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Large-scale structural organization of social networks
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The characterization of large-scale structural organization of social networks is an important interdiscipli-
nary problem. We show, by using scaling analysis and numerical computation, that the following factors are
relevant for models of social networks: the correlation between friendship ties among people and the position
of their social groups, as well as the correlation between the positions of different social groups to which a
person belongs.
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INTRODUCTION

Application of concepts and tools from physics to the u
derstanding of large-scale structural organization of so
networks is an interesting interdisciplinary topic. This is p
ticularly so when we consider that a social network is ty
cally a complex network@1# that possesses the small-wor
property@2#. There is now a large amount of recent literatu
concerning complex networks, for which ideas and meth
ologies from statistical and nonlinear physics have prove
be useful@1,2#. The purpose of this paper is to present
quantitative analysis elucidating some fundamental ingre
ents required for models of complex, social networks.

The problem that motivates our analysis is thesmall-
world phenomenon, according to which any two people ar
connected by a short chain of acquaintances@3–5#. Although
sociological in origin, the small-world phenomenon has be
observed in a variety of natural and man-made systems@1,2#,
with examples ranging from word association@6# to the In-
ternet@7#. The existenceof short paths in these systems h
been successfully described by network models with so
degree of randomness@8–10#. However, since short path
are present in most random networks, it is not clear wh
models are sociologically more plausible, and the real str
ture of the network of social ties still remains widely u
known.

A more involved and entirely different issue concerns
discoveryof short paths based only on local informatio
such as in a process of target search@11–16#, which has been
only partially understood. In particular, the phenomenon
quick and easy identification of acquaintances has not b
explained yet at a fundamental level. When two people
introduced to each other, they are naturally inclined to lo
for social connections that can identify them with the new
introduced person. In this process, they often discover
they share common friends, that their friends live or work
the same place, etc. Considering the typically large size
the communities and the limited number of acquaintance
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person has, this happens with a surprisingly high probabi
even if we accept that people systematically underestim
the likelihood of coincidences. The often successful ident
cation of acquaintances is even more striking in view of
very small number of friends usually mentioned in an intr
ductory conversation. As we show, the existence of sh
paths connecting people, although to some extent neces
is not a sufficient condition for the frequent identification
common friends to occur, even when we consider t
strangers who meet are more likely to have mutual frien
than randomly selected people. Indeed, the networks tha
count for this phenomenon contain both random andregular
components and are necessarilyhighly correlated~to be de-
scribed below!. This result constrains the possible structu
of the actual network of acquaintances and provides ins
into the properties of social networks. These properties
potentially relevant to a variety of other networks as well

A class of social network models has been recently p
posed by Watts, Dodds, and Newman~WDN! @13#, which
can explain the letter-sending experiment of Travers and M
gram @17#. In this model, people are organized into grou
according to their social characteristics. These groups in
belong to groups of groups and so on, forming ahierarchyof
social structure. A different hierarchical scheme is defin
for each social characteristic@18#, which is assumed in the
WDN model to becompletely independentof one another.
The network is then constructed using the notion of soc
distance defined in terms of this set of hierarchies. Howe
social groups are often correlated. For example, people
work or study together are more likely to engage in oth
activities together. As we show, a proper level of correlat
among social groups is the key to discovering social conn
tions between individuals.

NETWORK MODEL

We consider a community ofN people, which represents
for instance, the population of a city. People in this comm
nity are assumed to haveH relevant social characteristic
that may correspond to professional or private life attribut
Each of these characteristics defines a nested hierarc
organization of groups, where people are split into sma
and smaller subgroups downwards in this nested struc
@see Fig. 1~a!#. Such a hierarchy is characterized by the nu
ber l of levels, the branching ratiob at each level, and the
d-
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average numberg of people in the lowest groups. Realist
values of the parameterg are of the order of tens or hundred
and represent theaveragesize of typical social groups, suc
as groups of classmates or co-workers. The set of group
which a person belongs defines his or her social coordina
so that the social coordinates of personi are the positions
(xi

1 , . . . ,xi
H) which this person occupies in the different h

erarchies. Given a hierarchyh, a distanced(xi
h ,xj

h) alongh
is defined for each pair of people (i , j ) as the lowest leve
~counting from the bottom! at which i and j are found in the
same group@see Fig. 1~a!#. There is one such distance fo
each of theH hierarchies.

FIG. 1. Model of social network.~a! People~dots! belong to
groups~ellipses!, which in turn belong to groups of groups and
on. The largest group corresponds to the entire community. As
go down in this hierarchical organization, each group represen
set of people with increasing social affinity. In the example, th
are l 53 hierarchical levels, each representing a subdivision
b53 smaller groups, and the lowest groups are composed
g511 people, on average. This defines a social hierarchy. The
tance between the highlighted individualsi andj in this hierarchy is
3. ~b! Each hierarchy can be represented as a treelike struc
Different hierarchies are correlated, in the sense that distances
are short along one of them are more likely to be short along
others as well. The figure shows an example withH52 hierarchies,
where highlighted in the second hierarchy are those people bel
ing to groupA in the first one.~c! Pairs of people at shorter socia
distances are more likely to be linked by social ties, which c
represent either friendship or acquaintanceship ties~we do not dis-
tinguish them here because the ones that are relevant for the
lem in question may depend on the social context!. The figure
shows, for a person in the network, the distribution of acquaintan
at social distanceD51, 2, and 3, whereD is the minimum over the
distances along all the hierarchies.
03610
to
s,

To be concrete, we consider a network dominated by o
two hierarchies@19# ~generalization to higher dimensions
straightforward!. The correlation between social groups
incorporated in the position a person has in each hierar
The first hierarchy is constructed by assigning people r
domly to the lowest groups. The second hierarchy is gen
ated from the first by shuffling the position of each pers
according to a given distribution, which we assume to
exponential. Namely, each person is reassigned to a new
sition at distanceyP$1,2, . . . ,l % from the original position
with probability Pb(y)5B exp(2by), where B21

5(k51
l exp(2bk), so that the constantb characterizes the

correlation between social groups. Forb.2 ln b, people
who are close along one hierarchy are more likely to be cl
along the other hierarchy as well, as shown in Fig. 1~b!. In
the limit b@2 ln b, both hierarchies become identical an
the model reduces to the case whereH51. The WDN model
corresponds approximately to the uncorrelated case w
b'2 ln b.

While the social groups do not represent actual social t
the probability of having a link between two people depen
on the social distance between them@13#. This can be mod-
eled by choosing a personi and a hierarchyh at random and
linking this person to another personj at a distancex
5d(xi

h ,xj
h) along h with probability Pa(x)5A exp(2ax),

whereA215(k51
l exp(2ak) and the correlation parametera

is a measure of social affinity between acquaintances. T
process is repeated until the average number of links
person isn, so thatn represents the average number of a
quaintances a person has. The distance between acqua
ces will be the shortest fora@2 ln b, and typically much
larger for a'2 ln b due to the uniform distribution of ties
Random networks are then produced whena'2 ln b, while
regular networks are produced only whena andb are both
large. A realistic social network is expected to fall som
where in thewide region in between these two extremes,
illustrated in Fig. 1~c!. In this region, the networks exhibi
properties of small-world networks@8#, which have been
used to describe different kinds of social collaboration n
works @2,8,20,21#.

IDENTIFICATION OF ACQUAINTANCES

We assume that a person knows another person whe
or she knows the social coordinates of the other. When
people are introduced to each other, the information they
likely to exchange first is that defining their social coord
nates. Next, they exchange information about their so
connections, by mentioning the social coordinates of th
acquaintances. Our goal here is to compute the probab
that the newly introduced people find themselves linked
each other through a short chain of friendship or acqua
tanceship ties.

Our model of the process of introduction of two peop
starts with each stranger informing the other his or her so
coordinates. Then, at each time step~1! one stranger cites the
social coordinates of an acquaintanceclosest to the other
stranger~but not cited yet! with respect to the minimum o
the distances over all the hierarchies:D( i , j )
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5minh d(xi
h ,xj

h); and ~2! the other stranger recognizes if th
cited person is a mutual acquaintance or an acquainta
within social distanceD51 of some of his or her acquain
tances. The two strangers then repeat steps~1! and ~2!
switching their roles at every time step, until the identific
tion in step~2! succeeds or they run out of acquaintances
cite.

The probability that two randomly chosen people ha
common acquaintances, acquaintances at social distanl
~i.e., in the same lowest group!, or acquaintances who know
each other, decreases to very small values as the netwo
made more and more regular, as shown in Fig. 2~a!. This
happens because in a regular configuration, most of the
cial ties connect people at short distances and hence th
quaintances of two people will overlap only if they are s
cially close, which is unlikely to be the case for pairs
randomly chosen people in the community. For a rand
configuration, on the other hand, there is a non-neglig
probability of overlap for any two people because their
quaintances are uniformly distributed over the entire n
work. One might then be tempted to think that the qu
discovery of common acquaintances is due to the rand

FIG. 2. Identification of acquaintances.~a! Probability that two
randomly chosen people have common acquaintances~circles!, ac-
quaintances in the same lowest group~squares!, and acquaintance
who know each other~stars!. Inset: blow-up of the probability of
having common acquaintances.~b! Average number of steps tw
strangers need to find a common acquaintance, given that it ex
~c! Probability that randomly chosen strangers find common
quaintances~circles!, acquaintances in the same lowest gro
~squares!, and acquaintances in the same lowest group who kn
each other~stars!, in up to m51, 2, and 20 steps~from bottom to
top!. Inset: blow-up of the probability of finding common acquai
tances.~d! Probability that two people in the same lowest gro
know each other. In the computations shown, we setb5a, but
similar results were observed for any path in theab plane interpo-
lating from random to regular networks. The other parameters
N5106, n5250, g5100, b510, andH52, which makesl 55.
The sizeN of the networks is typical for the population of a larg
metropolitan city, and the average number of acquaintancesn is
consistent with empirical values@23#.
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ness of the network. This, however, is far from being t
case, as shown below.

In Fig. 2~b!, we display the average number of ste
needed for randomly chosen strangers to find a common
quaintance,given that it exists. In contrast to Fig. 2~a!, the
number of steps increases sharply as the randomness o
network is made larger, which means that it is extrem
difficult to identify common acquaintances in random n
works. Indeed, while in the regular regime only a few ste
are required on average, in the random regime it requ
well over a hundred steps. This happens because, in the
dom limit, the social coordinates of a person are complet
uncorrelated with his or her social ties, and hence do not g
any clue for the position of the person’s acquaintances.
cordingly, since only a few amongn acquaintances are typi
cally shared with the other person, they need to go thro
many steps to identify the overlap. When there is a sin
common acquaintance, the average number of steps
proachesn, which is of the order of hundreds. Therefore, t
probability that two people have common acquaintance
larger for random networks, but if common acquaintanc
exist it is easier for these people to find them when the
derlying network is regular.

Gathering all these together, we have that the identifi
tion of acquaintances is most probable in between these
extremes, which is verified in Fig. 2~c!. In this figure, we
display the probability that two randomly chosen peop
identify a common acquaintance or acquaintances in
same lowest group inm or less steps. For smallm, these
probabilities are small in the regular and random regim
but they are significantly larger for a class of networks with
the small-world region. This result expresses a trade-off
tween the overlaps and the clues for people to find the o
laps based only on local information@22#.

In addition, our model justifies a tacit assumption peo
make about the structure of the social network. When
introduced people find that they have acquaintances in
same social group, theytacitly assume that those two ac
quaintances probably know each other. This probability
much higher for regular than for random networks, as sho
in Fig. 2~d!. In fact, in a completely regular network th
probability approaches 1 as every pair of people at so
distance 1 know each other, while in the random limit
approachesn/(N21), which is nearly zero. In Fig. 2~c!, we
show the corresponding probability that, in the process
introduction, the strangers identify acquaintances at so
distance 1 who actually know each other~stars!. This prob-
ability also presents a pronounced maximum in the sm
world region, consistent with the intuition that people b
longing to the same group are likely to be acquainted.

We now consider the scaling with the system sizeN. The
probability that the identification of acquaintances happ
in the first step is P15(k51

l (k851
k Q(k) R(k,k8) S(k8),

whereQ(k) is the probability that the strangers are at soc
distancek from each other,R(k,k8) is the probability that the
acquaintance first cited~by the first stranger! is at social dis-
tancek8 from the second stranger, andS(k8) is the probabil-
ity that the second stranger recognizes this acquaintanc
ther for being his or her own acquaintance or for being in
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same social group of one of them. Because of the symm
the probability after two steps isP25P11(12P1)P1. To be
specific, consider the caseH51 for b@1, g@1, n,g, and
strangers randomly chosen in the community. Then we h
Q(k)'bk2 l , R(k,k8)'@12bk822/Ak#

Bk2@1
2bk821/Ak#

Bk, and S(k8)5Bk8 /(gAk8) for common ac-
quaintances,S(k8)5Ck8 /Ak8 for acquaintances in the sam
lowest group, andS(k8)5nPa(1)Ck8 /(gAk8) for acquain-
tances in the same group who know each other, whereAk
5bk21, Bk5nPa(k), and Ck5Ak@12exp(2Bk /Ak)#. The
asymptotic behavior of the probabilitiesP1 andP2'2P1 is
roughly P;1/N, whereN5N(b), as shown in Fig. 3 for
a50. The same scaling is observed for anya. Therefore,
the probabilities do not scale with the diameter of the so
network, which in the small-world region increases on
logarithmically with N. The rationale behind this result i
that the probability of identification of common acquainta
ces is limited by the probability that common acquaintan

FIG. 3. Probability that the identification of acquaintances h
pens in up tom steps as a function of the numberN of people in the
community. The continuous lines correspond to our theory and
symbols to the numerical verification. We setm52, H51, n
519, g520, l 55, anda50. The legends are the same as in F
2~c!. The dotted line is plotted for reference and corresponds tP
;1/N.
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actually exist, which for randomly chosen pairs of peop
decreases as 1/N. Incidentally, although the probabilities i
Fig. 2~c! decrease if the numberN of people is increased, a
sharp maximum in the intermediate region is always o
served.

CONCLUSIONS

We have shown that the network of social ties must b
small world with high degree of correlation for the empir
cally observed frequent identification of acquaintances to
possible. This sheds new light on the large-scale organiza
of the society, as it imposes constraints for the possible st
ture of the network of acquaintances. These constraints
a criterion for plausible models of social networks, whi
has implications for issues of critical concern such as spr
of diseases, homeland defense, and propagation of influ
in economic and political systems, where the formation a
behavior of social groups play important roles. In particul
since the dynamics of many biological agents is driven
social contacts, reliable models of social networks are es
tial for efforts to reduce the threat of biological pathoge
and for making decisions in the case of massive biolog
attacks. Another important conclusion of our work is that t
probability of finding a short chain of acquaintances betwe
two people does not scale with typical distances in the
derlying network of social ties neither with respect to syst
size nor across different degrees of correlation. For insta
random networks are usually ‘‘smaller’’ than small-wor
networks, and because of that they are sometimes ca
themselves small-world networks. But our work shows tha
random society would not allow people to find easily that ‘
is a small world!’’
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@21# Our model is potentially relevant to other classes of networ
such as scientific-citation networks. Suppose that the citatio
the actual tie linking the papers. Scientific papers can be c
sified according to author, subject, date, etc., which, along w
citation, are not completely independent variables. This defi
a network with different correlated hierarchies, similar to t
social network of friends.

@22# We have focused on strangers randomly chosen from the c
munity, but similar results hold when the two strangers to
introduced are correlated. In particular, if they are chosen
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social distancez apart according to the distributionPg(z)
}exp(2gz), where g is a constant, the probabilities corre
sponding to Fig. 2~c! will still display a maximum in the in-
termediate region, although continuously shifted to the right
g is increased. Moreover, the same conclusions are expect
the hierarchies are formed as a realization of a stocha
branching process rather than the deterministic one consid
here.
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