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We consider the entire spectrum of architectures of general networks, ranging from being heterogeneous
(scale-freg¢to homogeneougandom, and investigate the infection dynamics by using a three-state epidemio-
logical model that does not involve the mechanism of self-recovery. This model is relevant to realistic situa-
tions such as the propagation of a flu virus or information over a social network. Our heuristic analysis and
computations indicate thét) regardless of the network architecture, there exists a substantial fraction of nodes
that can never be infected ar{@d) heterogeneous networks are relatively more robust against spreads of
infection as compared with homogeneous networks. We have also considered the problem of immunization for
preventing wide spread of infection, with the result that targeted immunization is effective for heterogeneous
networks.
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Complex networks have become one of the most rapidiyabout 0.2 adN—o, whereN is the total number of nodes.
developing areas in statistical and nonlinear phyi¢since  niore recent work9] suggests that similar results hold for
the seminal work on scale-free networks by Bamtend = roqjar and small-worl§i12] networks but the percentage of
Albert [2]. Most large networks in nature are sparse, that 'Sthe nodes that are never infected is larger than that for the

the average number of Imks_ per node is much smaller thaPandom network. In fact, the infection tends to be localized
the total number of nodes in the network. In a scale—freeTor regular networkg9]

network, the number of links of various nodes follows a The focus of this paper is on the SIR dynamic eral

power-law(or an algebraicprobability distribution, indicat- !
ing that nodes in the network are organized into a hierarch;r/]ewvOrks that contain both heterogeneous and homogeneous

of connected clusters. Scale-free networks are ketisroge- components. We utilize a recent model for such general net-
neous Random networks, on the other hand, ammoge- works, in which the relative weights of heterogeneity versus
neous|3]. homogeneity can be adjusted by a physically meaningful pa-
An issue of broad interest concerns how an infection ofa@meter. We then construct a simplified SIR model for gen-
virus propagates on growing, complex networks and whethegral networks based on a similar model for homogeneous
there exist effective control strategies to prevent or to supnetworks[9]. To account for the heterogeneity of the net-
press the spread of the infection. This problem has caughvork, we introduce a structural factor in the population
attention only recently4—9]. A two-state(SI) model is first model. The model is simplified in that it does not include the
considered 4], where nodes in the networks can be eithermechanism of self-recovery. The contributions of this paper
susceptible(S or infected(l). A susceptible node can be- are two.
come infected and an infected node can recover and return to (1) We give theoretical analysis and numerical support
the susceptible state. The key issue of interest is whether amhich indicate that, in general, the fundamental SIR-
initially localized infection can spread to the entire network.dynamics stipulates the existence of a fraction of nodes that
The work in Ref.[4] on strictly heterogeneouscale-freg¢  can never be infected, regardless of the relative weights of
networks reveals that, within the S| framework, infection canheterogeneity and homogeneity in the network connectivity.
spread and persist to the entire network even when the proB-he fraction for homogeneous networks tends to be slightly
ability of transmission is infinitesimally small. This result, smaller than that for heterogeneous networks.
however, is in sharp constrast to the well-known threshold (2) We investigate the role of immunization. The idea is
phenomenon in epidemiolod{0]: the spread of infection or that a node can be immunized for any particular type of virus
virus requires that the transmission probability exceed o0 that it will not be infected. In situations where only a
threshold. A more general, three-sté®&R) infection model  small number of nodes can be immunized, it is important to
incorporating a recovery stage is presented in R&fwith assess whether immunization should be conducted for ran-
the finding that, for strictly scale-free networks of finite size,domly selected nodes or targeted toward certain key nodes in
the threshold phenomenon does exist in the sense that infethe network.
tions or viruses cannot spread for arbitrarily low transmis- Our computations indicate that random immunization ap-
sion probabilitieq 7]. We mention that for completely ran- pears to have similar effect for general networks with differ-
dom networks, there is an early rigorous wpi#t] indicating  ent architectures, but targeted immunization is much more
the existence of a fraction of nodes which can never be ineffective for heterogeneous networks. We believe these re-
fected. The fraction approaches asymptotically the value o$ults are relevant to practically important problems such as
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the control of spread of virus or the prevention of diseaselong the links among the nodes. A typical infection dynam-
propagation on epidemic networks. In particular, our resulics starts by having a small subset of infected nodes, acting
on the effect of immunization suggests that the network aras “seed,” and the remaining nodes are susceptible. As time
chitecture should be a key factor in making policies for de-goes, the seed can affect the susceptible nodes that are con-
livering immunization. nected to it and make them infected, and some infected

The mechanism of Self-re(;overy7 which is neglected innodes can become refractory. An infected node will have no
our model, may in fact be important for some realistic net-effect on connected nodes which are in the refractory state.
works[7]. For instance, a computer, after being infected by @or convenience in analysis, we assume the absence of self-
virus, can usually recover and become susceptible to theecovery. That is, an infected node cannot recover to a state
same virus. Our model is not applicable to this type of netthat is susceptible to theamevirus. As we have discussed,
works. However, there are many networks in reality forour model still applies to a variety of realistic networks.
which self-recovery is not important or even is irrelevant.  Let ni(t), ng(t), andng(t) be the numbers of infected,
For example, an individual can be infected by a flu virus, butsusceptible, and refractory nodes at titneespectively. For
the same virus can never infect the individual again. Thignstance, for the SIR moddl16] concerning information
usually means that the state of this “node” can go frompropagation on a social networkg is the number of people
being infected to being refractory, but it will not be suscep-who have not received the information, the number of
tible to the same virus. Another example is informationindividuals who have received it and wish to spread it, and
propagation on a social network. After hearing a particulamg the number of people who have no interest to spread the
piece of information, a person will likely lose interest in it information. The dynamical rules are as follows. At each
because it is not new anymore. Thus, while this person catime step, every infected node contacts one of its neighbors.
be “infected” by this piece of information, he or she will If the node contacted is in the susceptible state, it will be-
usually be “refractory” (R) to it after the infection. Our come infected; otherwise, the original infected node, which
model applies to these networks where recovery to a suscefs transmitting the information, will lose interest in the infor-
tible state is relatively not important. As we will show, there mation and become refractory to it. Initially, tends to in-
are universal features governing the SIR dynamics in therease, so doesg. The manner by whic,(t) changes is
absence of self-recovery, regardless of the architecture of thdetermined byn, ,ng, and ng: the largern, and ng, the
underlying network on which the infection propagates. fastern, increases, but the largerz, the more slowlyn,

Dynamically, to have a scale-free network, growth andincreases. At sufficiently large times wheamy(t)<<n,(t)
preferential attachment are requifg13]. An earlier model  +ng(t), n, will decrease and eventually becomes zero. A
[2] assumes that at a given time the probabilityfor a node typical infection dynamics thus lasts for only a finite amount
in the network withk links to acquire a new link i$I;~Kk. of time: the ending timeT is defined to be the time when
This form of preferential-attachment rule yields the universalthere is no longer any infected nodes in the network, i.e.,
scaling exponenty=3 [2]. A completely random network, n;(T)=0. At timet during the evolution, a susceptible node
on the other hand, can be generated by requiring that thean become infected and an infected node can become re-
attachment probability be a constant independet Many  fractory, so the number of susceptible nodes keeps decreas-
realistic networks are scale-free or random only to certainng. For a homogeneous network,;(t)=ng(t)/N is the
extent. For these, the connectivity distribution is neither alprobability for a susceptible node to become infected at time
gebraic nor exponential, but a mixture of the two, examples+1. Since only infected nodes can affect susceptible
of which include the scientific collaboration netwolk4]. nodes, the reduced number of susceptible nodes-4t is
This means that the attachment probabilityshould contain  n,(t)[ ng(t)/N]. We thus have the following simple relation
both a preferential and a constant component. A natural hybetweenng(t) andng(t+1):
pothesis is ther15] IT;~(1—p)k;+p, where O<p=<1 is
the parameter characterizing the relative weights between the ~ Ns(t+1)=ng(t) —n;(t)f(t)

referential and random contributionslio. That is,p is the _
Erobability that a new node isandomrg/?connectez to the =ns(O) =M O{1=[ns(D)+m(/N},
existing nodei and (1-p) is the probability that the new \here the conservation law
node ispreferentiallyattached to nodie Forp=0, the model
generates strictly scale-free networks, whileffer 1, it gen- ng(t) +n;(t) +ng(t)=N
erates completely random networks. Ferp<1, if a new . )
node withm links are added to the network at each time stepiS used. The probability for a node to be refractory at time
the resulting connectivity distribution is shown to fE5]  t+1 is fr(t)=1—ng(t)/N=[ng(t)+n(t)]/N. Since only
P(k)~[k+p/(1—p)]~?, where the scaling exponent is infected nodes can become refrac_tory, the increment in the
y=3+p/[m(1—p)]. We see that the power-law scaling for number of refractory nodes at-1 is n,(t)fg(t). We thus
scale-free networks is recovered k]jplto and the distribu- have
tion becomes exponenti@(k)~e™ ™ for p—1.

The SIR modeFI) for infec(tign propagatign is well known in NR(t+ 1) =NR(t) +m (D fR(t)
mathematical epidemiologyl6,10. Consider a general net- =ng(t)+n,(t)[ng(t)+n,(t)]/N.
work containingN nodes. Each node in the network can be
in one of the three statesS( I, or R). Infection is spread The conservation law gives
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n(t+1)=n,(t)+n,(t)ng(t)/N—n,(t)[ng(t)+n,(t)]/N. This equation governs the population evolution of the whole
network but not the behavior of individual nodes. It is a
For a heterogeneous network, nodes are not on equal foomean-field description. Lelg=ng(T) and Ng=ng(T) be
ing because of the hierarchy of structures characterized bine numbers of refractory and susceptible nodes at the end of
the algebraic connectivity distribution. In particular, therethe infection cyclg N;=n(T)=0]. The quantityNg is thus
can be a small subset of nodes with relatively large numberthe number of nodes that are infected in the cycle. The goals
of links. It is more likely for such a heavily linked node to be of our analysis arél) to showNg<<N (so the infection can-
infected and then to infect the nodes that are connected to inot be spread to the whole networnd (2) to understand
As a result, more nodes can become refractory through thed®w N, is affected by the network architecture. To proceed,
heavily linked nodes. A heuristic way to take into accountwe follow the approach in Ref9] by introducing the auxil-
this is to assign a weighted function bg(t) when consid- iary variables= [{n,(t")dt’. Assuming that the seed of in-
ering the probability for a node to be refractory. Left) fection att=0 contains only one node, we have the initial
=1 be the weighting function associated witlz(t). We  conditions:n;(0)=1, ng(0)=N-1, andng(0)=0. Under

assume these, we obtain the following solution to E®):
fi(t)=1—[e(t)nr(t)+n (1) ]/N, ns(s)=a(s)(N—1)e” ",
fr(t) =[e(t)ng(t)+n,(H)]/N, (1) ni(s)=b(s)[1-s+2(N-1)(1—e *N)],
and obtain the following SIR model governing the infection nr(s)=c(s)[s—(N-1)(1-e M), 4

dynamics on a general network with both a heterogeneous
aﬁd a homogengous components: g where the functionsa(s), b(s), andc(s) depend on the

weighting functione(t). In fact, an explicit expression for
n(t+1)=ng(t)—n,(t){1—[e(t)ng(t) +n,(t)]/N}, a(s) can be written down, as follows:

ny(t+21)=n(t) +n(t){1-2[e(t)ng(t) +n (1) ]J/N}, a(s)=1+ ftdt[{e(t) —1}n,(H)nr(t)eN/[N(N—1)]>1.
0

+1)= + + .
MR(t+ D) =ne(®)+m(O[tNg() +MOI/N. - (2) Setting n,(S)=0, we obtain the following relation giving

Some properties of the weighting function are the follow-MPlicitly the completion timeT of the infection cycle:

ing. For homogeneous networks, a natural assumption is that S 1=2(N-1)(1—e
the function is unity:e(t)=1, because nodes are considered '
equivalent although there are statistical fluctuations in the, ,qre S=/In,(t)dt. For largeN, we haveS/(2N)=|~1

number of links. For heterogeneous networks, there typically
exists a subset of nodes with relatively large number of links
To account for the influence on infection propagation of
those heavily linked nodes, a simple but reasonable way isto  N,=¢(S)[S—(N—1)(1—e 5N)]~c(S)(0.8N).

assume that the weighting functi@(t) can be greater than

unity during evolution. In particular, initially we have(0) For homogeneous networkse=1, c¢(S)=1, hence
=1, but as time goes it increases, decreases, and eventuamgomoge“eou&o_g\KN (in the largeN limit). For heteroge-
returns to unity at timel when the cycle of the infection neous networks for whick(t)>1, note from Eq(3) that the
dynamics is completed. Roughly, the rates of the increasgroducte(t)ng(t) appears as a single entity. An immediate
and decrease oé(t) are determined by the weight of the regyit is thatNge"e"al NRomogeneous That is in a general
heterogeneous component relative to that of the homoggsetwork with a heterogeneous component, fewer nodes will
neous one. The form of the weighting function depends orhe infected as compared with a homogeneous network. As
the structural detail of the network and cannot be writtenye will show, numerical computations give strong credance

e 2 which gives|~0.8 andS~1.6N. The quantity of
interestNg is given by

done explicitly. . _ to the validity of this result. We thus conclude that
To solve for our SIR model, we utilize the continuous-
time approximation and write NgRe“efa'< Ngomoge"eou&o,g\KN, (5)
- e(t)ng(t)+n (1) indicating that the spread of infection in a general network
ns=—n(t)] 1~ N ' cannot be global because there exists a fraction of nodes that
can never be infected. This is a universal property of the SIR
. e(H)Ng(t)+n,(1) dynamics WithOL_Jt recovery because this feature is indepen-
n=n,(t) l—ZT , dent of the details of the network.
We now provide numerical support for E¢). Note that,
because of the random components involved in the construc-
Pyt e(t)ng(t) +n(t) _ (3  tion of the network and because the theoretical predidton
N is valid only in the largeN and continuous-time limits, the
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FIG. 2. Form=5, N=10% (a) r versusp, which indicates that
the number of infected nodes for a network containing a heteroge-
neous(or scale-freg component is smaller than that for a random
network; and(b) the average tim&T) required to complete an
infection cycle versup. The dependence ¢fT) on p is weak.

FIG. 1. Histogram ofNg for p=0.5 andm=5 obtained using
10° realizations. The inset shows the exponential distributioN of
for Ng=~0.

key quantityNg should be interpreted in a statistical sense.
To compute the probability distribution dfiz for a given increased, which is indeed observed numerically. Figuag 2
network architecture, we construct a network with=10*  shows, form=5 and N=10*, the ratior versus the key
nodes and randomly choose a seeding node=dl from  parameterp of the network. Recall thap determines the
which the infection starts. At each time step, every infectedelative weights between the heterogeneous and homoge-
node infects one of the nodes that are connected to it. If thineous components of the network, where 0 corresponds
node is susceptible, it will be infected; otherwise, the originalto a scale-free network, anoi=1 to a completely random
infected node itself will become refractory. The whole pro-network. We see that the number of infected nodes for a
cess continues until tim& at which there is no longer any network containing a heterogeneo(ss scale-freg compo-
infected node[n (T)=0]. The numberNg of refractory nent is indeed smaller than that for a random network, as
nodes is then recorded. The process is repeated fdiris, predicted by Eq(5). For p=1 (random network the per-
each time starting with aew network configuration and a centage of the number of infected nodes is about 0.62. We
newseeding node, and a histogramyf is constructed. One find that this percentage approachs the theoretical value of
example is shown in Fig. 1 fgg=0.5 andm=5, where we 0.8 asmiis increased. Figure(B) shows the timél required
observe an approximately Gaussian distribution with peako complete an infection cycle verspswhich exhibits little
aroundNg~5900. The probability?(Ng>6500) is zero, in- variation. This is somewhat expected from the evolution
dicating that about one third of the nodes in the network arequations in Eq(3), where the structural factas(t) of the
not be infected, which is consistent with the theoretical prenetwork is assumed to be associated with the variag(€).
diction (5). We also find an exponential peak fdg<<10, as  Thus, although the final value ®g depends on the archi-
shown in the inset. This is caused by the placement of theéecture of the network, there is little dependence of the time
seed of infection at nodes which locally are connected tat takes to reach the final state on the network structure.
other nodes in a regular fashion. Infection starting from these We next consider two types of external immunization
nodes are most likely to remain localizg@]. Regarding the  within the framework of our SIR model: random versus in-
evolutions ofng andn;, our analysis indicates thats de-  tentional, where the former means applying immunization to
creases exponentially wits and n,(t) increases initially, a randomly selected subset of nodes and the latter means
reaches a maximum, and then decreases. These behavienaking refractory a particularly chosen set of nodes, such as
have been verified numerically. heavily connected ones. In the case of intentional immuniza-
To compare the infection dynamics on general networksion, we can assume that the probability of a node being
with different architectures, a convenient quantity is the avimmunized is proportional to the number of links that it car-
erage fraction of infected nodes, or theler parameteff9] ries. The immunized nodes are chosen according to the prob-
abilities. As a result, when resources are limited, only nodes
with relatively large numbers of links are immunized. Figure
rZ(NR/N)ZJ N&P(Ng)dNg, ) 3(a) shows, for three different network architectufgs=0
(scale-free, open circlgsp=0.5 (general, staj)s andp=1
where P(Ng) is the normalized probability satisfying (random, open squardsthe order parametear versus the
JP(NR)dNg=1. Our analysis predicts th&g grows lin- fraction f of the randomly immunized nodes, where other
early with N and, hence, the ratio remains constantNais  parameters armm="5 andN=10*. Apparently, the value of
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1 ' trace, the value of the order parameterdecreases more
(a) rapidly asf is increased, demonstrating that intentional im-
munization can be relatively more effective to prevent the
spread of infection for scale-free networks. The intuitive ex-
planation is the existence of a small subset of heavily con-
nected nodes. They act as local “centers” for transferring the
0 ' infection. Immunizing those nodes can block the passage of
f ' the infection relatively more effectively.

1 . In summary, we have investigated the SIR dynamics on
(b) general growing networks and the role of immunization,
which are important issues for realistic networks. Our find-

Cosl M ings are(1) there exists a substantial fraction of nodes that
\\w can never be infected, regardless of the network architecture,
(2) heterogeneous networks are more robust against spread

, of infection, comparing with homogeneous networks, €3)d
0 0.05 0.1 targeted immunization can be quite effective for heteroge-
f neous networks with the implication that, by immunizing a
small subset of nodes with many connections, infection
spread can be greatly suppressed. These results are relevant
to a host of problems in many areas of natural science, en-
gineering, and social science. For instance, blockage of in-
formation spread in a social network may be achieved by
making a few heavily connected individuals indifferent to the
o o information. Or, in a sexual partnership network which is
decreases slowly ais increased, indicating that random typically highly heterogeneous, targeted immunization on a
immunization has little effect on reducing the spread of thegroup of highly active individualgésuch as prostitutgsnay

infection, regardless of the network architecture. The situapffectively prevent the wide spread of sexually transmitted
tion is somewhat different for intentional immunization tar- gisease§7].

geted at nodes with relatively large number of links, as
shown in Fig. 8b), where the legends are the same as for This work was supported by AFOSR under Grant No.
Fig. 3@. We see that for scale-free networkthe lower F49620-01-1-0317.

- 0.5

FIG. 3. For three different network architectugs=0 (scale-
free, open circles p=0.5(general, stajsandp=1 (random, open
squarey|, the order parametearversus the fractior of the immu-
nized nodes for(a) random and(b) intentional immunizations.
Other network parameters ame=5 andN= 10"
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