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Particles having finite mass and size advected in open chaotic flows can form attractors behind structures.
Depending on the system parameters, the attractors can be chaotic or nonchaotic. But, how robust are these
attractors? In particular, will small, random perturbations destroy the attractors? Here, we address this question
by utilizing a prototype flow system: a cylinder in a two-dimensional incompressible flow, behind which the
von Kármán vortex street forms. We find that attractors formed by inertial particles behind the cylinder are
fragile in that they can be destroyed by small, additive noise. However, the resulting chaotic transient can be
superpersistent in the sense that its lifetime obeys an exponential-like scaling law with the noise amplitude,
where the exponent in the exponential dependence can be large for small noise. This happens regardless of the
nature of the original attractor, chaotic or nonchaotic. We present numerical evidence and a theory to explain
this phenomenon. Our finding makes direct experimental observation of superpersistent chaotic transients
feasible and it also has implications for problems of current concern such as the transport and trapping of
chemically or biologically active particles in large-scale flows.
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I. INTRODUCTION

The advective dynamics of idealized particles in two-
dimensional, incompressible flows can be described as
Hamiltonian [1,2]. In particular, consider such a flow char-
acterized by a stream functionCsx,y,td. For a particle with
zero mass and size, its trajectory in the flow obeys the fol-
lowing equations:

dx

dt
=

]Csx,y,td
]y

,

s1d
dy

dt
= −

]Csx,y,td
]x

,

which are the standard Hamilton’s equations of motion gen-
erated by the HamiltonianHsx,y,td=Csx,y,td. That is, the
particle velocityvsx,y,td=sdx/dt,dy/dtd follows exactly the
flow velocity usx,y,td, as given by the right-hand side of Eq.
(1). This idealized picture changes completely when particles
have finite mass and size. In this realistic case, the particle
velocity is generally not the same as the flow velocity, and
the equations of motion are no longer Hamilton’s equations.
Maxley and Riley were the first to consider this problem[3]
by deriving a set of equations for the particle velocity
vsx,y,td, taking into account physical effects due to finite
mass and size such as the buoyancy force, the Stokes drag,
the added inertia effect, and other corrections[3–5]. The re-
sulting dynamical system is no longer Hamiltonian but dis-
sipative instead. As such, attractors can arise[5–9]. Consid-
ering that, in an open Hamiltonian flow, ideal particles
coming from the upper stream must necessarily go out of the
region of interest in a finite amount of time, the formation of
attractors of inertial particles is remarkable. Suppose these
physical particles are biologically or chemically active. That
they can be trapped permanently in some region in the physi-

cal space is of great interest or concern. A natural question is
whether such attractors are structurally stable, i.e., whether
they can persist under random perturbations.

In this paper, we are interested in the stability of attractors
of inertial particles in open flows whose corresponding La-
grangian dynamics is chaotic. That is, for idealized particles,
the equations of motion that they obey, namely Eq.(1), can
exhibit chaos. We shall use the model of a two-dimensional
flow passing a cylindrical obstacle, which was originally de-
veloped by Junget al. [10]. The Reynolds number of the
fluid and the geometrical parameters of the system are cho-
sen such that behind the cylinder, chaotic vortices(von
Kármán vortex street) form. Recent work by Bencziket al.
[9] showed that for inertial particles in such a flow, attractors
can be formed in the regions immediately behind the cylin-
der, but the attractors are usually not “stuck” on the cylinder.
We call such attractorsinertial attractors. By varying a sys-
tem parameter, periodic and chaotic attractors, and in fact a
complete cascade of period-doubling bifurcations to chaos,
can be observed. As Bencziket al.pointed out, this result has
implications in environmental science where forecasting
aerosol and pollutant transport is a basic task, or even in
defense applications where the spill of a toxin or biological
pathogen in large-scale flows is of critical concern. The focus
of this paper will be on the effect of noise on inertial attrac-
tors in this von Kármán vortex-street flow model. To make
numerical computations and analysis feasible, we shall re-
strict our study to additive noise that is bounded in physi-
cally meaningful time. That is, we will consider Gaussian
noise(white), but we restrict quantities of interest to time far
less than the time to observe a rare, large amplitude realiza-
tion of the Gaussian noise[11]. Under these considerations a
noise amplitude can be meaningfully defined.

Our result is that under small noise, inertial attractors are
typically destroyed, leaving behind a transient. If the original
attractor is chaotic, the transient is chaotic. However, we find
that even if the attractor is nonchaotic, under noise the re-
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sulting transient can still be chaotic. In both cases, the aver-
age lifetimet of the chaotic transient obeys the following
scaling law with noise amplitude«:

t , expsC«−gd, for « . «c, s2d

whereC.0 andg.0 are constants, and«c is related to the
minimum distance between the attractor and its basin bound-
ary [12]. The scaling law(2) is numerically observed to hold
for close to two orders of magnitude of the noise variation.
Here,t is measured in terms of the natural time scale of the
underlying flow, i.e., the cycle time of the vortices in the von
Kármán street. For«@«c, the average transient time is short.
As « is decreased the transient time increases following the
scaling law(2) and, for «,«c, the time can be as long as
1.53105 flow cycles. The scaling law holds, regardless of
whether the original attractor is chaotic or periodic. To ac-
count for the scaling law, we develop a physical theory, mod-
eling the noise-induced escaping dynamics of trajectories
from attractor by a class of stochastic differential equations.
We will show that a properly formulated first-passage time
problem of the corresponding stochastic system, in combina-
tion with the chaotic nature of the attractor under noise, leads
to the scaling law(2).

The scaling law(2) is characteristic ofsuperpersistent
chaotic transients. By definition, a superpersistent chaotic
transient is defined by the following scaling law for its life-
time [13]:

t , expsaup − pcu−gd, s3d

wherep is a system parameter,a.0 andg.0 are constants.
We see that asp approaches the critical valuepc, the tran-
sient lifetimet becomes superpersistent in the sense that the
exponent in the exponential dependence diverges. This type
of chaotic transient was discovered by Grebogiet al. [13].
They showed that the transients can generically occur
through the dynamical mechanism of unstable-unstable pair
bifurcation, in which an unstable periodic orbit in the bound-
ary of a chaotic invariant set coalesces with another unstable
periodic orbit pre-existing outside the set. The transients
were also identified in a class of coupled-map lattices, lead-
ing to the speculation that asymptotic attractors may not be
relevant for turbulence[14]. The unstable-unstable pair bi-
furcation mechanism was later shown to be responsible for
the riddling bifurcation[15] that creates a riddled basin[16]
in dynamical systems with symmetry. The mathematical
models in Refs.[13,15] used to analyze superpersistent cha-
otic transients were discrete-time maps. Recently, superper-
sistent chaotic transients were demonstrated in systems de-
scribed by differential equations, makingindirect
experimental observation of the transients possible[17]. In
all these works, the transients occur in thephase spacesof
dynamical systems. Our finding of superpersistent chaotic
transients in a two-dimensional fluid system means that it
may be possible to observe these transients directly, as for
such a system the phase space and the physical space coin-
cide. A short account of the work emphasizing this physical-
space aspect of superpersistent chaotic transients has been
published recently[18].

The rest of the paper is organized as follows. In Sec. II,
we describe the flow model and the corresponding dissipa-
tive dynamical system that governs the motion of inertial
particles. In Sec. III, we present numerical results of super-
persistent chaotic transients for the two cases where the
original attractor is chaotic and periodic, respectively. Sec-
tion IV presents a theory to account for the numerically ob-
served scaling laws for the average lifetime of the chaotic
transients. Finally, a brief summary and a discussion of po-
tential experimental systems for direct observation of super-
persistent chaotic transients are offered in Sec. V.

II. MODEL OF ADVECTIVE DYNAMICS OF
INERTIAL PARTICLES

A. Open-flow model

We use the open-flow model of the von Kármán vortex
street in the wake of a cylinder, as detailed in Ref.[10]. The
cylinder has radiusr and is located in the middle of an infi-
nite channel of width 4r. The center of the cylinder is chosen
to be the origin of the two-dimensional plane:sx,yd=s0,0d.
The flow is incompressible and the Reynolds number isRe
;UL /n, whereU is a typical large-scale velocity andn is
the kinematic viscosity of the fluid. For not-too-small Rey-
nolds numbers(say,Re<250 as in Ref.[10]), vortices form
in the wake of the cylinder. The motions of the vortices in a
background flow of velocityu0 can be described by a time-
periodic stream functionCsx,y,td (period Tf =1 in a stan-
dard dimensionless form), which was written heuristically to
qualitatively describe the chaotic motion of Lagrangian pas-
sive tracers in the flow. The flow velocityusx,y,td can be
obtained fromCsx,y,td according to the Hamilton’s equa-
tions (1). By measuring the length in units of the cylinder
radius r, which is also the characteristic linear size of the
flow, the dimensionless model stream function can be written
as

C = fg,

where

f = fsx,yd = 1 − expf− sÎx2 + y2 − 1d2g

ensures the presence of a boundary layer

g = gsx,y,td = − wh1stdg1sx,y,td + wh2stdg2sx,y,td

+ u0y0ssx,yd

describes the periodic detachment of the vortices,w repre-
sents the average strength of vortices

h1std = sin2sptd,

h2std = cos2sptd,

are functions characterizing the time evolution of the vortic-
ity, u0 is the dimensionless background velocity, and

ssx,yd = 1 − exps− sx − 1d2/c2 − y2d

is a shielding factor suppressing the background velocity in
the wake. The factors
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g1sx,y,td = exph− R0fsx − x1stdd2 + c2sy − y0d2gj,

g2sx,y,td = exph− R0fsx − x2stdd2 + c2sy + y0d2gj,

describe the Gaussian forms of the vortices of dimensionless
size, whose positions in the wake arefx1std ,y0g and fx2std ,
−y0g. The functionsx1 andx2 are defined by

x1std = 1 +L0 modst,1d,

x2std = 1 +L0 modst − 1
2,1d ,

whereL0 is the dimensionless distance a vortex passes dur-
ing its lifetime. In our numerical simulations we use the set
of parameters in Refs.[9,10]: u0=14.0, R0=0.35, y0=0.3,
andL0=2.0.

B. Inertial dynamics

For particles of finite mass and size advected in an incom-
pressible flow, viscous friction arises and, as a result, the
particle velocities differ from those of the fluid. Consider a
spherical particle of radiusa and massmp, and fluid of dy-
namic viscositym and element massmf. The equation of
motion for the advective particle derived by Maxley and Ri-
ley [3] is

mp
dv

dt
= mf

du

dt
−

mf

2
Sdv

dt
−

du

dt
D − 6pamsv − ud,

where on the right-hand side, the first term is the force from
the undisturbed fluid flow, the second term is the force due to
the added mass effect, and the third represents the Stokes
drag. While in principle the fluid velocityu is disturbed by
the particle motion, if the particle sizes are relatively small
and their concentration is low,u can be considered as un-
changed[3]. For convenience, one can introduce the mass
ratio parameter

R=
2r f

r f + 2rp
, s4d

and the inertial parameter

A =
R

s2/9dsa/Ld2Re
, s5d

whererp andr f are the densities of the particle and the fluid,
respectively, andL is a typical large-scale mixing length. The
equation of motion can then be cast in a dimensionless form

dv

dt
−

3R

2

du

dt
= − Asv − ud. s6d

Inertial particles areaerosols if 0 ,R,2/3, and they are
bubbles if 2 /3,R,2. For the aerosol(bubble) case, the
particle is heavier(lighter) than the surrounding fluid. The
limit A→` corresponds to the situation of ideal particles
(passive advection). The contraction rate of Eq.(6) is not
zero so that the dynamical system as given by Eq.(6) is
dissipative, allowing attractors to exist in the phase space.
Although the attractors or other dynamical invariant sets of

the system lie in the full phase space, they can be observed in
the configuration or physical space[sx,yd plane].

C. Attractors

It was demonstrated in Ref.[9] that attractors can be
formed in the bubble regime, indicating that inertial particles
can be trapped forever in the wake of the cylinder. We shall
focus on the bubble regime by choosing the mass-ratio pa-
rameter from the range 2/3,R,2. For concreteness, we fix
the inertial parameter atA=30. Typically, there are three at-
tractors[9]: two located symmetrically with respect to thex
axis near the cylinder but not stuck on it, and the third one at
x= +` (for flows from x=−`). Some representative ex-
amples of the attractors are displayed in Figs. 1(a)–1(d). For
instance, forR=1.70 we observe limit-cycle attractors, as
shown in they.0 plane in Fig. 1(a). As R decreases, a
cascade of period-doubling bifurcations occurs, leading to
chaotic attractors forR&1.475. See Fig. 2.

The largest Lyapunov exponents of the attractors can be
conveniently calculated by using the standard time-series
method[19]. This is particularly useful for experimental situ-
ations where the equations of motion are not available, or for
sophisticated numerical models for which the evaluation of
the Jacobian matrices is difficult. Figure 3 shows, forR
=1.47, a histogram of the largest exponent estimated from
250 trajectories in finite time(1000 flow cycles). The center
of the distribution isl1<0.55, which is a good approxima-
tion of the largest Lyapunov exponent of the chaotic attrac-
tor.

III. NOISE-INDUCED SUPERPERSISTENT CHAOTIC
TRANSIENTS

To simulate random forcing due to the flow disturbance or
other environmental factors, we add terms«jxstd and «jystd
to the force components in thex- and y-directions, where

FIG. 1. Attractors in the configuration space. Periodic attractors
with period (a) Tp=1 for R=1.70; (b) Tp=2 for R=1.60; and(c)
Tp=4 for R=1.50.(d) Chaotic attractor forR=1.47. The dashed line
indicates the cylinder in the upper half plane.
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jxstd andjystd are independent Gaussian random variables of
zero mean and unit variance, and« is the noise amplitude.
We stress that we focus on time scales that are much shorter
than the time to observe any large amplitude events from the
Gaussian distribution. The equations of motion under noise
are

dx

dt
= vx,

dy

dt
= vy,

s7d

dvx

dt
=

3R

2

dux

dt
− Asvx − uxd + «jxstd,

dvy

dt
=

3R

2

duy

dt
− Asvy − uyd + «jystd.

A standard second-order method[20] was utilized to inte-
grate the set of stochastic differential equations(7). In what

follows we present numerical evidence for noise-induced su-
perpersistent chaotic transients for the two cases where the
deterministic attractor is chaotic and periodic, respectively.

A. Chaotic attractors

To gain insight as to what might happen to the chaotic
attractors under noise, we examine the basins of attraction of
these attractors atR=1.47. To do so we choose a 1000
31000 grid of initial conditions in the regionf−2.0øxst0d
ø1.5,−1.5øyst0dø1.2g covering the cylinder andt0=0.2,
and set the initial velocities to bevxst0d=uxsx,y,t0d and
vyst0d=uysx,y,t0d, and then compute toward which attractor
every initial particle is attracted. Figure 4(a) shows, on a
stroboscopic section in the two-dimension configuration
space, the basins of attraction of the two chaotic attractors
(gray and black, respectively), where the blue region denotes
the basin of the attractor at infinity. Figure 4(b) is a blowup
of part of the basin that contains the chaotic attractor in the
upper half plane. It is apparent that the attractor is close to
the basin boundary.

Note that the phase space is five-dimensional, so what is
shown in Figs. 4(a) and 4(b) is in fact a two-dimensional
slice of the basin structure in the full phase space, which
corresponds to the physical space. Near the cylinder, the ba-
sin boundaries among the three attractors are apparently frac-

FIG. 2. A typical bifurcation diagram as a function of the mass-
ratio parameterR. A complete cascade of period-doubling bifurca-
tions to chaos is present.

FIG. 3. Histogram of the largest Lyapunov exponent of the cha-
otic attractor forR=1.47, estimated in finite time.

FIG. 4. (a) Basins of attraction of two chaotic attractors(gray
and black, respectively) in the absence of noise. The white region
denotes the basin of the attractor atx=` and the meshed region the
cylinder. (b) Upper chaotic attractor(black in gray), which appears
to be close to the basin boundary.
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tal [21]. Because of the explicit time dependence in the
stream function and therefore in the flow velocities, the at-
tractors and their basins oscillate around the cylinder. The
remarkable feature is that in the physical space, there are
time intervals during which the attractors come close to the
basin boundaries. Thus, under noise, we expect permanently
trapped motion on any one of the two chaotic attractors to
become impossible. In particular, particles can be trapped
near the cylinder, but this can last only for a finite amount of
time: eventually, all trajectories on these attractors escape
and approach thex=` attractor. That is, chaos becomes tran-
sient under noise.

We have seen that due to the symmetry of the flow with
respect to thex axis, there are two attractors located sym-
metrically in the upper- and lower-half planes, respectively.
Because of the convoluted basins of attraction of these at-
tractors[Fig. 4(a)], under noise of proper amplitude we ex-
pect to see a switching behavior in a typical trajectory be-
tween the two original attractors, before it escapes to the
attractor atx= +`. Figures 5(a)–5(d) show such a trajectory
in four intervals of time for«=exps−2.2d. Specifically, in
Fig. 5(a), the trajectory comes from the upper stream of the
flow (to the left-hand side of the cylinder) and gets attracted
to the original attractor in the lower half plane. In Fig. 5(b),
the trajectory begins to switch to the original attractor in the
upper half plane. The switching behavior can be seen more
clearly in Fig. 5(c). Eventually, the trajectory escapes to the
infinity attractor along the down stream of the flow, as shown
in Fig. 5(d).

To understand the nature of the noise-induced transient
chaos, we distribute a large number of particles in the origi-
nal basins of the chaotic attractors, and examine the chan-
nel(s) through which they escape to thex= +` attractor un-
der noise. Figures 6(a)–6(c) show, for three instants of time
(t, t+Tf /4, and t+Tf /2, respectively), locations of an en-
semble of particles in the physical space. Due to the symme-
try of the flow [10], the particle trajectories att and t+Tf /2

are symmetric to each other with respect to thex axis, as can
be seen from Figs. 6(a) and 6(c). While there are particles
still trapped in the original attractors, many others are al-
ready away from the cylinder. Since this is a two-
dimensional projection of a five-dimensional dynamics,
some fractal-like features overlap. The channels through
which they escape are a set of thin openings surrounding the
cylinder and extending to one of the vortices in the flow.
After wandering near the vortex, particles go to thex= +`
attractor. Because of the time-dependent nature of the flow,
in the physical space the locations of these openings vary in
time, but the feature that they are narrow is shared. For a
fixed noise amplitude, numerically we find that the lifetimes
of the particles near the cylinder obey an extremely slow,
exponentially decaying distribution, from which the average
lifetime t is obtained. Figures 7(a) and 7(b) show t versus
the noise amplitude« on two different scales, wheret is
measured in units of the period of the flow cycle. Note that
for «=0, there is an attracting motion so thatt diverges.
Figure 7(b) suggests, however, the way thatt increases fol-
lows the superpersistent transient scaling law(2) as« is de-
creased. The scaling is valid in a finite range of the noise
amplitude. In particular, in order to observe the escape of
particles in realistic time, the noise amplitude should be large
enough for a trajectory on a chaotic attractor to cross its
basin boundary. Roughly, to induce escape, the minimum
noise amplitude«c required is proportional to the minimum
distance between the attractor and its basin boundary. Nu-
merically we find«c,e−2.5, for which the transient lifetime
is on the order ofe12,105 flow cycles. The numerically
obtained superpersistent transient scaling law holds in the
range that spans over one order of magnitude of the noise
variation above«c.

FIG. 5. ForR=1.47 and«=exps−2.2d, an escaping chaotic tra-
jectory in time sequencefsad→ sddg. The cylinder is denoted by the
dashed line.

FIG. 6. (a)–(c) At three different instants of time,Tf /4 apart,
locations of the temporally trapped and escaping particles in the
physical space.
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B. Periodic attractors

When the deterministic attractor is periodic, we find that
noise can also induce transient dynamics in that particles
initially trapped in the attractor will eventually escape when
noise amplitude is larger than a threshold value. To illustrate
this behavior, we plot in Figs. 8(a)–8(d) a deterministic pe-
riodic attractor in the physical space forR=1.6, and an es-
caping, noisy trajectory in three intervals of time before it
exits the wake region for«=e−2.1. In Fig. 8(b), the trajectory
comes from the upper stream of the flow and is temporally
trapped in the region where the original periodic attractor
resides. Figure 8(c) shows the switching behavior between
the two symmetric attractors due to noise, and Fig. 8(d)

shows the trajectory before it escapes. We notice that the
behaviors are similar to those in Fig. 5 where the original
deterministic attractor is chaotic. The interesting result is that
the scaling of the average transient lifetime with the noise
amplitude appears to be superpersistent as well, as shown in
Fig. 9, where the approximately linear behavior in(b) indi-
cates the scaling law(2) for over at least one order of mag-
nitude of the noise variation.

To test whether the transient dynamics is chaotic, we
compute the finite-time distribution of the largest Lyapunov
exponent, as shown in Fig. 10(a), where the number of tra-
jectories used is 250, the time is 1000 flow cycles, and the
exponent is again estimated from the time-series method. We
see that the distribution is on the positive side, with center at
l1<0.118, indicating a chaotic transient. We also find that as
the noise amplitude is increased, the center of the distribu-
tion increases as well, as shown in Fig. 10(b). Thus, in the
parameter regime where the deterministic attractor is not
chaotic, noise can still induce superpersistent chaotic tran-
sients.

FIG. 7. Scaling of the average lifetime of the trapped chaotic
particles versus the noise amplitude on two different scales. A linear
plot in the double logarithmic versus logarithmic scale in(b) sug-
gests that the chaotic transients are superpersistent.

FIG. 8. For R=1.60 (a) periodic attractor in the absence of
noise. (b),(c) For «=exps−2.1d, behaviors of a typical trajectory
near the original attractor before it exits downstream in the flow.

FIG. 9. ForR=1.60, scaling of the average lifetime of tempo-
rally trapped trajectories near the periodic attractors with noise,
plotted on two different scales. The transient behavior can appar-
ently be classified as superpersistent.

FIG. 10. (a) Finite-time distribution of the largest Lyapunov
exponent for«=exps−2.0d and R=1.6 where the deterministic at-
tractor is periodic. The distribution is on the positive side, indicat-
ing that the transient dynamics is chaotic.(b) Center of the distri-
bution versus the noise amplitude.
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IV. SCALING THEORY

We shall provide a physical theory for the scaling of the
average lifetime of noise-induced superpersistent chaotic
transients. Previous works suggest unstable-unstable pair bi-
furcation as the generic mechanism for the transients[13,15].
One can imagine two unstable periodic orbits of the same
periods, one on the chaotic attractor and another on the basin
boundary. In a noiseless situation, as a bifurcation parameter
p passes through a critical valuepcsp*pcd, the two orbits
coalesceand disappear simultaneously, leaving behind a set
of narrow “channels” in the phase space through which tra-
jectories on the chaotic attractor can escape. There is super-
persistent chaotic transient forp.pc. Our fluid problem cor-
responds to the parameter regime ofp&pc (subcritical
regime) because, in the absence of noise, there are attractors.
In this case, noise can induce a set of channels that opens and
closes stochastically in time, through which trajectories on
the attractors can escape. In what follows, to gain insight we
first describe the scaling of the average lifetime of superper-
sistent chaotic transient with parameterp in the deterministic
case. We then develop a model based on a class of first-order
stochastic differential equations to account for the scaling
law governing noise-induced superpersistent chaotic tran-
sients.

A. Scaling law of superpersistent chaotic transients in the
deterministic case

Grebogi, Ott, and Yorke[13] used the following class of
two-dimensional, noninvertible maps on cylinder to first re-
port superpersistent chaotic transients:

un+1 = 2un mod 2p,
s8d

zn+1 = azn + zn
2 + b cosun,

wherea andb are parameters. Because of thezn
2 term in the

z equation for largeuznu we havezn+1.zn. There is thus an
attractor atz= +`. Nearz=0, depending on the choice of the
parameters, there can be either a chaotic attractor or none.
For instance, for 0,b!1, there is a chaotic attractor near
z=0 for a,ac=1−2Îb and the attractor becomes a chaotic
transient fora.ac [13]. The transient is superpersistent for
a.ac, which can be argued[13] as follows.

For a,ac there are two fixed points:su1,z1d=s0,zbd and
su2,z2d=s0,zcd, where zc,b=s1−a± rd /2 and r
=Îs1−ad2−4b. The fixed pointss0,zbd ands0,zcd are on the
basin boundary and on the chaotic attractor, respectively.
They coalesce ata=ac. For a.ac, a channel is created
through which trajectories on the original attractor can es-
cape to an attractor at infinity. At the location of the channel
whereu=0, thez mapping can be written as

zn+1 − zn = sa − 1dzn + zn
2 + b.

Letting d=z−z* , wherez* is the minimum of the quadratic
function of z on the right-hand side, we have

dn+1 = dn + dn
2 + b, s9d

where b=Îbsa−acd−fsa−acd /2g2. For a.ac, we haveb
<Îbsa−acd. In the continuous-time approximation, the dy-

namics ind can be described bydd /dt=d2+b. Thus, the time
T required to tunnel through the escaping channel is

T <
1

b1/2E
0

` dd

d2 + 1
=

p

2b1/2.

Since theu dynamics is uniformly chaotic with Lyapunov
exponentl=ln 2.0, the probability for a trajectory to fall in
the opening of the channel and to stay near there in theu
direction for consecutivelyT iterations is proportional to
e−T ln 2. For a.ac, the average chaotic transient time is thus
given by

t , eT ln 2 < esp ln 2/2db−1/2
< expfCsa − acd−1/2g, s10d

whereC=psln 2db−1/4/2 is a positive constant. Thus, in the
noiseless situation, fora.ac the exponent in the scaling of
the average tunneling time with the parameter variation as-
sumes the value of 1/2, which was verified numerically[13].

In the above example, the two periodic orbits involved in
the unstable-unstable pair bifurcation that induces a super-
persistent chaotic transient are a saddle and a repeller, which
are allowed if the two-dimensional map is noninvertible. For
invertible maps, the required phase-space dimension for the
bifurcation is at least three(or at least four for flows). Thus,
for most commonly studied low-dimensional chaotic systems
such as two-dimensional invertible map or three-dimensional
flows, unstable-unstable pair bifurcation and hence superper-
sistent chaotic transients cannot occur. For simplicity, to
study the effect of noise, we will use two-dimensional non-
invertible maps as prototype models.

B. Scaling law of noise-induced superpersistent
chaotic transients

In our fluid-flow problem, transient chaos is induced by
noise. As can be seen in Fig. 4(b), the existence of attractors
and their closeness to the basin boundary in the absence of
noise imply that the setting belongs to the subcritical case.
Under noise, an escaping channel may open at the location of
an unstable periodic orbit. For small noise, the probability
for the channel to open is small. Particles can move, how-
ever, to the location of the channel and remain there for a
finite amount of time to escape through the channel while it
is open. Suppose, on average, it takes timeTs«d for a particle
to travel through the channel. We expectTs«d to increase as
the noise amplitude« is decreased, because the probability
for the channel to remain open is smaller for weaker noise. In
fact, as we will argue below, we expectTs«d to increase at
least algebraically as« is decreased to a critical noise ampli-
tude«c. The analysis below assumes the existence of a cha-
otic attractor, but it also applies to the case where the attrac-
tor is periodic, insofar as noise can induce chaotic motion
before escaping, as observed in our fluid problem.

Suppose the largest Lyapunov exponent of the chaotic at-
tractor is l.0. After an unstable-unstable pair bifurcation
the opened channel is locally transverse to the attractor. In
order for a trajectory to escape, it must spend at least time
Ts«d at the location of the opening on the attractor. The tra-
jectory must come to within a distance of about
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expf−lTs«dg from the location of the channel. The probabil-
ity for this to occur is proportional to expf−lTs«dg. The av-
erage time for the trajectory to remain on the attractor, or the
average transient lifetime, is thust,expflTs«dg.

To obtain the dependence ofTs«d on «, we consider a
small region about the “root” of the channel, or the location
of the mediating periodic orbit. Letq and z be the local
coordinates on the attractor and in the channel, respectively.
We consider the following model:

dq

dt
= fsqd,

dz

dt
= «jstd + gsqdp + hszd,

wherep is a parameter,fsqd is a vector field that generates a
chaotic attractor,«jstd is noise, the lowest order of the func-
tion hszd is z2. The function gsqd satisfies the condition
igsqdi,D for qÞ0, gs0d=1, whereD is a positive constant
andi ·i denotes a proper norm. For«=0 andp&0, we have
igsqdip&0, so that the channel is closed and no trajectory
can escape. Forp*0, the probability for the channel to open
is finite, and so is the probability for trajectories to escape. It
is thus convenient to setpc=0, wherep&pc corresponds to
the subcritical case, as in our fluid problem.

In order to construct a model that captures the essential
transient dynamics, while at the same time is amenable to
analysis, we assume that the escaping channel is approxi-
mately one-dimensional and the length of the channel isl
@«. This picture can be justified for the typical case where
the periodic orbit at the opening of the channel in the original
attractor is strongly unstable in the direction of the channel
so that the escaping dynamics in the channel is approxi-
mately one-dimensional. Once a trajectory on the chaotic
attractor falls into the opening of the channel, i.e.,q=0, its
motion is governed by a stochastic differential equation of
the form

dz

dt
= hszd + p + «jstd.

The probability density functionfsz,td of the corresponding
stochastic process obeys the Fokker-Planck equation

]f

]t
= −

]

]z
sfhszd + pgfd +

«2

2

]2f

]z2 ,

where«2 is the diffusion coefficient. For smallz we consider
the lowest order ofhszd and writehszd<azk−1, wherea.0
andkù3. The time required for a trajectory to travel through
the channel is roughly the mean first passage time[22]

Ts«d =
2

«2E
0

l

dy expf− Wsyd/«2gE
0

y

expfWszd/«2gdz,

where Wszd=Hszd+2pz and Hszd=e2hszddz. Depending
on the noise amplitude, the exponential terms inside the
integral can be approximated as exph−fHszd+2pzg /«2j

<expf−Hszd /«2g, if «@ upus, wheres=k/ s2k−2d. Thus, we
have

Ts«d ,
2

«2E
0

l

dy expf− Hsyd/«2gE
0

y

expfHszd/«2gdz.

Using the series expansion of the exponential term
expfHszd /«2g, Ts«d can be evaluated(see the Appendix). We
have

T & «−2+4/k,

which, when substituted intot,expflTs«dg, gives the scal-
ing law (3) that is characteristic of superpersistent chaotic
transients. We see that the exponent isg=2−4/k. In general,
we have 0,g,2. In principle, the scaling law(3) holds
only when the noise amplitude exceeds the critical value«c
;upus. For a realistic problem, the critical noise amplitude«c
is related to the minimum distance between the attractor and
its basin boundary in the deterministic case.

V. DISCUSSION

We have investigated the stability of attractors formed by
inertial particles behind structures in a prototype open-flow
system consisting of a cylindrical obstacle in an infinite
channel. We consider the setting where fluid is incompress-
ible and chaotic vortices form behind the cylinder. For ideal
particles with zero mass and size, the corresponding dynami-
cal system is open Hamiltonian so that particles from the
upper stream of the flow can be in the vicinity of the cylinder
only for a finite amount of time before exiting this region
downstream. Recent work showed that for physical particles
with finite inertia and size, attractors, chaotic or nonchaotic,
can form behind the cylinder[9]. This raises concern for
situations where, for instance, advective particles in the at-
mosphere are chemically or biologically active and can be
trapped behind some structures. The result of this paper in-
dicates that such attractors are not stable in the sense that
they can be destroyed by small noise. However, the resulting
transient can be extremely long in that its average lifetime
obeys the scaling law that is characteristic of superpersistent
chaotic transients. As a practical matter, the extraordinarily
long trapping time makes the transient particle motion prac-
tically equivalent to an attracting motion with similar physi-
cal or biological effects. We wish to remark that, while there
are numerous results in the mathematics literature concern-
ing the persistence of attractors under noise[24,25], the issue
addressed in this paper concernswhat can happenphysically
to an attractor when it canno longerpersist under random
perturbations.

As a by-product, our result represents evidence of super-
persistent chaotic transients in the physical or configuration
space, whereas to our knowledge, most previous works on
this type of chaotic transients focused on the phase space of
dynamical systems[13–15,17]. It may then be possible to
observe superpersistent chaotic transients directly in fluid ex-
periments using open chaotic flows. While we recognize that
to confirm a scaling law from experimental data can be ex-
tremely difficult in fluid dynamics(see, for example, the con-
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tradictory conclusions in Refs.[26,27] and on whether the
scaling of velocity profiles in a turbulent boundary layer is
Reynolds-number dependent), we think it is possible to ex-
perimentally observe the chaotic-transient scaling law(2).
For instance, in the experimental system in Ref.[28], a wake
is created in the flow passing a cylinder, and dyes are used to
allow chaotic scattering dynamics to be traced. We can imag-
ine using dyes of finite mass to generate attracting motions
behind the cylinder. As perturbations of controllable magni-
tude(such as small, forced random vibration of the cylinder)
are applied, the dyes trapped behind the cylinder will escape
down the flow. By measuring the average time for which the
dyes stay near the cylinder as a function of the magnitude of
the perturbations, the scaling law(2) can be tested. Another
possible experimental setting is the fluid mixing system in a
stirred tank[29].
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APPENDIX

The series expansion

expfHszd/«2g = o
n=0

`
sbzkdn

n!
,

gives

E
0

y

expfHszd/«2gdz= o
n=0

`
bnykn+1

n ! skn+ 1d
,

whereb=s2ad / sk«2d. It implies that

T ,
2

«2E
0

l

o
n=0

`
sbykdn

n ! skn+ 1d
y exps− bykddy.

Let q=byk, we obtain

T <
2

«2o
n=0

`
1

n ! skn+ 1dE0

l8
qn exps− qd

1

kb
Sq

b
D−sk−2d/k

dq

,«−2+4/ko
n=0

`
1

n ! skn+ 1dkE0

l8
qn−sk−2d/k exps− qddq,

,«−2+4/ko
n=0

`
1

n ! skn+ 1dk
Gsn + 2/kd,

wherel8=blk andGsxd=e0
`tx−1 exps−tddt is the gamma func-

tion. In order to show that the infinite series

o
n=0

`
1

n ! skn+ 1dk
Gsn + 2/kd sA1d

converges, we use the following property of the gamma
function [23]:

bb−1

aa−1 expsa − bd ,
Gsbd
Gsad

,
bb−1/2

aa−1/2 expsa − bdsb . a ù 1d.

Using this double inequality andGsn+1d=n!, we obtain the
upper bound ofGsn+2/kd

Gsn + 2/kd , Gsn + 1dexps1 − 2/kd
sn + 2/kdn−1+2/k

sn + 1dn

, n ! exps1 − 2/kdsn + 2/kd−1+2/k.

Substituting this upper bound into the infinite series(A1), we
can show that the series is convergent, as follows:

o
n=0

`
1

n ! skn+ 1dk
Gsn + 2/kd

, o
n=0

`
1

skn+ 1dk
exps1 − 2/kdsn + 2/kd−1+2/k

,
exps1 − 2/kd

k2 o
n=0

`
1

sn + 1/kd2−2/k , `.
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