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Propagation and immunization of infection on general networks with both homogeneous and
heterogeneous components
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We consider the entire spectrum of architectures of general networks, ranging from being heterogeneous
~scale-free! to homogeneous~random!, and investigate the infection dynamics by using a three-state epidemio-
logical model that does not involve the mechanism of self-recovery. This model is relevant to realistic situa-
tions such as the propagation of a flu virus or information over a social network. Our heuristic analysis and
computations indicate that~1! regardless of the network architecture, there exists a substantial fraction of nodes
that can never be infected and~2! heterogeneous networks are relatively more robust against spreads of
infection as compared with homogeneous networks. We have also considered the problem of immunization for
preventing wide spread of infection, with the result that targeted immunization is effective for heterogeneous
networks.
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Complex networks have become one of the most rap
developing areas in statistical and nonlinear physics@1# since
the seminal work on scale-free networks by Baraba´si and
Albert @2#. Most large networks in nature are sparse, that
the average number of links per node is much smaller t
the total number of nodes in the network. In a scale-f
network, the number of links of various nodes follows
power-law~or an algebraic! probability distribution, indicat-
ing that nodes in the network are organized into a hierar
of connected clusters. Scale-free networks are thusheteroge-
neous. Random networks, on the other hand, arehomoge-
neous@3#.

An issue of broad interest concerns how an infection
virus propagates on growing, complex networks and whe
there exist effective control strategies to prevent or to s
press the spread of the infection. This problem has cau
attention only recently@4–9#. A two-state~SI! model is first
considered@4#, where nodes in the networks can be eith
susceptible~S! or infected(I ). A susceptible node can be
come infected and an infected node can recover and retu
the susceptible state. The key issue of interest is whethe
initially localized infection can spread to the entire netwo
The work in Ref.@4# on strictly heterogeneous~scale-free!
networks reveals that, within the SI framework, infection c
spread and persist to the entire network even when the p
ability of transmission is infinitesimally small. This resu
however, is in sharp constrast to the well-known thresh
phenomenon in epidemiology@10#: the spread of infection o
virus requires that the transmission probability exceed
threshold. A more general, three-state~SIR! infection model
incorporating a recovery stage is presented in Ref.@7# with
the finding that, for strictly scale-free networks of finite siz
the threshold phenomenon does exist in the sense that in
tions or viruses cannot spread for arbitrarily low transm
sion probabilities@7#. We mention that for completely ran
dom networks, there is an early rigorous work@11# indicating
the existence of a fraction of nodes which can never be
fected. The fraction approaches asymptotically the value
1063-651X/2003/67~3!/031911~5!/$20.00 67 0319
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about 0.2 asN→`, whereN is the total number of nodes
More recent work@9# suggests that similar results hold fo
regular and small-world@12# networks but the percentage o
the nodes that are never infected is larger than that for
random network. In fact, the infection tends to be localiz
for regular networks@9#.

The focus of this paper is on the SIR dynamics ongeneral
networks that contain both heterogeneous and homogen
components. We utilize a recent model for such general
works, in which the relative weights of heterogeneity vers
homogeneity can be adjusted by a physically meaningful
rameter. We then construct a simplified SIR model for ge
eral networks based on a similar model for homogene
networks @9#. To account for the heterogeneity of the ne
work, we introduce a structural factor in the populatio
model. The model is simplified in that it does not include t
mechanism of self-recovery. The contributions of this pa
are two.

~1! We give theoretical analysis and numerical supp
which indicate that, in general, the fundamental SI
dynamics stipulates the existence of a fraction of nodes
can never be infected, regardless of the relative weights
heterogeneity and homogeneity in the network connectiv
The fraction for homogeneous networks tends to be sligh
smaller than that for heterogeneous networks.

~2! We investigate the role of immunization. The idea
that a node can be immunized for any particular type of vi
so that it will not be infected. In situations where only
small number of nodes can be immunized, it is important
assess whether immunization should be conducted for
domly selected nodes or targeted toward certain key node
the network.

Our computations indicate that random immunization a
pears to have similar effect for general networks with diffe
ent architectures, but targeted immunization is much m
effective for heterogeneous networks. We believe these
sults are relevant to practically important problems such
©2003 The American Physical Society11-1
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the control of spread of virus or the prevention of disea
propagation on epidemic networks. In particular, our res
on the effect of immunization suggests that the network
chitecture should be a key factor in making policies for d
livering immunization.

The mechanism of self-recovery, which is neglected
our model, may in fact be important for some realistic n
works @7#. For instance, a computer, after being infected b
virus, can usually recover and become susceptible to
same virus. Our model is not applicable to this type of n
works. However, there are many networks in reality
which self-recovery is not important or even is irreleva
For example, an individual can be infected by a flu virus,
the same virus can never infect the individual again. T
usually means that the state of this ‘‘node’’ can go fro
being infected to being refractory, but it will not be susce
tible to the same virus. Another example is informati
propagation on a social network. After hearing a particu
piece of information, a person will likely lose interest in
because it is not new anymore. Thus, while this person
be ‘‘infected’’ by this piece of information, he or she wi
usually be ‘‘refractory’’ ~R! to it after the infection. Our
model applies to these networks where recovery to a sus
tible state is relatively not important. As we will show, the
are universal features governing the SIR dynamics in
absence of self-recovery, regardless of the architecture o
underlying network on which the infection propagates.

Dynamically, to have a scale-free network, growth a
preferential attachment are required@2,13#. An earlier model
@2# assumes that at a given time the probabilityP i for a node
in the network withk links to acquire a new link isP i;k.
This form of preferential-attachment rule yields the univer
scaling exponentg53 @2#. A completely random network
on the other hand, can be generated by requiring that
attachment probability be a constant independent ofk. Many
realistic networks are scale-free or random only to cert
extent. For these, the connectivity distribution is neither
gebraic nor exponential, but a mixture of the two, examp
of which include the scientific collaboration network@14#.
This means that the attachment probabilityP i should contain
both a preferential and a constant component. A natural
pothesis is then@15# P i;(12p)ki1p, where 0<p<1 is
the parameter characterizing the relative weights between
preferential and random contributions toP i . That is,p is the
probability that a new node israndomly connected to the
existing nodei and (12p) is the probability that the new
node ispreferentiallyattached to nodei. Forp50, the model
generates strictly scale-free networks, while forp51, it gen-
erates completely random networks. For 0,p,1, if a new
node withm links are added to the network at each time st
the resulting connectivity distribution is shown to be@15#
P(k);@k1p/(12p)#2g, where the scaling exponentg is
g531p/@m(12p)#. We see that the power-law scaling fo
scale-free networks is recovered forp50 and the distribu-
tion becomes exponentialP(k);e2k/m for p→1.

The SIR model for infection propagation is well known
mathematical epidemiology@16,10#. Consider a general net
work containingN nodes. Each node in the network can
in one of the three states (S, I, or R). Infection is spread
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along the links among the nodes. A typical infection dyna
ics starts by having a small subset of infected nodes, ac
as ‘‘seed,’’ and the remaining nodes are susceptible. As t
goes, the seed can affect the susceptible nodes that are
nected to it and make them infected, and some infec
nodes can become refractory. An infected node will have
effect on connected nodes which are in the refractory st
For convenience in analysis, we assume the absence of
recovery. That is, an infected node cannot recover to a s
that is susceptible to thesamevirus. As we have discussed
our model still applies to a variety of realistic networks.

Let nI(t), nS(t), and nR(t) be the numbers of infected
susceptible, and refractory nodes at timet, respectively. For
instance, for the SIR model@16# concerning information
propagation on a social network,nS is the number of people
who have not received the information,nI the number of
individuals who have received it and wish to spread it, a
nR the number of people who have no interest to spread
information. The dynamical rules are as follows. At ea
time step, every infected node contacts one of its neighb
If the node contacted is in the susceptible state, it will b
come infected; otherwise, the original infected node, wh
is transmitting the information, will lose interest in the info
mation and become refractory to it. Initially,nI tends to in-
crease, so doesnR . The manner by whichnI(t) changes is
determined bynI ,nS , and nR : the largernI and nS , the
faster nI increases, but the largernR , the more slowlynI
increases. At sufficiently large times whennS(t),nI(t)
1nR(t), nI will decrease and eventually becomes zero.
typical infection dynamics thus lasts for only a finite amou
of time: the ending timeT is defined to be the time whe
there is no longer any infected nodes in the network, i
nI(T)50. At time t during the evolution, a susceptible nod
can become infected and an infected node can become
fractory, so the number of susceptible nodes keeps decr
ing. For a homogeneous network,f I(t)5nS(t)/N is the
probability for a susceptible node to become infected at ti
t11. Since only infected nodes can affect suscepti
nodes, the reduced number of susceptible nodes att11 is
nI(t)@nS(t)/N#. We thus have the following simple relatio
betweennS(t) andnS(t11):

nS~ t11!5nS~ t !2nI~ t ! f I~ t !

5nS~ t !2nI~ t !$12@nR~ t !1nI~ t !#/N%,

where the conservation law

nS~ t !1nI~ t !1nR~ t !5N

is used. The probability for a node to be refractory at tim
t11 is f R(t)512nS(t)/N5@nR(t)1nI(t)#/N. Since only
infected nodes can become refractory, the increment in
number of refractory nodes att11 is nI(t) f R(t). We thus
have

nR~ t11!5nR~ t !1nI~ t ! f R~ t !

5nR~ t !1nI~ t !@nR~ t !1nI~ t !#/N.

The conservation law gives
1-2
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nI~ t11!5nI~ t !1nI~ t !nS~ t !/N2nI~ t !@nR~ t !1nI~ t !#/N.

For a heterogeneous network, nodes are not on equal
ing because of the hierarchy of structures characterized
the algebraic connectivity distribution. In particular, the
can be a small subset of nodes with relatively large numb
of links. It is more likely for such a heavily linked node to b
infected and then to infect the nodes that are connected
As a result, more nodes can become refractory through th
heavily linked nodes. A heuristic way to take into accou
this is to assign a weighted function tonR(t) when consid-
ering the probability for a node to be refractory. Lete(t)
>1 be the weighting function associated withnR(t). We
assume

f I~ t !512@e~ t !nR~ t !1nI~ t !#/N,

f R~ t !5@e~ t !nR~ t !1nI~ t !#/N, ~1!

and obtain the following SIR model governing the infecti
dynamics on a general network with both a heterogene
and a homogeneous components:

nS~ t11!5nS~ t !2nI~ t !$12@e~ t !nR~ t !1nI~ t !#/N%,

nI~ t11!5nI~ t !1nI~ t !$122@e~ t !nR~ t !1nI~ t !#/N%,

nR~ t11!5nR~ t !1nI~ t !@e~ t !nR~ t !1nI~ t !#/N. ~2!

Some properties of the weighting function are the follo
ing. For homogeneous networks, a natural assumption is
the function is unity:e(t)51, because nodes are consider
equivalent although there are statistical fluctuations in
number of links. For heterogeneous networks, there typic
exists a subset of nodes with relatively large number of lin
To account for the influence on infection propagation
those heavily linked nodes, a simple but reasonable way
assume that the weighting functione(t) can be greater than
unity during evolution. In particular, initially we havee(0)
51, but as time goes it increases, decreases, and event
returns to unity at timeT when the cycle of the infection
dynamics is completed. Roughly, the rates of the incre
and decrease ofe(t) are determined by the weight of th
heterogeneous component relative to that of the homo
neous one. The form of the weighting function depends
the structural detail of the network and cannot be writ
done explicitly.

To solve for our SIR model, we utilize the continuou
time approximation and write

ṅS52nI~ t !F12
e~ t !nR~ t !1nI~ t !

N G ,
ṅI5nI~ t !F122

e~ t !nR~ t !1nI~ t !

N G ,
ṅR5nI~ t !

e~ t !nR~ t !1nI~ t !

N
. ~3!
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This equation governs the population evolution of the wh
network but not the behavior of individual nodes. It is
mean-field description. LetNR[nR(T) and NS[nS(T) be
the numbers of refractory and susceptible nodes at the en
the infection cycle@NI[nI(T)50#. The quantityNR is thus
the number of nodes that are infected in the cycle. The go
of our analysis are~1! to showNR,N ~so the infection can-
not be spread to the whole network! and ~2! to understand
how NR is affected by the network architecture. To procee
we follow the approach in Ref.@9# by introducing the auxil-
iary variables[*0

t nI(t8)dt8. Assuming that the seed of in
fection at t50 contains only one node, we have the initi
conditions:nI(0)51, nS(0)5N21, andnR(0)50. Under
these, we obtain the following solution to Eq.~3!:

nS~s!5a~s!~N21!e2s/N,

nI~s!5b~s!@12s12~N21!~12e2s/N!#,

nR~s!5c~s!@s2~N21!~12e2s/N!#, ~4!

where the functionsa(s), b(s), and c(s) depend on the
weighting functione(t). In fact, an explicit expression fo
a(s) can be written down, as follows:

a~s!511E
0

t

dt@$e~ t !21%nI~ t !nR~ t !es/N#/@N~N21!#.1.

Setting nI(S)50, we obtain the following relation giving
implicitly the completion timeT of the infection cycle:

S2152~N21!~12e2S/N!,

where S[*0
TnI(t)dt. For largeN, we haveS/(2N)[ l'1

2e22l , which gives l'0.8 andS'1.6N. The quantity of
interestNR is given by

NR5c~S!@S2~N21!~12e2S/N!#'c~S!~0.8N!.

For homogeneous networkse51, c(S)51, hence
NR

homogeneous'0.8N,N ~in the large-N limit !. For heteroge-
neous networks for whiche(t).1, note from Eq.~3! that the
producte(t)nR(t) appears as a single entity. An immedia
result is thatNR

general,NR
homogeneous. That is, in a genera

network with a heterogeneous component, fewer nodes
be infected as compared with a homogeneous network
we will show, numerical computations give strong credan
to the validity of this result. We thus conclude that

NR
general,NR

homogeneous'0.8N,N, ~5!

indicating that the spread of infection in a general netwo
cannot be global because there exists a fraction of nodes
can never be infected. This is a universal property of the S
dynamics without recovery because this feature is indep
dent of the details of the network.

We now provide numerical support for Eq.~5!. Note that,
because of the random components involved in the const
tion of the network and because the theoretical prediction~5!
is valid only in the largeN and continuous-time limits, the
1-3
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key quantityNR should be interpreted in a statistical sen
To compute the probability distribution ofNR for a given
network architecture, we construct a network withN5104

nodes and randomly choose a seeding node att50 from
which the infection starts. At each time step, every infec
node infects one of the nodes that are connected to it. If
node is susceptible, it will be infected; otherwise, the origi
infected node itself will become refractory. The whole pr
cess continues until timeT at which there is no longer an
infected node@nI(T)50#. The numberNR of refractory
nodes is then recorded. The process is repeated for 106 times,
each time starting with anew network configuration and a
newseeding node, and a histogram ofNR is constructed. One
example is shown in Fig. 1 forp50.5 andm55, where we
observe an approximately Gaussian distribution with p
aroundNR'5900. The probabilityP(NR.6500) is zero, in-
dicating that about one third of the nodes in the network
not be infected, which is consistent with the theoretical p
diction ~5!. We also find an exponential peak forNR,10, as
shown in the inset. This is caused by the placement of
seed of infection at nodes which locally are connected
other nodes in a regular fashion. Infection starting from th
nodes are most likely to remain localized@9#. Regarding the
evolutions ofnS and nI , our analysis indicates thatnS de-
creases exponentially withs and nI(t) increases initially,
reaches a maximum, and then decreases. These beha
have been verified numerically.

To compare the infection dynamics on general netwo
with different architectures, a convenient quantity is the
erage fraction of infected nodes, or theorder parameter@9#

r 5^NR /N&5E NRP~NR!dNR , ~6!

where P(NR) is the normalized probability satisfyin
*P(NR)dNR51. Our analysis predicts thatNR grows lin-
early with N and, hence, the ratio remains constant asN is

FIG. 1. Histogram ofNR for p50.5 andm55 obtained using
106 realizations. The inset shows the exponential distribution ofNR

for NR'0.
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increased, which is indeed observed numerically. Figure 2~a!
shows, form55 and N5104, the ratio r versus the key
parameterp of the network. Recall thatp determines the
relative weights between the heterogeneous and hom
neous components of the network, wherep50 corresponds
to a scale-free network, andp51 to a completely random
network. We see that the number of infected nodes fo
network containing a heterogeneous~or scale-free! compo-
nent is indeed smaller than that for a random network,
predicted by Eq.~5!. For p51 ~random network!, the per-
centage of the number of infected nodes is about 0.62.
find that this percentage approachs the theoretical valu
0.8 asm is increased. Figure 2~b! shows the timeT required
to complete an infection cycle versusp, which exhibits little
variation. This is somewhat expected from the evoluti
equations in Eq.~3!, where the structural factore(t) of the
network is assumed to be associated with the variablenR(t).
Thus, although the final value ofNR depends on the archi
tecture of the network, there is little dependence of the ti
it takes to reach the final state on the network structure.

We next consider two types of external immunizati
within the framework of our SIR model: random versus i
tentional, where the former means applying immunization
a randomly selected subset of nodes and the latter m
making refractory a particularly chosen set of nodes, such
heavily connected ones. In the case of intentional immun
tion, we can assume that the probability of a node be
immunized is proportional to the number of links that it ca
ries. The immunized nodes are chosen according to the p
abilities. As a result, when resources are limited, only no
with relatively large numbers of links are immunized. Figu
3~a! shows, for three different network architectures@p50
~scale-free, open circles!, p50.5 ~general, stars!, and p51
~random, open squares!#, the order parameterr versus the
fraction f of the randomly immunized nodes, where oth
parameters arem55 andN5104. Apparently, the value ofr

FIG. 2. Form55, N5104, ~a! r versusp, which indicates that
the number of infected nodes for a network containing a hetero
neous~or scale-free! component is smaller than that for a rando
network; and~b! the average timêT& required to complete an
infection cycle versusp. The dependence of^T& on p is weak.
1-4
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decreases slowly asf is increased, indicating that rando
immunization has little effect on reducing the spread of
infection, regardless of the network architecture. The sit
tion is somewhat different for intentional immunization ta
geted at nodes with relatively large number of links,
shown in Fig. 3~b!, where the legends are the same as
Fig. 3~a!. We see that for scale-free networks~the lower

FIG. 3. For three different network architectures@p50 ~scale-
free, open circles!, p50.5 ~general, stars!, andp51 ~random, open
squares!#, the order parameterr versus the fractionf of the immu-
nized nodes for~a! random and~b! intentional immunizations.
Other network parameters arem55 andN5104.
03191
e
-

s
r

trace!, the value of the order parameterr decreases more
rapidly asf is increased, demonstrating that intentional im
munization can be relatively more effective to prevent t
spread of infection for scale-free networks. The intuitive e
planation is the existence of a small subset of heavily c
nected nodes. They act as local ‘‘centers’’ for transferring
infection. Immunizing those nodes can block the passag
the infection relatively more effectively.

In summary, we have investigated the SIR dynamics
general growing networks and the role of immunizatio
which are important issues for realistic networks. Our fin
ings are~1! there exists a substantial fraction of nodes th
can never be infected, regardless of the network architect
~2! heterogeneous networks are more robust against sp
of infection, comparing with homogeneous networks, and~3!
targeted immunization can be quite effective for hetero
neous networks with the implication that, by immunizing
small subset of nodes with many connections, infect
spread can be greatly suppressed. These results are rel
to a host of problems in many areas of natural science,
gineering, and social science. For instance, blockage of
formation spread in a social network may be achieved
making a few heavily connected individuals indifferent to t
information. Or, in a sexual partnership network which
typically highly heterogeneous, targeted immunization on
group of highly active individuals~such as prostitutes! may
effectively prevent the wide spread of sexually transmit
diseases@7#.
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