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Noise-induced unstable dimension variability and transition to chaos in random dynamical system
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Results are reported concerning the transition to chaos in random dynamical systems. In particular, situations
are considered where a periodic attractor coexists with a nonattracting chaotic saddle, which can be expected
in any periodic window of a nonlinear dynamical system. Under noise, the asymptotic attractor of the system
can become chaotic, as characterized by the appearance of a positive Lyapunov exponent. Generic features of
the transition include the following:~1! the noisy chaotic attractor is necessarily nonhyperbolic as there are
periodic orbits embedded in it with distinct numbers of unstable directions~unstable dimension variability!,
and this nonhyperbolicity develops as soon as the attractor becomes chaotic;~2! for systems described by
differential equations, the unstable dimension variability destroys the neutral direction of the flow in the sense
that there is no longer a zero Lyapunov exponent after the noisy attractor becomes chaotic; and~3! the largest
Lyapunov exponent becomes positive from zero in a continuous manner, and its scaling with the variation of
the noise amplitude is algebraic. Formulas for the scaling exponent are derived in all dimensions. Numerical
support using both low- and high-dimensional systems is provided.
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I. INTRODUCTION

In this paper, the problem of the transition to chaos
random dynamical systems@1–9# is revisited, and results ar
presented concerning the topological and scaling aspec
the transition which, to our knowledge, have not been
ticed previously. In particular, we consider the setting whe
in the absence of noise, the asymptotic attractor of the
tem is periodic, but nonetheless there is a coexisting cha
saddle that is nonattracting. This setting is by no means
cial, because it can occur in every periodic window of
nonlinear system, and it is well known that these windo
are dense in the parameter space@10#. When the system is
under noise, there can be a transition in the asymptotic
tractor from being nonchaotic to chaotic as the noise am
tude is increased through a critical value. For systems
scribed by differential equations, we shall argue that
transition is typically accompanied by a severe topologi
change in the flow in that the neutral direction of the flo
existing prior to the onset of noisy chaos, is destroyed. F
thermore, we find that the dynamical mechanism for the
pological destruction of the neutral direction is unstable
mension variability @11,12#, a type of nonhyperbolicity
characterized by the existence of periodic orbits along a c
tinuous trajectory with distinct numbers of unstable eigen
rections. At a quantitative level, we derive a scaling law
the Lyapunov exponent with the noise variation about
transition. These results are valid for systems in all dim
sions, and we believe they are generic and consequently
servable in laboratory experiments.

The interplay between chaos and noise has been a top
continuous interest in nonlinear dynamics and statist
physics @1–9,13#. Transition to noisy chaos is one of th
fundamental problems. A brief history of the problem is t
following. Crutchfieldet al. @1# discovered that, in the com
1063-651X/2003/67~2!/026210~17!/$20.00 67 0262
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mon route to chaos via the period-doubling bifurcation
noise tends to smooth out the transition and induce chao
parameter regimes where there is no chaos otherwise. S
ing laws concerning the noisy transition in the perio
doubling regime were investigated by Deutsch@2# and by
Deutsch and Paladin@4# using the random-matrix approach
The observability and scaling of fractal structures near
transition to chaos in random maps were investigated by
et al. @6#, followed by observation and characterization
such fractal structures formed by floaters on the surface
fluid @14#. Features of transition to chaos in noisy dynamic
systems, such as intermittency and the smooth behavio
the Lyapunov exponents, were also found in the transit
from strange nonchaotic to strange chaotic attractors in q
siperiodically driven systems@15# and in the bifurcation to
chaos with multiple positive Lyapunov exponents in hig
dimensional systems@16#. It was also demonstrated@8# that
the transition is closely related to the problem of nois
induced synchronization in chaotic systems@13#. Recent
works include noise-induced chaos in discrete-time maps
in semiconductor laser systems@7#. Noise-excited chaos is
also an important phenomenon in the dynamics of epide
outbreaks@9#.

The focus of this paper is on the transition to chaos
random dynamical systems described by the following g
eral class of stochastic differential equations:

dx

dt
5F~x,p!1Dj~ t !, ~1!

wherexPRN,F is the velocity field that can potentially gen
erate chaos,p is a system parameter, andDj(t) represents
the additive Gaussian white noise of amplitudeD@j(t) is an
N-dimensional vector whose components are independ
©2003 The American Physical Society10-1
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Gaussian random variables of zero mean and unit varian#.
For a typical trajectoryx(t) on an ergodic, invariant set, th
Lyapunov spectrum@17# is

l i5 lim
T→`

1

T
ln

udxi~T!u
udxi~0!u

, ~2!

where$dxi(t)% i 51
N is a set of infinitesimal, orthonormal vec

tors evolving in the tangent space of the velocity field,
follows:

ddxi~ t !

dt
5

]F~x,p!

]x
•dxi~ t ![DF~x,p!•dxi~ t !, ~3!

andDF(x,p) is the Jacobian matrix evaluated along the t
jectory x(t). Performing the orthonomalization procedure
a proper way, the exponents can be ordered, as followsl1
>l2•••>lN , wherel1 is the largest Lyapunov exponen
Here bychaos in the random dynamical system@Eq. ~1!#, we
mean that the largest Lyapunov exponent is positive:l1
.0. ~The resulting attractors, despite the presence of n
in the system, are indeed chaoticlike attractors, as they h
the geometric properties similar to those of chaotic attrac
in deterministic systems.! In the purely deterministic cas
(D50), one of the exponents must be zero as the dynam
along the flow is neutral, i.e., it is neither expanding n
contracting. The parameterp is chosen such that the attrac
ing set of the deterministic systemF(x,p) is not chaotic, but
nonetheless the system may possess chaotic saddles,
originally existent in the system or induced by noise. T
former situation can arise when the dynamical system is
periodic window. The latter can occur when the system is
a period-doubling parameter region~not in a window! where
the stable and unstable manifolds of some unstable peri
orbits have the potential to become tangent and then for
homoclinic or heteroclinic tangle. As such, the presence
small noise can induce the homoclinic or heteroclinic ta
gencies and create astochastic chaotic saddle@9#. In the
absence of noise, the largest Lyapunov exponent of
asymptotic attractor is zero. As the noise is turned on and
amplitude becomes sufficiently large, there is a nonz
probability that a trajectory originally on the attracting s
escapes it and wanders near the coexisting chaotic sadd
this case, the largest Lyapunov exponent becomes pos
signifying chaos for trajectories starting from typical initi
conditions. But what are the dynamical characteristics of
transition?

The principal results of this paper are as follows.~1!
When the noise amplitudeD exceeds a critical valueDc ,
unstable dimension variability@11,12# can arise in the sens
that a typical trajectory moves in phase-space regions c
taining unstable periodic orbits with distinct numbers of u
stable eigendirections. As a result, the transition is smoot
the sense that the largest Lyapunov exponent becomes
tive continuously from zero as the noise amplitude is
creased.~2! After the transition (D.Dc), the topology of the
flow is disturbed in a fundamental way: there is no longe
zero Lyapunov exponent, indicating that for noisy cha
there exists no neutral direction along which infinitesim
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distances are conserved, in sharp contrast to determin
chaotic flows@18# or noisy nonchaotic flows forD,Dc .
However, forD sufficiently larger thanDc , one Lyapunov
exponent becomes increasingly close to zero. The topol
cal destruction of the neutral direction of the flow is, ther
fore, most severe forD*Dc . ~3! Quantitatively, for D
*Dc , the largest Lyapunov exponent versus the noise a
plitude obeys the algebraic scaling law

l1;~D2Dc!
a, ~4!

where a is a scaling exponent that depends on dynam
invariants of the original chaotic saddle such as its Lyapun
exponents and lifetime. We are able to derive formulas
the exponent inall dimensions. A surprising finding of ou
work is that, even in low-dimensional chaotic systems p
sessing at most one positive Lyapunov exponent, unst
dimension variability can arise due to noise, in contrast to
common belief that this type of nonhyperbolicity usually o
curs in high-dimensional systems@12#. A brief account of
part of this work appeared recently@19#.

The rest of the paper is organized as follows. In Sec.
we describe the dynamical phenomenon of unstable dim
sion variability and argue that it must occur for noisy chao
attractors and it leads to the destruction of the neutral dir
tion of the flow. In Sec. III, we derive the scaling law@Eq.
~4!#, and give explicit formulas for the scaling exponent
all dimensions. In Sec. IV, we provide numerical support
the scaling formulas with well-studied chaotic flows in re
resentative dimensions. In Sec. V, we introduce a quantit
characterize the degree of the topological destruction of
neutral direction, study the on-off intermittent behavior th
typically arises after the transition, and address the valid
of the major assumption used in our scaling analysis. In S
VI, we present results with a high-dimensional physical s
tem and a nonautonomous system. A discussion is prese
in Sec. VII.

II. NOISE-INDUCED UNSTABLE DIMENSION
VARIABILITY AND DYNAMICAL CONSEQUENCES

A. Unstable dimension variability

Unstable dimension variability means that, along a typi
trajectory, the number of local unstable directions c
change. The concept was first conceived by Abraham
Smale@11# who constructed a mathematical model consist
of two unstable fixed points with distinct numbers of loc
unstable eigendirections. It was later realized that the p
nomenon is quite common and can have intricate con
quences on the shadowability of numerical trajectories
high-dimensional chaotic systems@12#. To explain unstable
dimension variability, we recall here the mathematical de
nition for hyperbolicity ~or nonhyperbolicity! of dynamical
systems.

Consider an (N11)-dimensional flow or, equivalently, a
N-dimensional map on a Poincare´ surface of section:xn11
5f(xn), wherexPR N. Let L be an invariant set off. At any
point xPL, the tangent spaceTx can be split into a direct
sum of stable and unstable subspaces:Tx5Ex

s
% Ex

u . The
stableandunstablemanifolds atx are
0-2
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Ws~x!5$y:f n~y!→x as n→`%

and

Wu~x!5$y:f2n~y!→x as n→`%,

respectively. The stable manifoldWs(x) is tangent toEx
s at x,

and the same is true for the unstable manifoldWu(x) and
Ex

u . The invariant setL is hyperbolic if the following prop-
erties hold:

~i! The stable and unstable subspaces are distinct, i.e.
angle betweenEx

s and Ex
u is bounded away from zero fo

everyxPL;
~ii ! The splitting varies continuously withx under itera-

tions of f and is invariant under the Jacobian matrixDf(x),
i.e., Df(Ex

s)5Ef(x)
s andDf(Ex

u)5Ef(x)
u ;

~iii ! There exist constantsC.0 and 0,a,1 such that
uDf nvu<Canuvu if vPEx

s and uDf2nuu<Canuuu if uPEx
u .

The invariant setL is nonhyperbolic if any one of thes
three conditions is violated. In particular, if condition~i! is
violated, there are tangencies between the stable and uns
manifolds. If condition~ii ! is violated, there is unstable d
mension variability, because the dimension of the local
stable~or stable! subspace can vary withx.

B. Noise-induced unstable dimension variability

We now argue that noise can induce unstable dimen
variability. In particular, in the situation where there are tw
coexisting dynamical invariant sets with distinct unstable
mensions, noise can link the two sets, and thereby ind
unstable dimension variability along a continuous trajecto
Such a situation is expected to be fairly common, becaus
can occur in any periodic window where a periodic attrac
and a chaotic saddle coexist. The critical amplitude of
noise for which unstable dimension variability arises is p
portional to the phase-space distance between the attr
and the chaotic saddle in the absence of noise, which in
is proportional to the size of the periodic window in th
parameter space. Besides periodic windows, another s
tion is where there is a periodic attractor and several isola
saddle periodic orbits. The stable and unstable manifold
these orbits are close to each other, and are about to
homoclinic or heteroclinic intersections. The presence
noise can materialize the intersections, creating a chaotic
the so-calledstochastic chaotic saddle@9#. Unstable dimen-
sion variability can occur as the noise is increased. The
ference from the case of a periodic window is that here, no
induces both the chaotic saddle and unstable dimension
ability.

For visual clarity, we illustrate our analysis by focusin
on a two-dimensional Poincare´ map obtained from a three
dimensional autonomous flow, as shown schematically
Fig. 1, where there are a periodic attractor and a coexis
chaotic saddle. However, the analysis holds in any dim
sions. The circular region surrounding the periodic attrac
denotes the effective range of the influence of noise of a
plitude D, which can be conveniently called thenoisy basin
of the periodic attractor@19#. For clarity, the stable and un
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stable manifolds of the chaotic saddle are represented
lines, although they too are fattened by noise. ForD,Dc ,
there is no overlap between the stable manifold of the c
otic saddle and the noisy basin of the periodic attractor,
shown in Fig. 1~a!. In this case, a random initial conditio
leads to a trajectory confined in the vicinity of the period
attractor, although there can be transient chaos initially
the sense that the trajectory may move toward the cha
saddle along its stable manifold, wander near the saddle f
finite amount of time, and leave it along its unstable ma
fold. For D.Dc , a subset of the stable manifold of th
chaotic saddle is located in the noisy basin of the perio
attractor, as in Fig. 1~b!. As a result, there is a nonzero pro
ability that a trajectory near the periodic attractor is kick
out of the noisy basin and moves toward the chaotic sad
along its stable manifold. Because the chaotic saddle is n
attracting, the trajectory can stay in its vicinity for only
finite amount of time before leaving along its unstable ma
fold and then, enter the noisy basin of the periodic attrac
again, and so on. ForD*Dc , the probability for the trajec-
tory to leave the noisy basin of the periodic attractor is sm
Thus an intermittent behavior can be expected where
trajectory spends long stretches of time near the perio
attractor, with occasional bursts out of it wandering near
chaotic saddle.

A consequence of the noise-induced intermittent beha
is that there is generally unstable dimension variability as
ciated with a continuous trajectory. Under noise, both
chaotic saddle and the periodic attractor belong to a sin
connected dynamical invariant set. As periodic orbits on
chaotic saddle are all unstable and the originally attract
periodic orbit is stable, the noise-induced intermitten

FIG. 1. Schematic illustration of the interplay between the no
and dynamics on a Poincare´ surface of section:~a! trajectories are
confined near the periodic attractor forD&Dc , and ~b! a typical
trajectory can move intermittently between the periodic attrac
and the chaotic saddle forD*Dc .
0-3



d
is
ith
r-
th

te

a

e
io
th
b
i
c

as
o

d
ra
i-
th
le

n
th
at
F
e

t i
ut
e
n

oi
ed

as-
tral

be
sub-
that
n-
ari-

gy

be
of

nal

of
Let

or.
of

ng

ns
tic
-
ns.

the
e-

lue
t its
tor
y
er
ical

d,

tra

and
ese
and
not
oint

not
the
by

rict

ith

ra
ar
t i
s

LAI et al. PHYSICAL REVIEW E 67, 026210 ~2003!
means that a trajectory moves in regions containing perio
orbits with distinct unstable dimensions. A feature that d
tinguishes this type of unstable dimension variability w
that in the literature@12# is that here, the subsets with diffe
ent unstable dimensions are located in distinct regions of
phase space, whereas in high-dimensional chaotic sys
such as the kicked double rotor@12#, unstable periodic orbits
in these subsets tend to mix with each other in the ph
space.

The above argument can be extended to high
dimensional systems. For instance, one can consider per
windows in a chaotic region in the parameter space. If
chaotic attractors near the periodic windows have unsta
dimension 2 or higher, the chaotic saddle in the window
expected to have the same unstable dimension. Noise
then generate continuous trajectories that move in ph
space regions containing periodic orbits with either two
more unstable directions or none.

C. Destruction of neutral direction of flow

At a fundamental level, after onset of chaos, unstable
mension variability induced by noise will destroy the neut
direction of the flow. For a three-dimensional flow, the orig
nal periodic attractor contains no unstable direction, and
chaotic saddle possesses one unstable dimension. The ro
noise, when it is sufficiently large (D.Dc), is to link these
two dynamical invariant sets with distinct unstable dime
sions. Now examine the local eigenplanes that contain
neutral direction of the flow associated with the periodic
tractor and the chaotic saddle, as shown schematically in
2. In the local eigenplane about the periodic attractor, ther
a stable direction and a neutral direction. Letv be the eigen-
vector in the neutral direction. In the eigenplane of a poin
the chaotic saddle, there is an unstable direction and a ne
direction. When a trajectory is driven by noise from the p
riodic attractor to the chaotic saddle along its stable ma
fold, the eigenvectorv maps tov8 ~see Fig. 2!, which can lie
anywhere in the local eigenplane of the corresponding p
in the chaotic saddle. After a time, the vector will be align

FIG. 2. Schematic illustration of the destruction of the neut
direction of the noisy chaotic flow due to unstable dimension v
ability. The local planes about the periodic attractor and a poin
the chaotic saddle do not coincide in general, and these plane
not in a Poincare´ surface of section.
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in the unstable direction, due to the expanding dynamics
sociated with the chaotic saddle. Distances along the neu
direction of the original periodic attractor can no longer
preserved. In general, a neutral vector associated with a
set can no longer be a neutral one, when the trajectory
‘‘carries’’ the vector moves to another subset with more u
stable directions. Thus, we see that unstable dimension v
ability plays a fundamental role in determining the topolo
of the flow after onset of noisy chaos.

The disappearance of the neutral direction can also
seen by examining the influence of noise on the spectra
the Lyapunov exponents. Again take a three-dimensio
flow as an example. Letl3

P<l2
P,l1

P50 and l3
S,l2

S50
,l1

S be the Lyapunov spectra of the periodic attractor and
the chaotic saddle, respectively, in the absence of noise.
l3,l2,l1 be the Lyapunov spectrum of the noisy attract
For D,Dc , the noisy attractor is only a fattened version
the original periodic attractor. Thus we havel i5l i

P( i
51,2,3) @20#. In particular, there is still a null Lyapunov
exponentl150, despite the presence of noise, indicati
that the topology of the flow is preserved. ForD.Dc , there
is an intermittent hopping of the trajectory between regio
that contain the original periodic attractor and the chao
saddle. Letf P and f S be the fractions of time that the trajec
tory spends asymptotically in the corresponding regio
Then we have

l1' f Pl1
P1 f Sl1

S5 f Sl1
S.0,

l2' f Pl2
P1 f Sl2

S5 f Pl2
P,0, ~5!

l3' f Pl3
P1 f Sl3

S,0.

The remarkable feature is that the Lyapunov spectrum of
noisy attractor now contains no null exponent. Thus, imm
diately after the noise amplitude exceeds the critical va
Dc , the noisy attractor becomes chaotic in the sense tha
largest Lyapunov exponent is positive. This chaotic attrac
is, however, fundamentally different in its flow topolog
from any deterministic chaotic attractors in that it no long
contains a neutral direction. We stress that this topolog
disturbance of the flow exists only forD.Dc . For D
,Dc , the neutral direction of the flow is well preserve
despite the presence of noise.

It should be emphasized that the Lyapunov spec
$l1

P ,l2
P ,l3

P% and$l1
S,l2

S,l3
S% in Eq. ~5! are defined with re-

spect to the invariant sets, namely, the periodic attractor
chaotic saddle, respectively, in the absence of noise. Th
sets are located in different regions in the phase space
they are distinct in the sense that, dynamically, they are
mutually connected. That is, in the absence of noise, a p
in a set can never move to another set. ForD,Dc , the two
sets can still be regarded as distinct because they are
mutually connected in the sense that, although a point on
chaotic saddle can be moved to the periodic attractor
noise, the converse is not true. ForD.Dc , the two sets are
mutually connected and so are no longer distinct in a st
sense. However, forD*Dc , a trajectory typically spends
long stretches of time near the original periodic attractor w

l
i-
n
are
0-4
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occasional visits to the chaotic saddle, which occur in a re
tively short time. Under this circumstance the sets can
regarded as distinct but only in an approximate sense. T
is, Eq. ~5! is approximately valid only forD*Dc .

III. SCALING THEORY

We now derive the general scaling law@Eq. ~4!# in all
dimensions. Consider an (N11)-dimensional flow in a peri-
odic window. In the absence of noise, the chaotic saddle
Ku positive exponents, one zero exponent, andKs negative
Lyapunov exponents (Ku1Ks5N) which can be ordered a
follows:

lKu

S1>lKu21
S1 >•••l1

S1.05lS0.2l1
S2>•••>2lKs21

S2

>2lKs

S2 . ~6!

The periodic attractor has one zero exponent andN negative
exponents, as follows:

05lP0.2l1
P2.•••2lN

P2 . ~7!

For D,Dc , an asymptotic trajectory is confined in th
neighborhood of the periodic attractor, so the larg
Lyapunov exponent of the noisy attractor is simplyl1
5lP050. For D*Dc ~after the transition to chaos!, l1 is
approximately given by

l1' f P~D !lP01 f S~D !lKu

S15 f S~D !lKu

S1 . ~8!

Because of the averaging effect of noise, we expect the
pendence on noise of the largest Lyapunov exponentlKu

S1 of

the original chaotic saddle to be weak. Thus the main dep
dence ofl1 on noise comes fromf S(D), the frequency of
visit to the chaotic saddle, which is determined by the m
sure of its stable manifold in the noisy basin of the perio
attractor. To obtain the scaling behavior off S(D), it is nec-
essary to examine the natural measure and the dimen
formulas for chaotic saddle in general.

A. Natural measures and dimension formulas

1. Natural measure

The dimension spectra of a chaotic saddle and its st
and unstable manifolds are determined by the correspon
natural measures, which can be defined as follows. Imagi
phase-space regionS that contains a chaotic saddle. Th
stable and unstable manifolds of the chaotic saddle are
of points that asymptote to it under the forward and ba
ward iterations of the map, respectively. If a large numberN0
of random initial conditions are distributed inS, the corre-
sponding trajectories will leaveS eventually. They do so by
being attracted along the stable manifold, wandering near
chaotic saddle for a finite amount of time, and then exit
along the unstable manifold. LetN(t) be the number of tra-
jectories that still remain inS at time t. Due to the chaotic
nature of the saddle,N(t) decreases exponentially in time,

N~ t !5N0e2t/t, ~9!
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wheret is the average lifetime of the chaotic transients, a
the inverse of which,k[1/t, is the escape rate of the sadd
@21,22#. Since trajectories escape from the chaotic sad
along the unstable manifold, at large positive timet, theN(t)
trajectory points will be in the vicinity of the unstable man
fold. Let B be a small box withinS that contains part of the
unstable manifold. The natural measure associated with
unstable manifold inB can thus be defined as@23,24#

mu~B!5 lim
t→1`

lim
N0→`

Nu~ t,B!

N~ t !
, ~10!

whereNu(t,B) is the number of theN(t) orbits in B at time
t. Similarly, the natural measure of the stable manifold in
box B in S is @23,24#

ms~B!5 lim
t→1`

lim
N0→`

Ns~ t,B!

N~ t !
, ~11!

whereNs(t,B) is thenumber of initial conditionsin B whose
trajectories do not leaveS before timet.

From definitions~10! and ~11!, we see that the natura
measures associated with the stable and unstable mani
in B are determined by the numbers of trajectory points inB
at time zero and timet, respectively. The natural measurem
of the chaotic saddle can then be defined by conside
Nm(r,t,B), the number of trajectory points inB at a timert
in between zero andt,

m~B!5 lim
t→1`

lim
N0→`

Nm~r,t,B!

N~ t !
, ~12!

where 0,r,1, Nm(0,t,B)5Ns(t,B), and Nm(1,t,B)
5Nu(t,B). For largeN0 and t, trajectories remaining inS
would stay near the chaotic saddle for most of the time
tween zero andt, except at the beginning when they a
attracted toward the saddle along the stable manifold, an
the end when they exit along the unstable manifold. Thus
measure defined in Eq.~12! is independent ofr, insofar as
0,r,1.

Note that, althoughN(t) decreases exponentially in time
this decaying factor has been compensated in the definit
of the natural measures@Eqs.~10!–~12!#. These measures ar
thus invariant under the dynamics, and they are also ca
the conditionally invariant measures@22#. Numerically, the
natural measure of the chaotic saddle can be computed
using the sprinkler method@24# or the PIM-triple method
@25,26#, the latter can generate long trajectories on the c
otic saddle.

To define the fractal dimensions, it is necessary to co
the chaotic saddle with a grid of boxes of sized. Let m i be
the natural measure contained in thei th box. The dimension
spectrum@27,28# of the chaotic saddle@24,29# is

dq5 lim
d→0

1

q21

ln (
i

m i
q

ln d
. ~13!
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For instance, the information dimension is

d15 lim
d→0

(
i

m i ln m i

ln d
. ~14!

The dimension spectra of the stable and unstable manif
can be defined similarly based on their natural measures

2. Dimension formulas

The Kaplan-Yorke conjecture states that the informat
dimension of a chaotic set is equal to the Lyapunov dim
sion @30#, which can be computed by the Lyapunov exp
nents of the set. For a chaotic saddle, Huntet al. @29# ob-
tained explicit formulas for the Lyapunov dimensionsdu ,
ds , andd of the stable and unstable manifolds of the sadd
and itself, respectively. Consider theN-dimensional map on a
Poincare´ surface of section. Given the Lyapunov spectrum
the chaotic saddle in Eq.~6!, its forward entropy is

HS5(
i 51

Ku

l i
S12

1

t
. ~15!

Then the dimension of the unstable manifold of the chao
saddle is

du5Ku1I 1
HS2~l1

S21•••1l I
S2!

l I 11
S2

, ~16!

where the integerI is determined by

l1
S21•••1l I

S21l I 11
S2 >HS>l1

S21•••1l I
S2 . ~17!

The dimension of the stable manifold of the chaotic saddl

ds5Ks1J1
HS2~l1

S11•••1lJ
S1!

lJ11
S1

, ~18!

whereJ is determined by

l1
S11•••1lJ

S11lJ11
S1 >HS>l1

S11•••1lJ
S1 . ~19!

The dimension of the chaotic saddle itself is

d5du1ds2N. ~20!

B. Scaling laws of Lyapunov exponent with noise in low
and high dimensions

1. One dimension

For pedagogical purpose, we consider a one-dimensi
chaotic map. In this case, the notion of a neutral direct
does not exist but, nonetheless, we can show that when
system is in a periodic window, the Lyapunov exponent v
sus the noise obeys the same scaling law@Eq. ~4!#. Let lS

.0 and lP,0 be the Lyapunov exponents of the chao
saddle and of the periodic attractor, respectively. We h
02621
ds

n
-

-

,

f

c
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Ks50, Ku51, anddu51. The Lyapunov dimensions of th
chaotic saddle and its stable manifold are equal:

ds5d5
H

lS
512

1

lSt
. ~21!

For an interval of sizee, the natural measure of the stab
manifold is proportional toeds. When the noise is slightly
above the critical level (D*Dc), the length in which the
stable manifold penetrates the noisy basin of the perio
attractor is proportional to (D2Dc). We thus have, for the
frequency of visit to the chaotic saddle,

f S~D !;~D2Dc!
ds;~D2Dc!

12(1/lSt). ~22!

Since there is no zero Lyapunov exponent, Eq.~8! becomes

l' f P~D !lP1 f S~D !lS. ~23!

For D*Dc , f P(D)'1, we have

l2lP' f S~D !lS;~D2Dc!
12(1/lSt), ~24!

which is similar to the scaling law~4! with the following
scaling exponent:

a512
1

lSt
. ~25!

A feature to notice is that in the common situation where
lifetime of the chaotic saddle in a periodic window is larg
(t@1), the scaling exponent is expected to be close to un

2. Two dimensions

For a two-dimensional~Poincare´! map arising from a
three-dimensional flow, consider a circle of sized. The natu-
ral measure of the stable manifold contained within is p
portional to

d ds5~d2!ds/2,

whered2 is proportional to the area of the circle andt is the
lifetime of the chaotic saddle of the Poincare´ map (t is thus
in the unit of T, the average time that a typical trajecto
crosses the Poincare´ section!. Let l1

S.0.l2
S be the

Lyapunov exponents of the saddle. We haveKs51, J50,
and ds522(1/l1

St). From Fig. 1~b!, we see that forD
*Dc , the area in which the stable manifold of the chao
saddle penetrates the noisy basin of the periodic attracto
proportional to: (D22Dc

2). We thus have

l1;~D22Dc
2!ds/2;~D2Dc!

121/(2l1
St), ~26!

which is the scaling law@Eq. ~4!# with the following scaling
exponent:

a512
1

2l1
St

. ~27!

Again, if t@1, the scaling exponent is close to unity.
0-6
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3. N dimensions

For an N-dimensional map@or an (N11)-dimensional
flow#, a similar derivation gives the scaling law@Eq. ~4!#
with the following scaling exponent:

a5
1

N FKs1J1
HS2~l1

S11•••1lJ
S1!

lJ11
S1 G . ~28!

IV. NUMERICAL RESULTS WITH WELL-STUDIED
CHAOTIC SYSTEMS

A. One-dimensional map

In a broad sense, for one-dimensional maps, noise
still induce unstable dimension variability. For instance, in
periodic window, the attractor has only one stable direct
while the coexisting chaotic saddle has only an unstable
rection. Noise can cause a trajectory to visit both. The is
of interest concerning transition to noisy chaos is then
scaling of the Lyapunov exponent~the neutral direction is
not an issue!. To demonstrate the validity of the scaling la
@Eq. ~4!# and the scaling-exponent formula@Eq. ~25!#, we
consider the logistic map@31# xn115axn(12xn), wherea is
the parameter. There is a periodic window of period 8
a53.8008. The noisy logistic map is

xn115axn~12xn!1Djn , ~29!

whereD is the noise strength andjn is a Gaussian random
variable of zero mean and unit variance. Figures 3~a! and
3~b! show, forD51024.8'1.631025, the noisy chaotic at-
tractor in the (xn21 ,xn) plane and the time series$xn%, re-
spectively. An intermittent behavior can be seen, where
trajectory visits the period-8 attractor and the chaotic sad
coexisting in the window in different times. Figure 4~a!
shows the Lyapunov exponentl versus the noise amplitude
where we observe thatl'lP,0 for D,Dc andl starts to
increase forD.Dc . The critical noise amplitude is est

FIG. 3. For the logistic map at parametersa53.8008 andD
51024.8'1.631025: ~a! noisy chaotic attractor and~b! intermit-
tent time series$xn%.
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mated to beDc'1025.1. Figure 4~b! showsl2lP versus
D2Dc on a logarithmic scale, which appears to be algebr
A least-squares fit gives the following estimate of the scal
exponent: 1.0660.04. For the logistic map in this period-
window, the Lyapunov exponent and the lifetime of the ch
otic saddle are estimated to belS'0.425 andt'649. The
theoretical exponenta is thus close to unity, which is con
sistent with the numerical value.

B. Three-dimensional autonomous flows

1. Rössler system
We consider additive noise to the Ro¨ssler oscillator@32#.

The system equations are

dx/dt52y2z1Djx~ t !,

dy/dt5x10.2y1Djy~ t !, ~30!

dz/dt50.21z~x2c!1Djz~ t !,

wherec is the bifurcation parameter,D is the noise ampli-
tute, andjx,y,z are independent Gaussian random variables
zero mean and unit variance. Figure 5 shows a bifurca
diagram of the Ro¨ssler system in the absence of noise, wh
the asymptotic values of the dynamical variabley obtained at
the Poincare´ surface of sectionx50 are plotted versus the
parameterc. We see that periodic windows are quite com
mon. For instance, a period-3 window exists aboutc55.3.
Figure 6~a! shows the projection of the period-3 attractor in
the (x,y) plane forc55.3. To study the effect of noise, w
fix c at this value and examine the dynamics as noise am
tude is increased from zero. We use the standard sec
order Milshtein method@33# to integrate stochastic differen
tial equations~30!. We find that chaos arises forD.Dc
'1022.26'5.531023. For D*Dc , the asymptotic trajec-
tory of the system is confined in the neighborhood of t
original period-3 attractor most of the time, as shown in F

FIG. 4. ~a! The increase of the Lyapunov exponentl vs the
noise variation D2Dc . The critical noise amplitude isDc

'1025.1. ~b! Algebraic scaling betweenl2lP and D2Dc . The
scaling exponent is close to unity~indicated by the dashed line!.
0-7



th

he

n-
o

ise

, s
th
th
ow
n
bi

ot
t-

t

al

the
h-

en
o

o-
ct a
te a
nd

rela-
ble
ted
For
ov

tic
tely
/
al-
r of
he

he
are
trac-
w.

LAI et al. PHYSICAL REVIEW E 67, 026210 ~2003!
6~b! for D50.01. For a larger value ofD, the trajectory
appears to spend relatively more time in the region where
original chaotic saddle resides, as shown in Fig. 6~c!. Figure
7~a! shows the first two Lyapunov exponents of t
asymptotic attractor versus the noise amplitudeD. We see
that for D,Dc , the largest Lyapunov exponent is zero, i
dicating that the noisy flow is not chaotic. The presence
the null Lyapunov exponent means that, in spite of no
there is a neutral direction associated with the flow. ForD
.Dc , the largest Lyapunov exponent becomes positive
the noisy flow is chaotic. The remarkable phenomenon is
there is no longer a null Lyapunov exponent, indicating
disappearance of the neutral direction for noisy chaotic fl
Thus the topology of the noisy flow is disturbed fundame
tally after the onset of chaos by unstable dimension varia
ity, as we have argued. Figure 7~b! shows, forD*Dc , the
scaling of the largest Lyapunov exponent of the noisy cha
attractor withD2Dc , which is apparently algebraic. A leas
squares fit between log10l1 and log10(D2Dc) gives the
slope of 0.9460.03.

FIG. 5. Bifurcation diagram of the noiseless Ro¨ssler system.

FIG. 6. Asymptotic trajectory of the Ro¨ssler system for~a! D
50, ~b! D50.01, and~c! D50.02.
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The theoretically predicted algebraic scaling exponena
in Eq. ~27! involves two quantitiest and l1

S , the average
lifetime and the largest Lyapunov exponent of the origin
chaotic saddle, respectively. To computet, we setD50, use
a large number of transient chaotic trajectories, and count
numberN(t) of trajectories that have not fallen in the neig
borhood of the periodic attractor at timet. The inverse of the
rate of the exponential decay inN(t) givest. The decay law
can be conveniently computed on a Poincare´ surface of sec-
tion. Say one obtainsN(n);e2kn, wheren is the discrete
time andk is the decay rate. The actual lifetime is thus giv
by t5T/k, whereT is the average return time of the flow t
the Poincare´ section. To estimatel1

S , there are different
ways. ~1! One can compute the finite-time Lyapunov exp
nents for many transient chaotic trajectories and constru
histogram of the exponents. In particular, one can distribu
large number of initial conditions in the phase space a
choose those whose trajectories behave chaotically for a
tively long time. These constitute approximately an ensem
of initial conditions that can be regarded as being distribu
according to the natural measure of the chaotic saddle.
each such initial condition, the corresponding Lyapun
spectrum can be computed in finite timen, yielding the prob-
ability distributions for the distinct exponents of the chao
saddle. For a chaotic set, the distributions are approxima
Gaussian with width that decreases in time according to 1An
@34#. The centers of the distributions are the asymptotic v
ues of the corresponding exponents, if an infinite numbe
initial conditions is used. The center of the distribution of t
largest exponent is thus a good approximation ofl1

S for a
finite number of initial conditions.~2! For a periodic window
that is relatively small in size in the parameter axis, t
Lyapunov exponents of the chaotic saddle in the window
approximately the same as the exponents for a chaotic at
tor at a parameter value slightly before or after the windo

FIG. 7. For the Ro¨ssler system,~a! the first two Lyapunov ex-
ponents vsD about the transition, and~b! algebraic scaling of the
largest Lyapunov exponent withD2Dc . From ~a!, we see that
there is no longer a neutral direction of the flow forD.Dc . The
dashed line in~b! indicates the theoretical slopea.
0-8
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We use the second approach to obtain an estimated valu
l1

S . For the Ro¨ssler system, we obtaint'24.1 and l1
S

'0.35, which givesa'0.94. We see that there is an exce
lent agreement between the theoretical scaling law@Eq. ~4!#
and numerics.

2. Lorenz system

We next consider the noisy Lorenz system@35#,

dx/dt510~y2x!1Djx~ t !,

dy/dt5gx2y2xz1Djy~ t !, ~31!

dz/dt52~8/3!z1xy1Djz~ t !,

whereg is the bifurcation parameter, andjx,y,z are indepen-
dent Gaussian random variables of zero mean and unit v
ance. Figure 8 shows a bifurcation diagram containing a
riodic window, where the asymptotic values of the dynami
variablex(t) at the Poincare´ surface of sectionz5g21 is
plotted againstg. In the parameter range there is a period
window. We fix g592.8. The period-6 attractor in the ab
sence of noise is shown in Fig. 9~a!. As noise is turned on
the structure of the attractor appears to become progress
more complicated, as shown in Figs. 9~b! and 9~c! for D
50.06 and D50.2, respectively. The behavior of th
Lyapunov exponents versus the noise amplitude is show
Fig. 10~a!, which is similar to that of the Ro¨ssler system. We
see that, for small noise, the largest Lyapunov exponen
zero, indicating that the trajectory is still confined in th
vicinity of the period-6 attractor. Transition to chaos occu
at D5Dc'1021.46'0.025. For D.Dc , the largest
Lyapunov exponent becomes positive, and the neutral di
tion of the flow is destroyed. The algebraic scaling of t
largest Lyapunov exponent versus (D2Dc) is shown in Fig.
10~b!, where the numerical scaling exponent is estimated
be 0.9760.03. The theoretical exponent is estimated to

FIG. 8. Bifurcation diagram of the noiseless Lorenz system. T
Poincare´ surface of section used to compute the diagram isz5g
21.
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about 0.99 (l1
S'0.59 andt'75.0). There is again a goo

agreement between numerics and theory.

C. Coupled Rössler system

As a high-dimensional example, we consider the follo
ing system of two coupled Ro¨ssler chaotic oscillators@32#
under noise:

dx1,2/dt52y1,22z1,21K~x2,12x1,2!1Dj1,2
1 ~ t !,

dy1,2/dt5x1,210.2y1,21Dj1,2
2 ~ t !, ~32!

dz1,2/dt50.21z1,2~x1,225.3!1Dj1,2
3 ~ t !,

where K is the coupling strength. For small coupling, th
chaotic set of the system can have two positive Lyapun

e
FIG. 9. For the Lorenz system in a period-6 window, the attr

tor for ~a! D50, ~b! D50.06, and~c! D50.2.

FIG. 10. For the noisy Lorenz system in a period-6 window:~a!
the first two Lyapunov exponents near the transition to chaos;~b!
algebraic scaling of the largest Lyapunov exponent after the o
of chaos. The dashed line indicates the theoretical slope.
0-9
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exponents. A period-3 window exists forK50.01 in which
there is a periodic attractor and a chaotic saddle with
positive exponents. Figure 11~a! shows the first four
Lyapunov exponents of the attractor versus the noise am
tude D. Transition to chaos occurs atD5Dc'1022.36

'0.0044, where forD.Dc , there is a positive Lyapunov
exponent and the noisy chaotic flow has no neutral direct
Figure 11~b! shows the algebraic scaling ofl1 with D
2Dc , where the numerical scaling exponent is appro
mately 1.0260.02. To estimate the theoretical exponenta,
we note that for Eq.~32!, N55, Ks53, andJ51. Compu-
tations give l1

1'0.34, l2
1'0.29, andt'113.2, andH

5l1
11l2

121/t'0.62. Equation~28! thus yields the value
of a

a5
1

5 S 3111
l2

12t21

l2
1 D '0.99,

which agrees with the numerical result.

V. TOPOLOGICAL RIGIDITY, INTERMITTENCY,
AND VALIDITY OF SCALING ASSUMPTION

A. Tolological rigidity

From the numerical examples with continuous-time flo
in Sec. IV, we see that the topology of the noisy chaotic fl
after the transition is fundamentally different from that of t
noisy but nonchaotic flow before the transition. To charac
ize this change in the flow topology, we introduce the qu
tity

D05minul i u for i 51, . . . ,N, ~33!

which is the minimum of the absolute value of the Lyapun
exponent closest to zero. Thus, as can be seen from F

FIG. 11. For the noisy coupled Ro¨ssler system@Eq. ~32!# in a
period-3 window,~a! the first four Lyapunov exponents near th
transition to chaos, and~b! algebraic scaling of the larges
Lyapunov exponent after the onset of chaos. The dashed line
cates the theoretical slope.
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7~a!, 10~a!, and 11~a!, D0 first increases from zero asD is
strengthened fromDc , reaches maximum at someDm
>Dc , and then decreases asymptotically to zero asD is
increased further, mimicking a resonance-like behavior. T
quantityD0 is thus a measure of the degree of the topologi
disturbance to the deterministic flow by noise. LetD0

m be the
value ofD0 at Dm , the following quantity can be defined:

x0512
D0

D0
m

, ~34!

where if x051, the topology of the flow is preserved in th
sense that there is a neutral direction andx050 indicates a
severe destruction of such a topology. Equivalently,x0 also
measures the degree of noise-induced unstable dimen
variability, which is most severe ifx050. We call x0 the
topological rigidityof the flow @36#. Figures 12~a! and 12~b!
show, for the Ro¨ssler and Lorenz systems studied in Se
IV B, respectively,x0 versus the noise amplitudeD. The
resonantlike behavior inx0 is apparent. Note that this topo
logical aspect of the influence of noise is meaningful only
continuous-time flows.

B. Intermittency

The mechanism of the transition to chaos as the no
amplitude is increased, which is supported by numerical
amples in Sec. IV, indicates that a typical trajectory is co
fined in the neighborhood of the original periodic attrac
for D,Dc . For D*Dc , there is a small probability that th
trajectory can escape the original attractor and visit the or
nal chaotic saddle. As the saddle is nonattracting, the tra
tory will be attracted to the attractor, and so on. An interm
tent behavior is then expected forD*Dc , in which a
trajectory spends most of the time in the vicinity of the orig
nal periodic attractor with occasional bursts out of the attr
tor. If we regard motions near the attractor as an ‘‘off’’ sta
and the bursts as an ‘‘on’’ state, there is then on-off interm

i-

FIG. 12. The topological rigidityx0 vs the noise amplitude for
~a! the Rössler and~b! the Lorenz systems.
0-10
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tency @6,37–39#. But what are the characteristics of the o
off intermittency associated with a noise-induced transit
to chaos?

For continuous-time flows, numerically, the intermitte
behavior can be conveniently visualized on a Poincare´ sur-
face of section. Figures 13~a!–13~c! show, for the Ro¨ssler
oscillator in the period-3 window studied in Sec. IV B 1, tr
jectories on the Poincare´ plane (yp ,zp) defined byx50 for
D50, D50.01, and D50.02, respectively. ForD*Dc
@panel~b!#, the trajectory tends to concentrate on the origi
period-3 attractor@panel~a!# with occasional motion outside
the attractor wandering in a chaotic manner. For the thr
times iterated map on the Poincare´ section, the period-3 at
tractor becomes a fixed point. Let (Dyp ,Dzp) be the devia-
tion of a trajectory from the fixed point. We expect the tim
traces ofDyp(n) and Dzp(n) to exhibit an on-off intermit-
tency for D*Dc , as shown in Figs. 14~a! and 14~b! for D
50.01 and 0.02, respectively. The intermittent behavior

FIG. 13. For the noisy Ro¨ssler system in the period-3 window
the behaviors of a trajectory on the Poincare´ plane (yp ,zp) defined
by x50 for ~a! D50, ~b! D50.01, and~c! D50.02.

FIG. 14. For the noisy Ro¨ssler system in the period-3 window
on-off intermittency inDyp(n) for ~a! D50.01 and~b! D50.02.
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be characterized by the laminar-phase distribution, that
the probability distribution of the time that the trajecto
spends in the ‘‘off’’ state. Figures 15~a! and 15~b! show, on a
semilogarithmic scale, the laminar-phase distributionsP(t l)
for D50.01 andD50.02, respectively, wheret l denotes the
time interval during which the trajectory is in the ‘‘off’’ state
For Figs. 15~a! and 15~b!, t l is obtained by setting an arbi
trary numerical thresholdD ȳp in Figs. 14~a! and 14~b!. The
apparently linear behavior in the plot of logP(tl) versust l
indicates that the laminar-phase distribution isexponential.

Similar behaviors also occur for the Lorenz system. W
focus on the period-6 window studied in Sec. IV B 2. Figur
16~a!–16~c! show typical trajectories on the Poincare´ plane
(xp ,yp) defined byz5g21 for D50, D50.06, andD
50.2, respectively. Because of the robust one-dimensio

FIG. 15. For the noisy Ro¨ssler system in the period-3 window
laminar-phase distributions of the on-off intermittency for~a! D
50.01 and~b! D50.02. The distributions are apparently expone
tial.

FIG. 16. For the noisy Lorenz system in the period-6 windo
the behaviors of a trajecotry on the Poincare´ plane (xp ,yp) defined
by z5g21 for ~a! D50, ~b! D50.06, and~c! D50.2.
0-11
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structure of the chaotic Lorenz system, under noise
trajectory tends to move approximately along a on
dimensional curve. Figures 17~a! and 17~b! show the on-off
intermittent behavior in the variableDxp(n) for D50.06 and
0.2, respectively, which is thex component of the deviation
of the trajectory from the original period-6 attractor on
six-times iterated map on the Poincare´ plane. The laminar-
phase distributions of the on-off intermittency are apparen
exponential, as shown in Figs. 18~a! and 18~b! for D50.06
andD50.2, respectively.

In most previous works on on-off intermittency@37,38#,
the laminar-phase distributions appear to be algebraic
least for small times. In fact, as pointed out in Ref.@38#, in a
typical system setting of on-off intermittency where t
phase space contains an invariant subspace, the lam
phase distribution is strictly algebraic with the universal sc
ing exponent of23/2 at the onsetof on-off intermittency.

FIG. 17. For the noisy Lorenz system in the period-6 windo
on-off intermittency inDxp(n) for ~a! D50.06 and~b! D50.2.

FIG. 18. For the noisy Lorenz system in the period-6 windo
laminar-phase distributions of the on-off intermittency for~a! D
50.06 and~b! D50.2. The distributions are exponential.
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Away from the onset, the distribution is algebraic for smallt l
but has an exponential tail for larget l ,

P~t l !;t l
23/2e2bt l, ~35!

whereb.0 is a constant. A more recent study indicates t
the exponential behavior tends to dominate if there is
symmetry-breaking@39#. The robust exponential scaling be
havior observed for almost all times in Figs. 15 and 18 th
suggests that there is a symmetry breaking in the underly
system, generating on-off intermittency associated w
noise-induced transition to chaos.

The exponential distribution of the laminar phases ass
ated with the transition to chaos in discrete-time rand
maps was observed and analyzed in Ref.@6#. Here we wish
to point out that the behavior can also be understood
considering an on-off intermittent process with symme
breaking. In particular, we consider a one-dimensional v
ableX(n) characterizing the deviation between the trajecto
and original periodic attractor on a Poincare´ surface of sec-
tion. ~The null Lyapunov exponent is thus irrelevant for o
consideration here.! The largest nontrivial Lyapunov expo
nent l is negative forD,Dc and slightly positive forD
*Dc . In finite times, there are fluctuations in the expone
Approximately, the dynamics ofX(n) obeys

X~n11!5exp@l11h1j1~n!#X~n!1b f~Xn!1h2j2~n!,

~36!

whereh1j1(n) is a zero-mean chaotic process that simula
the fluctuations of the finite-time Lyapunov exponen
b f(Xn) models symmetry-breaking, andh2j2(n) represents
the noise term. Introducing a new variableY52 ln X, Eq.
~36! becomes, approximately, a random walk,

Yn115Yn1nn , ~37!

wherenn is determined by the symmetry-breaking term, t
noise, and the fluctuations of the finite-time Lyapunov exp
nent. In general, we expect^nn&5” 0 and in fact, it can be
large because of symmetry breaking@39#. The average drift
of the random walk is given byn̄5*nF(n)dn5” 0, where
F(n) is the probability distribution ofn. To solve the ran-
dom walk, one can write down the associated Fokker-Pla
equation,

]P

]t
1 n̄

]P

]Y
5D

]2P

]Y2
, ~38!

where P(Y,t) is the probability distribution of finding the
walker at locationY at time t and D5*(n2 n̄)2F(n)dn is
the diffusion coefficient. A detailed solution to Eq.~38! for
on-off intermittency with symmetry breaking can be found
Ref. @39#, which predicted that the distribution of the lamin
phase is exponential, insofar as a parameter character
the symmetry breaking is not zero, no matter how sm
Biased random walks thus represent a plausible mechan

,

,
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to account for the on-off intermittent behavior associa
with noise-induced chaos near its onset.

Another aspect of the on-off intermittency concerns
average amplitude of the bursts. Yuet al. @6# predicted that,
for a fixed noise amplitude, the average size of the bu
scales linearly with a system parameter. We note that
purpose of Ref.@6# is to understand the fractal distribution o
floaters on the surface of a fluid based on transition to ch
in random maps. The natural setting is thus to fix the no
amplitude and to investigate how a chaotic attractor arise
the underlying random map as a system parameter is va
In such a setting, the largest Lyapunov exponent scales
early with the variation of system parameter from the criti
value. Our setting is different in that we focus on the tran
tion to chaos as the noise amplitude is increased, for fi
system parameters. Assuming the system is in a peri
window of periodp, to define the average bursting amp
tude, we focus on thep-times-iterated map on a Poinca´
surface of section and examine the deviationS of the trajec-
tory xp from the fixed pointxp

f of the map~which corre-
sponds to the original period-p attractor!,

S[A^uxp2xp
f u2&, ~39!

where^•& can be either the ensemble or time averages.
cause of the algebraic dependence ofl1 on the noise differ-
ence (D2Dc), we expect the dependence ofS on (D
2Dc) not to be linear, but the dependence ofSon l1 should
be approximately linear, as shown in Fig. 19, where pan
~a! and~b! are for the Ro¨ssler system in the period-3 windo
and for the Lorenz systems in the period-6 window stud
in Sec. IV, respectively.

C. Validity of scaling assumption

The base of our scaling analysis is Eq.~8!, which states
that forD*Dc , the largest Lyapunov exponentl1 is propor-

FIG. 19. After transition to chaos, linear dependence of the
erage bursting amplitude of on-off intermittency on the larg
Lyapunov exponent for~a! the Rössler system in the period-3 win
dow and~b! the Lorenz system in the period-6 window studied
Sec. IV.
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tional to the frequency of visit to the original chaotic sadd
How good is this assumption? To provide a justification,
compute the frequencyf for D*Dc and plot it againstl1, as
shown in Figs. 20~a! and 20~b! for the Rössler and Lorenz
systems considered in Sec. IV. The linear dependence ol1

on f appears to be robust.

VI. MORE EXAMPLES

A. A high-dimensional physical example

In this physical example, we show that the requiremen
the coexistence of a periodic attractor and a chaotic sa
can be relaxed to the coexistence of a chaotic attractor a
nonattracting chaotic saddle. Here noise can cause the
otic attractor to develop an additional positive Lyapunov e
ponent and, remarkably, this exponent scales algebraic
with the noise variation as predicted.

As shown in Fig. 21, our system consists of a pendul
of lengthLp , massM p , and viscous dissipation with coef
ficient Cp attached to the lower endB of a linear viscoelastic
rod of lengthLr , cross sectionAr , mass densityr r , elastic-
ity modulusEr , and coefficient of internal viscous dissipa
tion Cr @41#. The upper endA of the rod is subject to a
periodic motionxA(t), resulting in a body force throughou
the rod. We restrict the rod to undergo motions along
longitudinal axisx and the pendulum to planar motions. L
u(x,t) and u(t) denote, respectively, the displacement fie
of the rod with respect to A and the angular displacemen
the pendulum mass.

Let j5x/Lr ,t5vpt ~derivative with respect tot is de-
noted by a ‘‘dot’’!, wherevp

25g/Lp is the natural frequency
of the uncoupled pendulum, denote normalized spatial
temporal variables, respectively. LetU5u/Lr be the dimen-
sionless displacement field for the rod. The dynamics of
rod-pendulum configuration are described by

-
t

FIG. 20. After transition to chaos, linear dependence of the la
est Lyapunov exponentl1 on f, the frequency of visit to the origina
chaotic saddle for~a! the Rössler system in the period-3 window
and ~b! the Lorenz system in the period-6 window studied in S
IV.
0-13
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ü52@12V̈B~t!1ẌA~t!#sin~u!22zpu̇, ~40!

m2p2

4

]2V~j,t!

]t2
5

]2V~j,t!

]j2
12z rm

]3V~j,t!

]t]j2

2
m2p2

4
ẌA~t!, ~41!

V~j50,t!50,

]V

]j
~j51,t!52

m2bp2

4
@12T cos~u!#, ~42!

where

V~j,t!5U~j,t!2Û~j!, ~43!

Û~j!5
m2p2

8
@2~11b!j2j2#, ~44!

T[
Tp

M pLpvp
2

5 u̇21@12ẌB~t!#cos~u!, ~45!

XA(t)5xA(t)/Lp , and XB(t)5xB(t)/Lp . The variable
V(j,t) denotes the normalized displacement field with
spect to the normalized static displacement fieldÛ(j) ~44!,
and VB(t)[V(j51,t). Equation~42! gives the boundary
conditions for the coupled rod@Eq. ~41!#. Note that the fre-
quency of the uncoupled pendulum@Eq. ~40!# and those of
the rod @Eq. ~41!# are respectively normalized to unity an
to mm5v1 /vm51/(2m21),m51,2, . . . ,̀ , where vm

2

5p2(2m21)2Er /Lr
2r r ~the original natural frequencies o

the uncoupled rod!. The dissipation factors for the pendulu
and the rod are given respectively byzp5Cp/2vpLpM p and
z r5Cr /8v1p2Lr

2r r . Equation~45! gives the normalized ten
sion T along the pendulum arm.

FIG. 21. The geometry of the rod-pendulum system. The do
configuration is the stable equilibrium.
02621
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In the above model, the physical parameters that con
the coupling between the pendulum and the rod are the
quency ratio m5vp /v1 and the mass ratio b
5M p /Arr rLr . For a fixedb, the limit of the coupled sys-
tem @Eq. ~40!# asm→ 0 describes the motions of the par
metrically forced uncoupled pendulum. That is, the coupl
is one way due to the drivingXA(t), which we assume to be
periodic with period 2p/v. However, in reality, the driving
is always perturbed by a small component of the displa
ment forces. So we assume a very small perturbation in
frequency of the driving below.

A modal expansion of theV(j,t) reduces the coupled
system to the following set of coupled oscillators, which w
truncate for our simulations. We include a separate perio
driving as a limit-cycle solution which contains a variation
the driving frequencyv due to the velocity of the pendulum

ẏ15y2 ,

ẏ25
1

d F22z1dy21
1

2
b2y2

2 sin~2y1!2~siny1!y3111b

12zy41daS 11
1

b D y6G ,
ẏ35

y4

m
,

ẏ45
1

dm
@2y322zy41by2

2 cosy11d~12ay6!2~11b!#,

ẏ55y51v~0.11sy2!y62y5~y5
21y6

2!,

ẏ652v~0.12sy2!y51y62y6~y5
21y6

2!,

whered511b cos2 y1. Details of the full derivation of the
continuum expansion can be found in Ref.@41#. Notice that
the limit cycle is modeled by the last two equations. T
frequency contains a feedback modulation term, represen
the interaction of the pendulum and rod displacement w
the periodic driver. The coupling is now bidirectional. A
modeled, the truncated rod-beam system is autonomous
our computations here, we use the parametersb51, z1
50.01, z50.01, a51.8, m50.0625, v51.9527, ands
50.0001. Here the relatively small value ofs indicates a
small variation in the frequency of the driving term.

In the deterministic case, there is a chaotic attractor w
one positive Lyapunov exponent. With additive noise of a
plitudeD, a nearby chaotic saddle is excited and the poten
number of unstable dimensions is increased from one to t
This can be seen by the number of positive Lyapunov ex
nents. Figure 22~a! shows the six Lyapunov exponents fo
the pendulum model vs the noise amplitude. The system
comes high-dimensionally chaotic with two positiv
Lyapunov exponents forD.Dc , where Dc'1020.18

'0.66. Notice that, forD,Dc , the second largest expone
represents the neutral direction. Figure 22~b! shows the scal-
ing of this exponent with the noise variation on a logarithm

d
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scale. The scaling is apparently algebraic with the expon
1.0560.04, which is close to unity. This example, togeth
with others in Sec. IV, thus illustrates that our predicted sc
ing of the noise-induced positive Lyapunov exponent ho
not only for low-dimensional chaos with one positive exp
nent but also for high-dimensional noisy chaos with multip
positive exponents.

B. Nonautonomous systems

Nonautonomous systems may also exhibit noise-indu
chaos. The difference between autonomous and nonaut
mous systems in terms of the Lyapunov exponents is tha
the latter, there is always a zero Lyapunov exponent ass
ated with the time axis, regardless of the noise level, as
can regard the time as an independent variable to conver
system into an autonomous one. For nonautonomous sy
under additive noise, the general observation is that
maximal Lyapunov exponent tends to increase as nois
increased through a critical value. Remarkably, this incre
obeys the same algebraic scaling law as in autonomous
tems.

As an illustrative example, we consider the followin
modified susceptible-infected model~MSI! arising in epide-
miology @9,40#:

S8~ t !5m2mS~ t !2b~ t !I ~ t !S~ t !,
~46!

I 8~ t !5S a

m1g Db~ t !I ~ t !S~ t !2~m1a!I ~ t !,

FIG. 22. ~a! The Lyapunov exponents for the pendulum mod
vs the noise amplitudeD. The critical noise amplitude for transitio
to high-dimensional noisy chaos isDc'1020.18. ~b! The algebraic
scaling of the noise-induced positive Lyapunov exponent with no
variation. The scaling exponent is close to unity, in agreement w
our prediction.
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with b(t)5b0(11d cos 2pt). In @9,40#, this model was
studied under additive noise. It was shown that for su
ciently strong noise, the dynamics of the system can be tra
formed from regular periodic cycles to stochastic chaos.
the deterministic case with parameter values atm50.02, a
51/0.0279,g5100, b051575, andd50.095, there exist
two stable periodic orbits, two unstable periodic orbits, an
partially formed heteroclinic orbit. There is no periodic win
dow structure in the parameter space but instead, the n
essentially completes the near-heteroclinic tangencies to
ate noise-induced intermittency. The two stable periodic
bits and the stochastic chaotic saddle between them for
single connected dynamical invariant set, which has a p
tive Lyapunov exponent. The exponent appears to obey
algebraic scaling law.

Numerically, we observe that with additive noise, the s
ond Lyapunov exponent is decreased. For large noise,
system becomes chaotic with one positive exponent and
other negative Lyapunov exponent.~Note that the third
Lyapunov exponent is not effected by noise and is alw
zero because it represents time.! Figure 23 shows the two
nontrivial Lyapunov exponents vs the noise amplitud
where we observe thatl1'lP for D,Dc and starts to in-
crease forD.Dc . The critical noise amplitude is estimate
to beDc'1022.77'0.0017. Figure 23~b! showsl2lP ver-
susD2Dc on a logarithmic scale, which appears to be li
ear. A least-squares fit gives the following estimate of
algebraic scaling exponent: 1.0760.05, which is close to
unity.

VII. DISCUSSION

The interplay between deterministic chaos and noise
been a topic of continuous interest@1–9,13# as it is funda-
mental to both nonlinear dynamics and statistical phys

l

e
h

FIG. 23. ~a! The Lyapunov exponentsl for the MSI model vs
the standard deviation of the noiseD. The critical noise amplitude is
Dc'1022.77. ~b! The algebraic scaling betweenl2lP and D
2Dc . The scaling exponent is 1.0760.05.
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While both noise and chaos signify random behavior in
system dynamics, their meaning and consequences are
ferent. Chaos is characterized by a sensitive dependenc
initial conditions, but a noisy system is not necessarily c
otic. There are, however, circumstances under which n
can induce chaos, a phenomenon that has long been re
nized@1–9#. A common situation is where the system has
potential to become chaotic or it is already transiently c
otic. In such a case, as the noise amplitude is increased
system can develop an attractor that emulates chaos.
characteristic features of the transition to chaos are the fo
of this paper. Our main contributions are the following:~1!
we find that the dynamics of noisy chaos is typically sever
nonhyperbolic as it is associated with unstable dimens
variability, ~2! as a result of this nonhyperbolicity, fo
continuous-time physical systems described by differen
equations, the topology of a noisy chaotic flow is fundam
tally different from those of the deterministic flows~chaotic
or nonchaotic! or of noisy nonchaotic flows in that there
no neutral direction associated with noisy chaos; and~3! we
have established a universal scaling law associated with
largest Lyapunov exponent about the transition to no
chaos.

Although our work is theoretical, some applied situatio
n
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where our results may be relevant are the following.~1! It
has been suggested that pathological destruction of cha
behavior may induce some types of brain seizures@42# and
heart failures@43#. In vital physiological systems chaotic dy
namics can in fact be considered as ‘‘normal’’@44#. Bifurca-
tions to periodic behavior are viewed as a pathophysiolog
loss of the range of adaptive possibilities@45#. In these situ-
ations the presence of noise can be advantageous as i
help induce or restore chaos.~2! Maintaining chaos can be
critical for industrial applications such as fluid mixing@46#.
Noise can again be quite desirable.~3! There are applications
where one wishes to induce chaos to disable systems su
electronic circuits, which can possibly be achieved by no
perturbations. A good understanding of how a nonlinear s
tem can emulate chaotic behavior in response to nois
clearly essential for designing the perturbations.
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