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Reactive dynamics of inertial particles in nonhyperbolic chaotic flows
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Anomalous kinetics of infective~e.g., autocatalytic! reactions in open, nonhyperbolic chaotic flows are
important for many applications in biological, chemical, and environmental sciences. We present a scaling
theory for the singular enhancement of the production caused by the universal, underlying fractal patterns. The
key dynamical invariant quantities are theeffective fractal dimensionand effective escape rate, which are
primarily determined by the hyperbolic components of the underlying dynamical invariant sets. The theory is
general as it includes all previously studied hyperbolic reactive dynamics as a special case. We introduce a
class of dissipative embedding maps for numerical verification.
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Many chemical and biological processes in fluids a
characterized by a filamental distribution of active partic
along fractal invariant sets of the advection chaotic dyna
ics. These fractal structures act as dynamical catalysts fo
reaction, which is relevant for a variety of environmen
processes in open flows, such as ozone depletion in th
mosphere@1# and population dynamics of plankton in th
oceans@2#.

The study of active processes in open chaotic flows
attracted a great deal of interest from the dynamical sys
community @3,4#. Most of the studies have been perform
for time-dependent two-dimensional incompressible flow
in the limit of weak diffusion. The flow is nonturbulent, bu
the particle dynamics is considered to be chaotic~Lagrangian
chaos! and the active particles to interact with one anoth
without modifying the flow. The advection dynamics of su
particles can be cast in the context of chaotic scatter
where incoming tracers spend some time in a mixing~scat-
tering! region before being scattered along the unsta
manifold of the chaotic saddle. As a result, the products
the reaction concentrate along a fattened-up copy of the
stable manifold, giving rise to the observed fractal patter

Although filamental patterns have been observed in
ture, a clear relation between the observed value of the f
tal dimension and the underlying advection dynamics
been lacking. For example, in the ‘‘flow past a cylinde
system previously considered@3#, the dimension of the un
stable manifold is known to be 2 but the relevant dimens
governing infective and collisional reactions is about 1
This lack of relation, while not reducing the importance
the previous phenomenological characterization of filame
distributions of active particles, has led to some skeptic
about the merit of the dynamical system approach to
problem. In general, the advection dynamics can be cha
terized as either hyperbolic or nonhyperbolic. In hyperbo
chaotic scattering, all the periodic orbits are unstable
there are no Kolmogorov-Arnold-Moser~KAM ! tori in the
phase space, while the nonhyperbolic counterpart is
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quently characterized as having both chaotic and margin
stable periodic orbits. Fundamental assumptions in s
works are that~1! the active particles are massless pointli
tracers and~2! the advection dynamics of these particles
hyperbolic@5#. However, in realistic situations, the Lagran
ian dynamics is typically nonhyperbolic and the active p
ticles have finite size and inertia. Indeed, fully hyperbo
systems are quite rare and represent very idealized situa
as the advection dynamics of tracers in fluids is usually c
strained to have a nonhyperbolic character because of no
boundary conditions at the surface of obstacles. Obsta
are at the same time the origin of Lagrangian chaos and
origin of nonhyperbolicity. Even away from obstacles a
boundaries, chaotic motions of tracers typically coexist w
regular motions. In addition, the individual active particl
are often too large to be regarded as noninertial, as is
case for many species of zooplankton in the sea. Theref
nonhyperbolic and inertial effects are prevalent in nature
expected to play an important role in most environmen
processes. A question of physical importance is then: W
happens to the reactive dynamics when assumptions~1! and
~2! are dropped?

In this article, we present a scaling theory for the react
dynamics of inertial particles in nonhyperbolic chaotic flow
The key concepts in our framework are theeffective fractal
dimensionand effective escape rate, which are respectively
defined as

De f f~«!52
d ln N~«!

d ln «
, ~1!

ke f f~«!52
d ln R~n!

dn
, ~2!

whereN(«) is the number of«-squares needed to cover th
relevant fractal set, andR(n) is the fraction of particles tha
takes more thann5n(«) steps to escape from the mixin
region ~see below!. As a representative application of the
concepts, we show, for autocatalytic reactions of the fo
©2003 The American Physical Society07-1
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A1B→2B, that the area covered byB particles in the steady
state obeys the following scaling law:

AB;F s

eme f f /(22De f f)21
G 22De f f

, ~3!

where me f f[(ke f f1k̃)t, t is the time interval between
successive reactions~time lag!, s is the reaction range, an
k̃ is the contraction rate due to dissipation. For nonhyp
bolic flows in two dimensions,De f f,2 and ke f f.0 are
nontrivial functions of the scale«, which can often be re-
garded as constants over a wide interval, even thoughD
5 lim«→0De f f(«)52 and k5 lim«→0ke f f(«)50. We find,
surprisingly, thatDe f f and ke f f are significantly different
from D andk, respectively, not only for noninertial but als
for inertial particles, even though the advection dynamics
the latter is hyperbolic, meaning thatscarsof the nonhyper-
bolic conservative dynamics are observable in the hyperb
dynamics of slightly dissipative systems (k̃!1). The previ-
ous relations for noninertial particles in hyperbolic fluids a
pear as a particular case of our results.

The nature of the chaotic scattering arising in the cont
of particle advection in incompressible fluids may chan
fundamentally as the mass and size of the particles are
creased from zero. Physically, this happens because o
detachment of the particle motion from the local fluid m
tion. For spherical particles of finite size, the particle veloc
v[dx/dt is typically different from the~time-dependent!
fluid velocity u5u(x,t) and, in first order, is governed by th
equation@6#

dv

dt
2a

du

dt
52a~v2u!. ~4!

The parameters area53r f /(r f12rp) and a5 2
3 a/St,

wherer f and rp are the densities of fluid and particle, r
spectively, and St is the Stokes number, which goes to z
in the limit of pointlike particles@7#. For neutrally buoyant
particles, the mass ratio parameter isa51, while for aerosols
and bubbles we havea,1 anda.1, respectively. The inertia
parametera determines the contraction rate or dissipation
thephase space~x,v!, which for incompressible flows can b
shown to be22a. In the limit a→`, the dynamics is pro-
jected on a surface defined byv5u, which corresponds to the
advection dynamics of point particles. Theconfiguration-
spaceprojection of the particle motion is strongly influence
by a @8#. For small inertia ~large a), “•v'a21(a
21)“•@(v•“)u#5a21(a21)(s22v2), wheres andv are
proportional to the strain rate and vorticity of the fluid@9#,
respectively. The behaviors of bubbles and aerosols are
qualitatively different. For instance, along a closed orb
aerosols are pushed outward, while bubbles are pushe
ward. We first consider bubbles, whose configuration-sp
dynamics is dissipative when the vorticity overcomes
strain rate.

Dynamically, the inertial effects are effectively those d
to dissipation, so that the transition to finite inertia is equiv
lent to a transition from open Hamiltonian to dissipative d
05630
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namics. It has been recently shown@10# that, while hyper-
bolic dynamics is robust, nonhyperbolic chaotic scatter
typically undergoes a metamorphosis in the presence of
bitrarily small amount of dissipation. For nonhyperbol
scattering in open Hamiltonian systems, particles can spe
long time in the neighborhood of KAM tori, resulting in a
algebraic decay for the survival probability of particles in t
scattering region. As a consequence, the fractal dimensio
the invariant manifolds is the phase-space dimension@11#.
This should be contrasted with the hyperbolic case, wh
decay is exponential and fractal dimension is typica
smaller. The dissipation, however, may convert margina
stable periodic orbits of the KAM islands into attractors. T
survival probability then becomes exponential, the dime
sion of the chaotic saddle becomes fractional, and the ove
dynamics of the scattering process becomes hyperbolic.

To understand the meanings ofDe f f and ke f f for fractal
sets arising in the transition from Hamiltonian nonhyperbo
to weakly dissipative chaotic scattering, we consider a C
tor set, which is constructed in the interval@0,1# according to
the rule that in thenth time step, a fractionDn5g/(b1n)
1d is removed from the middle of each one of theN
52n21 remaining subintervals, whereb, g, andd are con-
stants. The conservative case corresponds tod50, which is
characterized by an algebraic decay withn of the total length
remaining, given byR(n);n2g for n@b, and by a unity
fractal dimension for the invariant set,D51. The removed
fraction Dn decreases at each time step and, as a resu
systematic change of scales is induced, resulting in a n
self-similar invariant set that becomes denser as we go
smaller scales. The relevant consequence is that the
counting dimension converges slowly to 1, leading to
scale-dependent effective fractal dimensionDe f f'1
2g/ ln «21 for small «. Similarly, the effective escape rat
behaves aske f f'g/n'g ln 2/ln«21, wheren5n(«) is de-
fined as the number of iterations needed to make the len
of each remaining subinterval smaller than«.

The limiting dynamics changes drastically and acqui
properties of hyperbolic dynamics when a small amo
of dissipation is allowed, which is modeled by 0,d!g/b.
In particular, the total length of the remaining interva
decays exponentially,R(n);(12d)n for n@g/d2b,
and the dimension of the invariant set becomes smaller t
1, namely,D5 ln 2/ln@2/(12d)#. At finite time, however,
the transition from the conservative to the dissipative c
is much smoother. For ln«21@b, the effective fractal
dimension and the effective escape rate areDe f f(«)
' ln 2/ln@2/(12d)#2g8/ ln «21 and ke f f(«)' ln(12d)21

1g8ln@2/(12d)#/ ln «21, respectively, whereg8[g/~12d!.
The key feature is that unrealistically small scales are
quired to resolve the limiting values of the fractal dimensi
and the escape rate, rendering them physically irrelevant.
instance, to obtainDe f f.0.95, scales«,10220 may be re-
quired. Thus, the physically important characteristics of
fractal set are the effective dimension and escape rate.

We now present a physical theory for the scaling law~3!,
valid for autocatalytic reactions in two-dimensional tim
periodic flows. Consider the area covered byB particles in
the open part of the flow~i.e., region where particles even
7-2
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REACTIVE DYNAMICS OF INERTIAL PARTICLES IN . . . PHYSICAL REVIEW E68, 056307 ~2003!
tually escape to infinity! and, to be specific, that the time la
t is integer multiple of the flow’s period. After a sufficientl
long time from the onset of the reaction, the reagentB is
distributed along stripes of approximately uniform widt
mimicking the unstable manifold. The average widthe of the
stripes changes aperiodically over time until the steady s
is reached, when it undertakes the periodicityt of the reac-
tion. We assume that the reaction is sufficiently close to
steady state so thatDe f f(e) and ke f f(e) can be considered
constant over time. This condition is not very restrictive b
cause for many systemsDe f f and ke f f are essentially con
stant over several decades~see below!. Therefore, for scales
larger thane, the area covered byB particles can be regarde
as a fractal characterized by dimensionDe f f(e) and escape
rateke f f(e).

Let e (n21)(t) and e (n)(0) denote the average widths o
the stripes right before and right after thenth reaction@3#,
respectively. Between successive reactions, the stripes s
due to escape and dissipation as follows:e (n)(t)
5e (n)(0)e2he f ft, where he f f5(ke f f1k̃)/(22De f f) plays
the role of aneffective ~contracting! Lyapunov exponent,
while k̃ accounts for the nonconservative contribution. Wh
the reaction occurs, the widening due to the reaction is p
portional to the reaction range:e (n11)(0)2e (n)(t)}s. The
area covered byB particles right before the (n11)th reac-
tion A B

(n) satisfiesA B
(n)}@e (n)(t)#22De f f. These relations can

then be combined to yield the following recursive relati
for the area:A B

(n11)5e2me f f@(A B
(n))1/(22De f f)1cs#22De f f,

whereme f f5(ke f f1k̃)t andc is a constant geometric facto
From the conditionA B

(n11)5A B
(n) , our main scaling~3! fol-

lows for the areaAB in the steady state@12#. This scaling
holds for both noninertial and inertial particles, regardless
whether the flow is hyperbolic or nonhyperbolic. The hyp
bolic case with inertial particles is studied in Ref.@13#. The
scaling~3! represents a further step toward generality sinc
is also valid for nonhyperbolic flows.

To make possible a numerical verification of the scal
law ~3!, it is necessary at present to use discrete-time m
To construct a class of maps that captures all essential
tures of continuous-time chaotic flows, we note the follo
ing: ~1! the fluid dynamics, determined bydx/dt5u, is em-
beddedin the particle’s advection equation and is recove
in the limit a→`; ~2! the phase-space contraction is det
mined by a ~irrespective ofa!; ~3! for small inertia, the
configuration-space contraction is proportional toa21(a
21). For an area-preserving mapxn115M (xn), represent-
ing the dynamics of a time-periodic incompressible fluid
possible choice for the correspondingembedding maprepre-
senting the inertial particle dynamics isxn122M (xn11)
5e2a@axn112M (xn)#, where the factors involvinga anda
are naturally imposed by the particle dynamics@14#. This can
be written as

xn115M ~xn!1dn , ~5!

dn115e2a@axn112M ~xn!#, ~6!

wherex andd can be interpreted as the configuration-spa
coordinates and the detachment from the fluid velocity,
05630
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spectively, so that~x, d! represents the phase-space coor
nates. This class of embedding maps can be a paradig
address many problems in inertial advection dynamics a
captures the essential properties of Eq.~4!. In particular, it is
uniformly dissipative, with phase-space contraction r
equal toe22a; the noninertial dynamicsxn115M (xn) is re-
covered in the limita→`; and the configuration-space con
traction rate is proportional toe2a(a21) for e2a(a21)
!1, in agreement with the distinct behavior expected
aerosols and bubbles. Therefore, for finitea, a rich higher
dimensional dynamics witha-dependentx-space projection
is expected. Next we consider such a dynamics for botha.1
anda,1.

To simulate the flow, we consider a two-dimensional ar
preserving map that has a pronounced nonhyperbolic cha
ter @11#: (x,y)→@l(x2w2/4),l21(y1w2)#, where w[x
1y/4 andl.1 is the bifurcation parameter. The dynamics
nonhyperbolic forl&6.5. Forl54, for example, there is a
major KAM island in thexy space, as shown in Fig. 1~a!.
Also, from Fig. 1~a!, one can see tangencies between
stable and unstable manifolds in the neighborhood of
KAM island, which is a signature of nonhyperbolicity. It i
well established that, within the nonhyperbolic region, t
dimension of the invariant manifolds isD52 and the escape
rate isk50 @10,11#. When this map is embedded in Eqs.~5!
and ~6!, for a.1, the xy projection of the resulting four-
dimensional map is dissipative in the mixing region~KAM
islands and their neighborhoods!. In this regime, the dissipa
tion stabilizes marginally stable periodic orbits in the KA
islands of the conservative map, converting the KAM islan
and neighborhood into the corresponding basin of attrac
of the newly created attractors, as shown in Fig. 1~b!. The
basin itself extends around the mixing region, mimicking t
stable manifold of the conservative dynamics. As a result,
tangencies between the invariant manifolds apparently dis
pear, suggesting that the advection dynamics of bubble
ticles is hyperbolic. For a,1, on the other hand, the
configuration-space projection expands in the mixing reg
and almost all the orbits eventually escape to infinity. Ho
ever, for small inertia anda close to 1, particles in the re
gions corresponding to KAM islands of the conservative d
namics and neighborhood arealmost trappedin the sense
that the time it takes to escape is much larger in these reg
than outside them. These regions are neglected in our an
sis of the open part of the flow, as shown in Fig. 1~c!, be-
cause filamental structures cannot be resolved inside the

Numerical simulation of the autocatalytic reaction is pe
formed by dividing the mixing region with a grid where th
size of the cells represents the reaction ranges. Particles are
placed in the center of the cells. When a reaction takes p
in a cell occupied by aB particle, all the cells adjacent to i
are infectedwith B particles@15#. We assume thatA is the
background material and that the reaction takes place sim
taneously for all the particles at time intervalst @16#. If we
start with a small seed ofB particles near the stable manifold
after a transient time a steady state is reached whereB par-
ticles are accumulated along a fattened-up copy of the
stable manifold, as shown in Fig. 1~d! for massless point
7-3
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FIG. 1. Forl54, ~a! KAM island ~light gray!, and stable~gray! and unstable~black! manifolds fora5`. ~b! Fixed point attractor~black
dot!, basin of attraction~gray!, and unstable manifold~black!, for a51.05 anda51. ~c! Stable~gray! and unstable~black! manifolds for
a50.95 anda51, outside the region covered by the almost trapped orbits~light gray!. Particles are launched with initial velocity matchin
the fluid velocity (d050). ~d!–~f! Corresponding area covered byB particles in the ‘‘open’’ part of the flow right before the reaction, fort55
ands5531023.
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particles, in Fig. 1~e! for bubbles, and in Fig. 1~f! for aero-
sols. In the computation, particlesA andB are set to have the
same mass ratio and inertia parameters. To compute th
fective fractal dimensionDe f f of the unstable manifold, we
use the uncertainty algorithm@17# applied to the first-order
approximation of the inverse map. The effective dimens
turns out to be constant over many orders of magnitude
variations in« and it is approximately the same for bo
noninertial and slightly inertial bubble particles (De f f
51.73 for «.10215), while it is somewhat smaller fo
slightly inertial aerosol particles (De f f51.68 for «
.10215), as shown in Fig. 2~a!. Strong evidence of the sca
ing law ~3! is presented in Fig. 2~b! for two different values
of the time lagt, where the scaling exponent is consiste
with De f f51.73 for noninertial and bubble particles, an
05630
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with De f f51.68 for aerosol particles. We see that ev
though the areaAB changes with the inertial properties of th
particles, thescalingof AB remains essentially the same fo
bubbles, as expected from our Cantor-set model.

It is instructive to compare this result with the reactio
free dynamics. The dimension of nonhyerbolic invariant s
can be argued to be integer by mean of a zoom-in techniq
where a fast numerical convergence is achieved by focu
on the densest parts of the fractal@11#. The reaction, how-
ever, has aglobal character, as it takes place along the u
stable manifold around the entire mixing region. This mak
the convergence of the relevant effective dimension
tremely slow, and that is why the effective dimension is a
parently constant.

In summary, we have shown that the dynamical syst
l

FIG. 2. Forl54: ~a! Effective dimension of the unstable manifold as computed from the uncertainty method, wheref («) is the fraction
of «-uncertain points in the linex50, 0,y,0.1, of the time-reversed dynamics.~b! Scaling of the relative areaAB covered byB particles
@in the region shown in Figs. 1~d!–~f!, right before the reaction# as a function of the reaction ranges for two choices of the time lagt. In
both plots, stars correspond to noninertial particles (a5`), circles to bubble particles witha51.05 anda51, and plus signs to aeroso
particles witha50.95 anda51. The aerosol data in~a! are shifted vertically downward for clarity.
7-4
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approach to the reactive dynamics in imperfectly mix
flows also applies to realistic situations where nonhyperb
and inertial effects are relevant. The rate equations of re
tive processes are primarily governed by finite-time dyna
ics and as such change smoothly in thenoninertial→inertial
transition, which is in sharp contrast with the metamorpho
undergone by the long-term and asymptotic dynamics
reaction-free particles. We have focused on autocatalytic
actions, but our results are expected to hold whenever
reaction front mimics the underlying unstable manifold a
the activity takes place along the boundary of a fattened
fractal. Examples of this kind of process include infecti
reactions~e.g., combustion@18#! and collisional reactions in
general ~e.g., A1B→2C, where an unlimited amount o
ur

on

n
-

e

e
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materialA is present and materialB is continuously injected
in the vicinity of the stable manifold@3#!. Finally, we observe
that our analysis does not rely on the existence of a w
defined fractal set in the advection dynamics. The res
remain valid as long as effective values for the fractal dim
sion and escape rate can be properly defined and are app
mately constant over the relevant interval of observati
This is important for environmental processes, whose un
lying dynamics is only partially understood@13#.
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