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Reactive dynamics of inertial particles in nonhyperbolic chaotic flows
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Anomalous kinetics of infectivée.g., autocatalyticreactions in open, nonhyperbolic chaotic flows are
important for many applications in biological, chemical, and environmental sciences. We present a scaling
theory for the singular enhancement of the production caused by the universal, underlying fractal patterns. The
key dynamical invariant quantities are tefective fractal dimensioand effective escape ratevhich are
primarily determined by the hyperbolic components of the underlying dynamical invariant sets. The theory is
general as it includes all previously studied hyperbolic reactive dynamics as a special case. We introduce a
class of dissipative embedding maps for numerical verification.
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Many chemical and biological processes in fluids arequently characterized as having both chaotic and marginally
characterized by a filamental distribution of active particlesstable periodic orbits. Fundamental assumptions in such
along fractal invariant sets of the advection chaotic dynamworks are that1) the active particles are massless pointlike
ics. These fractal structures act as dynamical catalysts for tHeacers and?2) the advection dynamics of these particles is
reaction, which is relevant for a variety of environmental hyperbolic[5]. However, in realistic situations, the Lagrang-
processes in open flows, such as ozone depletion in the d@@n dynamics is typically nonhyperbolic and the active par-
mosphere[1] and population dynamics of plankton in the ticles have finite size and inertia. Indeed, fully hyperbolic
oceand2]. systems are quite rare and represent very idealized situations

The study of active processes in open chaotic flows hads the advection dynamics of tracers in fluids is usually con-
attracted a great deal of interest from the dynamical systerfitrained to have a nonhyperbolic character because of no-slip
community[3,4]. Most of the studies have been performedboundary conditions at the surface of obstacles. Obstacles
for time-dependent two-dimensional incompressible flowsare at the same time the origin of Lagrangian chaos and the
in the limit of weak diffusion. The flow is nonturbulent, but origin of nonhyperbolicity. Even away from obstacles and
the particle dynamics is considered to be cha@tagrangian Poundaries, chaotic motions of tracers typically coexist with
chao$ and the active particles to interact with one anotherfégular motions. In addition, the individual active particles
without modifying the flow. The advection dynamics of suchare often too large to be regarded as noninertial, as is the
particles can be cast in the context of chaotic scatteringéase for many species of zooplankton in the sea. Therefore,
where incoming tracers spend some time in a mixiscat-  honhyperbolic and inertial effects are prevalent in nature and
tering region before being scattered along the unstabl€Xpected to play an important role in most environmental
manifold of the chaotic saddle. As a result, the products oprocesses. A question of physical importance is then: What
the reaction concentrate along a fattened-up copy of the uflappens to the reactive dynamics when assumptibnand
stable manifold, giving rise to the observed fractal patterns(2) are dropped?

Although filamental patterns have been observed in na- In this article, we present a scaling theory for the reactive
ture, a clear relation between the observed value of the fradlynamics of inertial particles in nonhyperbolic chaotic flows.
tal dimension and the underlying advection dynamics had he key concepts in our framework are tbigective fractal
been lacking. For example, in the “flow past a cylinder” dimensionand effective escape ratevhich are respectively
system previously considerd8], the dimension of the un- defined as
stable manifold is known to be 2 but the relevant dimension

governing infective and collisional reactions is about 1.6. dInN(e)

This lack of relation, while not reducing the importance of Dei(e)=— dine D
the previous phenomenological characterization of filamental

distributions of active particles, has led to some skepticism

about the merit of the dynamical system approach to the dInR(n)

problem. In general, the advection dynamics can be charac- Ketf(8)=— “dn 2

terized as either hyperbolic or nonhyperbolic. In hyperbolic
chaotic scattering, all the periodic orbits are unstable and
there are no Kolmogorov-Arnold-MoséKAM) tori in the  whereN(e) is the number ok-squares needed to cover the
phase space, while the nonhyperbolic counterpart is frerelevant fractal set, ang(n) is the fraction of particles that
takes more tham=n(e) steps to escape from the mixing
region (see below As a representative application of these
*Electronic address: motter@mpipks-dresden.mpg.de concepts, we show, for autocatalytic reactions of the form
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A+B— 2B, that the area covered B/particles in the steady namics. It has been recently sholt0] that, while hyper-

state obeys the following scaling law: bolic dynamics is robust, nonhyperbolic chaotic scattering
typically undergoes a metamorphosis in the presence of ar-
o 2= Deff bitrarily small amount of dissipation. For nonhyperbolic
Ag~ T , 3 scattering in open Hamiltonian systems, particles can spend a
eftelf eff—1 long time in the neighborhood of KAM tori, resulting in an

algebraic decay for the survival probability of particles in the

where per=(kerr+))7, 7 is the time interval between scattering region. As a consequence, the fractal dimension of
successive reactiori§ime lag, o is the reaction range, and the invariant manifolds is the phase-space dimen§idn.
k Is the contraction rate due to dissipation. For nonhyperThis should be contrasted with the hyperbolic case, whose
bolic flows in two dimensionsP.;<2 and x.;>0 are decay is exponential and fractal dimension is typically
nontrivial functions of the scale, which can often be re- smaller. The dissipation, however, may convert marginally
garded as constants over a wide interval, even thaDgh stable periodic orbits of the KAM islands into attractors. The
=lim,_oDei(e) =2 and k=lim,_oxei(e)=0. We find,  survival probability then becomes exponential, the dimen-
surprisingly, thatD.¢s and ke¢¢ are significantly different  sjon of the chaotic saddle becomes fractional, and the overall
from D and «, respectively, not only for noninertial but also dynamics of the scattering process becomes hyperbolic.
for inertial particles, even though the advection dynamics of To understand the meanings Bf; and k. for fractal
the latter is hyperbolic, meaning thaetarsof the nonhyper-  sets arising in the transition from Hamiltonian nonhyperbolic
bolic conservative dynamics are observable in the hyperboligo weakly dissipative chaotic scattering, we consider a Can-
dynamics of slightly dissipative systenig<€1). The previ- tor set, which is constructed in the interyél 1] according to
ous relations for noninertial particles in hyperbolic fluids ap-the rule that in thenth time step, a fractiol ,= y/(8+n)
pear as a particular case of our results. + 6 is removed from the middle of each one of thé

The nature of the chaotic scattering arising in the context=2"~1 remaining subintervals, wherg, v, and & are con-
of particle advection in incompressible fluids may changestants. The conservative case corresponds=tf, which is
fundamentally as the mass and size of the particles are irtharacterized by an algebraic decay witbf the total length
creased from zero. Physically, this happens because of th@maining, given byR(n)~n~7 for n>g, and by a unity
detachment of the particle motion from the local fluid mo-fractal dimension for the invariant sdb,=1. The removed
tion. For spherical particles of finite size, the particle velocityfraction A, decreases at each time step and, as a result, a
v=dx/dt is typically different from the(time-dependent systematic change of scales is induced, resulting in a non-
fluid velocity u=u(x,t) and, in first order, is governed by the self-similar invariant set that becomes denser as we go to

equation[6] smaller scales. The relevant consequence is that the box-
q q counting dimension converges slowly to 1, leading to a
v u - ' i 0D .~
2 s = av—u). ) scale-dependent effective fractal dimensioBqs~1

dt dt —vyling™! for small . Similarly, the effective escape rate
behaves asq~y/n~7yIn2/ine, wheren=n(¢) is de-
The parameters arev=3p;/(p;+2p,) and a=%alSt, fined as the number of iterations needed to make the length
where p; and p, are the densities of fluid and particle, re- of each remaining subinterval smaller than
spectively, and St is the Stokes number, which goes to zero The limiting dynamics changes drastically and acquires
in the limit of pointlike particleq7]. For neutrally buoyant properties of hyperbolic dynamics when a small amount
particles, the mass ratio parametewis 1, while for aerosols of dissipation is allowed, which is modeled by@<+y/S.
and bubbles we hawe<1 anda>1, respectively. The inertia In particular, the total length of the remaining intervals
parameterl determines the contraction rate or dissipation indecays exponentially,R(n)~(1—468)" for n>y/6—p,
the phase spacéx,v), which for incompressible flows can be and the dimension of the invariant set becomes smaller than
shown to be—2a. In the limit a—c, the dynamics is pro- 1, namely,D=In2/In[2/(1— 5)]. At finite time, however,
jected on a surface defined tay=u, which corresponds to the the transition from the conservative to the dissipative case
advection dynamics of point particles. Thenfiguration- is much smoother. For ki >p, the effective fractal
spaceprojection of the particle motion is strongly influenced dimension and the effective escape rate ddgs(e)
by « [8]. For small inertia (large a), V-v=a Ya ~In2/In2/(1—8)]—v'/Ine™? and ke(e)~IN(1—6)"?
—1)V-[(v-V)u]=a Ya—1)(s*— w?), wheresandw are  +vyIn[2/(1— 86)]/Ine~%, respectively, wherey'=/(1-5).
proportional to the strain rate and vorticity of the flj®], = The key feature is that unrealistically small scales are re-
respectively. The behaviors of bubbles and aerosols are thejuired to resolve the limiting values of the fractal dimension
qualitatively different. For instance, along a closed orbit,and the escape rate, rendering them physically irrelevant. For
aerosols are pushed outward, while bubbles are pushed imstance, to obtaiD.;;>0.95, scales <10 2° may be re-
ward. We first consider bubbles, whose configuration-spacquired. Thus, the physically important characteristics of the
dynamics is dissipative when the vorticity overcomes thefractal set are the effective dimension and escape rate.
strain rate. We now present a physical theory for the scaling (&)
Dynamically, the inertial effects are effectively those duevalid for autocatalytic reactions in two-dimensional time-
to dissipation, so that the transition to finite inertia is equiva-periodic flows. Consider the area covered Byarticles in
lent to a transition from open Hamiltonian to dissipative dy-the open part of the flowi.e., region where particles even-
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tually escape to infinityand, to be specific, that the time lag spectively, so thatx, é) represents the phase-space coordi-
7 is integer multiple of the flow’s period. After a sufficiently nates. This class of embedding maps can be a paradigm to
long time from the onset of the reaction, the reagBris  address many problems in inertial advection dynamics as it
distributed along stripes of approximately uniform width, captures the essential properties of &). In particular, it is
mimicking the unstable manifold. The average widthf the  yniformly dissipative, with phase-space contraction rate
stripes changes aperiodically over time until the steady statgqual toe™22; the noninertial dynamicg,.;=M(X,) is re-

is reached, when it undertakes the periodicitgf the reac-  coyered in the limia—; and the configuration-space con-
tion. We assume that the reaction is sufficiently close to thg.;ction rate is proportional te” 3(a—1) for e 3(a—1)

steady state so th&.i(€) and x.¢¢(€) can be considered
constant over time. This condition is not very restrictive be-
cause for many systeni3q¢; and «q¢; are essentially con-
stant over several decadesse below. Therefore, for scales
larger thane, the area covered Wy particles can be regarded
as a fractal characterized by dimensiog;(e) and escape
rate kes(€).

<1, in agreement with the distinct behavior expected for
aerosols and bubbles. Therefore, for finitea rich higher
dimensional dynamics witla-dependeni-space projection
is expected. Next we consider such a dynamics for botii
and a<1.

To simulate the flow, we consider a two-dimensional area-

Let e 1(7) and ™M (0) denote the average widths of preserving map that has a pronounced nonhyperbolic charac-

. 2 -1 2 —
the stripes right before and right after theh reaction[3], € [T (X,y)=[A(X—w74) A" (y+w*)], where w=x

respectively. Between successive reactions, the stripes shrinky/4 andA>1 s the bifurcation parameter. The dynamics is
due to escape and dissipation as follows(™(7)  nonhyperbolic forx<6.5. Fora=4, for example, there is a

=M (0)e Mer”, where hgs= (keri+%)/(2—Derp) plays Major KAM island in thexy space, as shown in Fig(a.

the role of aneffective (contracting Lyapunov exponent, Also, from Fig. Xa), one can see tangencies between the
while % accounts for the nonconservative contribution. Wherstable and unstable manifolds in the neighborhood of the
the reaction occurs, the widening due to the reaction is proKAM island, which is a signature of nonhyperbolicity. It is
portional to the reaction range""(0)— e (7)x¢. The  well established that, within the nonhyperbolic region, the
area covered by particles right before then+ 1)th reac- dimension of the invariant manifolds =2 and the escape
tion AV satisfiesd {oc[ (M (7) ]2~ Pett, These relations can rate isk=0[10,11. When this map is embedded in E¢S)
then be combined to yield the following recursive relationand (6), for a«>1, the xy projection of the resulting four-

for the area: A" V=g ret(AM)N2 Deid +cr]2-Petr,  dimensional map is dissipative in the mixing regitAM
whereuqs= (ko511 %) 7 andc is a constant geometric factor. islands and their neighborhogd#n this regime, the dissipa-
From the conditiond ' = A{Y | our main scaling3) fol-  tion stabilizes marginally stable periodic orbits in the KAM

lows for the areadg in the steady statfl2]. This scaling islands of the conservative map, converting the KAM islands
holds for both noninertial and inertial particles, regardless ond neighborhood into the corresponding basin of attraction
whether the flow is hyperbolic or nonhyperbolic. The hyper-of the newly created attractors, as shown in Figh)1The
bolic case with inertial particles is studied in REE3]. The  basin itself extends around the mixing region, mimicking the
scaling(3) represents a further step toward generality since istable manifold of the conservative dynamics. As a result, the
is also valid for nonhyperbolic flows. tangencies between the invariant manifolds apparently disap-
To make possible a numerical verification of the scalingPear, suggesting that the advection dynamics of bubble par-
law (3), it is necessary at present to use discrete-time mapgcles is hyperbolic For a<1, on the other hand, the
To construct a class of maps that captures all essential fegonfiguration-space projection expands in the mixing region
tures of continuous-time chaotic flows, we note the follow-and almost all the orbits eventually escape to infinity. How-
ing: (1) the fluid dynamics, determined lx/dt=u, isem-  ever, for small inertia and: close to 1, particles in the re-
beddedin the particle’s advection equation and is recovereddions corresponding to KAM islands of the conservative dy-
in the limit a—o; (2) the phase-space contraction is deter-namics and neighborhood aegmost trappedin the sense
mined by a (irrespective ofa); (3) for small inertia, the thatthe time it takes to escape is much larger in these regions
configuration-space contraction is proportional 4@0%(«  than outside them. These regions are neglected in our analy-
—1). For an area-preserving mag, ;=M (x,,), represent- Sis of the open part of the flow, as shown in F!gc)_l be-
ing the dynamics of a time-periodic incompressible fluid, acause filamental structures cannot be resolved inside them.
possible choice for the correspondiambedding mapepre- Numerical simulation of the autocatalytic reaction is per-
senting theinertial particle dynamics isx,,,—M(x,,;) formed by dividing the mixing region with a grid where the
=e ¥ ax,.1—M(x,)], where the factors involving anda  Size of the cells represents the reaction ramgParticles are

are naturally imposed by the particle dynandit4]. This can placed in the center of the cells. When a reaction takes place

be written as in a cell occupied by & particle, all the cells adjacent to it
are infectedwith B particles[15]. We assume thaA is the
Xne1=M(X,)+ 6,, (5)  background material and that the reaction takes place simul-
taneously for all the particles at time interval$16]. If we
Shi1=€ Jaxyr1—M(xy)], (6)  start with a small seed @& particles near the stable manifold,

after a transient time a steady state is reached wBgrar-
wherex and & can be interpreted as the configuration-spacdicles are accumulated along a fattened-up copy of the un-
coordinates and the detachment from the fluid velocity, restable manifold, as shown in Fig(d) for massless point
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FIG. 1. Forn=4, () KAM island (light gray), and stablégray) and unstabléblack manifolds fora=«. (b) Fixed point attractotblack
dot), basin of attractior{igray), and unstable manifolthlack), for «=1.05 anda=1. (c) Stable(gray) and unstabléblack) manifolds for
a=0.95 anda=1, outside the region covered by the almost trapped offiist gray). Particles are launched with initial velocity matching
the fluid velocity (&,=0). (d)—(f) Corresponding area covered Byparticles in the “open” part of the flow right before the reaction, fer5
ando=5x10"3.

particles, in Fig. le) for bubbles, and in Fig. (1) for aero- with D.;=1.68 for aerosol particles. We see that even
sols. In the computation, particlésandB are set to have the though the arealg changes with the inertial properties of the
same mass ratio and inertia parameters. To compute the gfarticles, thescalingof Ag remains essentially the same for
fective fractal dimensiofD4¢; of the unstable manifold, we bubbles, as expected from our Cantor-set model.

use the uncertainty algorithiii7] applied to the first-order It is instructive to compare this result with the reaction-
approximation of the inverse map. The effective dimensiorfree dynamics. The dimension of nonhyerbolic invariant sets
turns out to be constant over many orders of magnitude ofan be argued to be integer by mean of a zoom-in technique,
variations ine and it is approximately the same for both where a fast numerical convergence is achieved by focusing
noninertial and slightly inertial bubble particlesD{;;  on the densest parts of the fracfall]. The reaction, how-
=1.73 for £>10"1%), while it is somewhat smaller for ever, has alobal character, as it takes place along the un-
slightly inertial aerosol particles Ds;=1.68 for ¢ stable manifold around the entire mixing region. This makes
>10 19, as shown in Fig. @). Strong evidence of the scal- the convergence of the relevant effective dimension ex-
ing law (3) is presented in Fig.(®) for two different values tremely slow, and that is why the effective dimension is ap-
of the time lagr, where the scaling exponent is consistentparently constant.

with D= 1.73 for noninertial and bubble particles, and In summary, we have shown that the dynamical system
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FIG. 2. Fora=4: (a) Effective dimension of the unstable manifold as computed from the uncertainty method, \Whgis the fraction
of e-uncertain points in the line=0, 0<y<0.1, of the time-reversed dynamigb) Scaling of the relative aredg covered byB particles
[in the region shown in Figs.(d)—(f), right before the reactidras a function of the reaction rangefor two choices of the time lag. In
both plots, stars correspond to noninertial particles - ¢), circles to bubble particles witk=1.05 anda=1, and plus signs to aerosol
particles witha=0.95 anda=1. The aerosol data ifa) are shifted vertically downward for clarity.
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approach to the reactive dynamics in imperfectly mixedmaterialA is present and materi@ is continuously injected
flows also applies to realistic situations where nonhyperbolidn the vicinity of the stable manifolf3]). Finally, we observe

and inertial effects are relevant. The rate equations of reaghat our analysis does not rely on the existence of a well-
tive processes are primarily governed by finite-time dynamdefined fractal set in the advection dynamics. The results
ics and as such change smoothly in tl@ninertial~inertial  remain valid as long as effective values for the fractal dimen-
transition, which is in Shal’p contrast with the metamorphosi%ion and escape rate can be proper'y defined and are approxi_
undergone by the long-term and asymptotic dynamics Ofnately constant over the relevant interval of observation.

reaction-free particles. We have focused on autocatalytic rerpjs s important for environmental processes, whose under-
actions, but our results are expected to hold whenever th@/ing dynamics is only partially understodds3].

reaction front mimics the underlying unstable manifold and

the activity takes place along the boundary of a fattened-up A.E.M. and Y.C.L. were supported by AFOSR through
fractal. Examples of this kind of process include infective Grant No. F49620-03-1-0290. C.G. was supported by Fapesp
reactions(e.g., combustiof18]) and collisional reactions in and CNPq. A.E.M. thanks TamasITer illuminating discus-
general(e.g., A+ B—2C, where an unlimited amount of sions.
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