (2K
whereb=(2a)/(ke?). It implies that * 1
B <> ———— exp(1 - 2K)(n+ 2/k)"1+2k
2 | (byk)n n=0 (kn+ 1)k
T~5| 2 Tkne )Y P by“)dy. -
e“Jonon!(kn+1) exp(1 - 2k) 1
. < ) 22k < -
Let g=by¥, we obtain k no (N+1/K)
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