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Noise-induced unstable dimension variability and transition to chaos in random dynamical systems
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Results are reported concerning the transition to chaos in random dynamical systems. In particular, situations
are considered where a periodic attractor coexists with a nonattracting chaotic saddle, which can be expected
in any periodic window of a nonlinear dynamical system. Under noise, the asymptotic attractor of the system
can become chaotic, as characterized by the appearance of a positive Lyapunov exponent. Generic features of
the transition include the following:l) the noisy chaotic attractor is necessarily nonhyperbolic as there are
periodic orbits embedded in it with distinct numbers of unstable directionstable dimension variability
and this nonhyperbolicity develops as soon as the attractor becomes clfi@ofia;, systems described by
differential equations, the unstable dimension variability destroys the neutral direction of the flow in the sense
that there is no longer a zero Lyapunov exponent after the noisy attractor becomes chadfig;thadargest
Lyapunov exponent becomes positive from zero in a continuous manner, and its scaling with the variation of
the noise amplitude is algebraic. Formulas for the scaling exponent are derived in all dimensions. Numerical
support using both low- and high-dimensional systems is provided.
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[. INTRODUCTION mon route to chaos via the period-doubling bifurcations,
noise tends to smooth out the transition and induce chaos in
In this paper, the problem of the transition to chaos inparameter regimes where there is no chaos otherwise. Scal-
random dynamical systenig—9] is revisited, and results are ing laws concerning the noisy transition in the period-
presented concerning the topological and scaling aspects gpubling regime were investigated by Deutd&} and by
the transition which, to our knowledge, have not been noPeutsch and Paladif#] using the random-matrix approach.
ticed previously. In particular, we consider the setting whereThe observability and scaling of fractal structures near the
in the absence of noise, the asymptotic attractor of the sydransition to chaos in random maps were investigated by Yu
tem is periodic, but nonetheless there is a coexisting chaotigt al. [6], followed by observation and characterization of
saddle that is nonattracting. This setting is by no means sp&lich fractal structures formed by floaters on the surface of
cial, because it can occur in every periodic window of afluid [14]. Features of transition to chaos in noisy dynamical
nonlinear system, and it is well known that these windowssystems, such as intermittency and the smooth behavior of
are dense in the parameter spat8]. When the system is the Lyapunov exponents, were also found in the transition
under noise, there can be a transition in the asymptotic affom strange nonchaotic to strange chaotic attractors in qua-
tractor from being nonchaotic to chaotic as the noise amplisiperiodically driven systemgl5] and in the bifurcation to
tude is increased through a critical value. For systems dechaos with multiple positive Lyapunov exponents in high-
scribed by differential equations, we shall argue that thedimensional systemsl6]. It was also demonstratd@] that
transition is typically accompanied by a severe topologicathe transition is closely related to the problem of noise-
change in the flow in that the neutral direction of the flow,induced synchronization in chaotic systerfs3]. Recent
existing prior to the onset of noisy chaos, is destroyed. Furworks include noise-induced chaos in discrete-time maps and
thermore, we find that the dynamical mechanism for the toin semiconductor laser systerfig]. Noise-excited chaos is
pological destruction of the neutral direction is unstable di-2lso an important phenomenon in the dynamics of epidemic
mension variability [11,12, a type of nonhyperbolicity —outbreakg9].
characterized by the existence of periodic orbits along a con- The focus of this paper is on the transition to chaos in
tinuous trajectory with distinct numbers of unstable eigendifandom dynamical systems described by the following gen-
rections. At a quantitative level, we derive a scaling law foreral class of stochastic differential equations:
the Lyapunov exponent with the noise variation about the
transition. These results are valid for systems in all dimen- dx
sions, and we believe they are generic and consequently ob- gt~ Fx.p)+DE(), 1)
servable in laboratory experiments.
The interplay between chaos and noise has been a topic of
continuous interest in nonlinear dynamics and statisticawherexe RV, F is the velocity field that can potentially gen-
physics[1-9,13. Transition to noisy chaos is one of the erate chaosp is a system parameter, ami(t) represents
fundamental problems. A brief history of the problem is thethe additive Gaussian white noise of amplitudeé(t) is an
following. Crutchfieldet al. [1] discovered that, in the com- N-dimensional vector whose components are independent
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Gaussian random variables of zero mean and unit varJancedistances are conserved, in sharp contrast to deterministic
For a typical trajectori(t) on an ergodic, invariant set, the chaotic flows[18] or noisy nonchaotic flows foD<D...

Lyapunov spectrunil?] is However, forD sufficiently larger tharD., one Lyapunov
exponent becomes increasingly close to zero. The topologi-
\ = lim E|n|5Xi(T)| (o  Cal destruction of the neutral direction of the flow is, there-
LT ex(0)]” fore, most severe foD=D.. (3) Quantitatively, for D

=D, the largest Lyapunov exponent versus the noise am-
where{8x(t)}]\_, is a set of infinitesimal, orthonormal vec- Plitude obeys the algebraic scaling law
tors evplving in the tangent space of the velocity field, as A~ (D—Dy)", 4)
follows:
where « is a scaling exponent that depends on dynamical
doxi(t) _ IF(X.p) - S%(1)=DF(x,p) - 8(t) 3) invariants of the original chaotic saddle such as its Lyapunov
dt X n P e exponents and lifetime. We are able to derive formulas for
the exponent irall dimensions. A surprising finding of our
andDF(x,p) is the Jacobian matrix evaluated along the tra-work is that, even in low-dimensional chaotic systems pos-
jectory x(t). Performing the orthonomalization procedure in sessing at most one positive Lyapunov exponent, unstable
a proper way, the exponents can be ordered, as follaws: dimension variability can arise due to noise, in contrast to the
=Ny -+ =Ny, Where\; is the largest Lyapunov exponent. common belief that this type of nonhyperbolicity usually oc-
Here bychaos in the random dynamical systfg. (1)], we  curs in high-dimensional systeni$2]. A brief account of
mean that the largest Lyapunov exponent is positive: part of this work appeared recenfly9].
>0. (The resulting attractors, despite the presence of noise The rest of the paper is organized as follows. In Sec. I,
in the system, are indeed chaoticlike attractors, as they hawge describe the dynamical phenomenon of unstable dimen-
the geometric properties similar to those of chaotic attractorsion variability and argue that it must occur for noisy chaotic
in deterministic systems.In the purely deterministic case attractors and it leads to the destruction of the neutral direc-
(D=0), one of the exponents must be zero as the dynamiagon of the flow. In Sec. Ill, we derive the scaling |d&q.
along the flow is neutral, i.e., it is neither expanding nor(4)], and give explicit formulas for the scaling exponent in
contracting. The parameteris chosen such that the attract- all dimensions. In Sec. IV, we provide numerical support for
ing set of the deterministic systef{x,p) is not chaotic, but the scaling formulas with well-studied chaotic flows in rep-
nonetheless the system may possess chaotic saddles, eithesentative dimensions. In Sec. V, we introduce a quantity to
originally existent in the system or induced by noise. Thecharacterize the degree of the topological destruction of the
former situation can arise when the dynamical system is in @eutral direction, study the on-off intermittent behavior that
periodic window. The latter can occur when the system is intypically arises after the transition, and address the validity
a period-doubling parameter regiamot in a window where  of the major assumption used in our scaling analysis. In Sec.
the stable and unstable manifolds of some unstable periodi¢l, we present results with a high-dimensional physical sys-
orbits have the potential to become tangent and then form &m and a nonautonomous system. A discussion is presented
homoclinic or heteroclinic tangle. As such, the presence ofn Sec. VII.
small noise can induce the homoclinic or heteroclinic tan-
gencies and create stochastic chaotic saddIg]. In the [l. NOISE-INDUCED UNSTABLE DIMENSION
absence of noise, the largest Lyapunov exponent of the VARIABILITY AND DYNAMICAL CONSEQUENCES
asymptotic attractor is zero. As the noise is turned on and its
amplitude becomes sufficiently large, there is a nonzero
probability that a trajectory originally on the attracting set Unstable dimension variability means that, along a typical
escapes it and wanders near the coexisting chaotic saddle. tiajectory, the number of local unstable directions can
this case, the largest Lyapunov exponent becomes positivehange. The concept was first conceived by Abraham and
signifying chaos for trajectories starting from typical initial Smale{11] who constructed a mathematical model consisting
conditions. But what are the dynamical characteristics of théf two unstable fixed points with distinct numbers of local

A. Unstable dimension variability

transition? unstable eigendirections. It was later realized that the phe-
The principal results of this paper are as follow%) nomenon is quite common and can have intricate conse-
When the noise amplitud® exceeds a critical valu®., quences on the shadowability of numerical trajectories in

unstable dimension variabilityL1,17 can arise in the sense high-dimensional chaotic systerfis2]. To explain unstable
that a typical trajectory moves in phase-space regions corgimension variability, we recall here the mathematical defi-
taining unstable periodic orbits with distinct numbers of un-nition for hyperbolicity (or nonhyperbolicity of dynamical
stable eigendirections. As a result, the transition is smooth igystems.

the sense that the largest Lyapunov exponent becomes posi- Consider anl+1)-dimensional flow or, equivalently, an
tive continuously from zero as the noise amplitude is in-N-dimensional map on a Poincasarrface of sectionx,.
creased(2) After the transition D>D_), the topology of the =~ =f(x,), wherexe RN. Let A be an invariant set df At any
flow is disturbed in a fundamental way: there is no longer gpoint xe A, the tangent spac&, can be split into a direct
zero Lyapunov exponent, indicating that for noisy chaossum of stable and unstable subspacEs=E;®E;. The
there exists no neutral direction along which infinitesimalstableand unstablemanifolds atx are
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WE(x)={y:f"(y)—x as n—o} @D<D,
e ﬂ /
. /
Periodic ® @ g~ Chaotic

W) ={y:f~"(y)—x as n—o}, attractor
respectively. The stable manifolll®(x) is tangent tc&; atx,

Ey. The invariant sef\ is hyperbolic if the following prop- DD, \

and the same is true for the unstable maniféidf(x) and
erties hold:

(i) The stable and unstable subspaces are distinct, i.e., th
angle betweerE; and E; is bounded away from zero for
everyxe A;

(ii) The splitting varies continuously witk under itera-
tions of f and is invariant under the Jacobian matbif(x),
i.e., Df(Ey) = Efs(x) and Df(E,) =Eg(y

(iii) There exist constant€>0 and O<«a<1 such that
|Df"v|<Ca"|Vv| if ve E} and|Df "u|<Ca"|u] if ueE}.

The invariant setA is nonhyperbolic if any one of these
three conditions is violated. In particular, if conditidn is
violated, there are tangencies between the stable and unstable
manlfplds. If.co.n.d'tlon(”) IS V'O|ate.d’ the're is unstable di- and dynamics on a Poincasarface of section(a) trajectories are
mension variability, because the dlme_:nsmn of the local Untghfined near the periodic attractor fr<D,, and (b) a typical
stable(or stable subspace can vary with trajectory can move intermittently between the periodic attractor

and the chaotic saddle f@=D..

Periodic
aftractor

FIG. 1. Schematic illustration of the interplay between the noise

B. Noise-induced unstable dimension variability

We now argue that noise can induce unstable dimensioatable manifolds of the chaotic saddle are represented by
variability. In particular, in the situation where there are twolines, although they too are fattened by noise. Ber D,
coexisting dynamical invariant sets with distinct unstable di-there is no overlap between the stable manifold of the cha-
mensions, noise can link the two sets, and thereby inducetic saddle and the noisy basin of the periodic attractor, as
unstable dimension variability along a continuous trajectoryshown in Fig. 1a). In this case, a random initial condition
Such a situation is expected to be fairly common, because leads to a trajectory confined in the vicinity of the periodic
can occur in any periodic window where a periodic attractorattractor, although there can be transient chaos initially, in
and a chaotic saddle coexist. The critical amplitude of thghe sense that the trajectory may move toward the chaotic
noise for which unstable dimension variability arises is pro-saddle along its stable manifold, wander near the saddle for a
portional to the phase-space distance between the attractfinite amount of time, and leave it along its unstable mani-
and the chaotic saddle in the absence of noise, which in turfold. For D>D., a subset of the stable manifold of the
is proportional to the size of the periodic window in the chaotic saddle is located in the noisy basin of the periodic
parameter space. Besides periodic windows, another situattractor, as in Fig. (b). As a result, there is a nonzero prob-
tion is where there is a periodic attractor and several isolatedbility that a trajectory near the periodic attractor is kicked
saddle periodic orbits. The stable and unstable manifolds adut of the noisy basin and moves toward the chaotic saddle
these orbits are close to each other, and are about to foralong its stable manifold. Because the chaotic saddle is non-
homoclinic or heteroclinic intersections. The presence ofattracting, the trajectory can stay in its vicinity for only a
noise can materialize the intersections, creating a chaotic sdtnite amount of time before leaving along its unstable mani-
the so-calledstochastic chaotic saddl®]. Unstable dimen- fold and then, enter the noisy basin of the periodic attractor
sion variability can occur as the noise is increased. The difagain, and so on. Fdd=D_, the probability for the trajec-
ference from the case of a periodic window is that here, noiséory to leave the noisy basin of the periodic attractor is small.
induces both the chaotic saddle and unstable dimension varl-hus an intermittent behavior can be expected where the
ability. trajectory spends long stretches of time near the periodic

For visual clarity, we illustrate our analysis by focusing attractor, with occasional bursts out of it wandering near the
on a two-dimensional Poincareap obtained from a three- chaotic saddle.
dimensional autonomous flow, as shown schematically in A consequence of the noise-induced intermittent behavior
Fig. 1, where there are a periodic attractor and a coexistings that there is generally unstable dimension variability asso-
chaotic saddle. However, the analysis holds in any dimeneiated with a continuous trajectory. Under noise, both the
sions. The circular region surrounding the periodic attractochaotic saddle and the periodic attractor belong to a single,
denotes the effective range of the influence of noise of ameonnected dynamical invariant set. As periodic orbits on the
plitude D, which can be conveniently called tmeisy basin  chaotic saddle are all unstable and the originally attracting
of the periodic attractof19]. For clarity, the stable and un- periodic orbit is stable, the noise-induced intermittency
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ns in the unstable direction, due to the expanding dynamics as-
! sociated with the chaotic saddle. Distances along the neutral
direction of the original periodic attractor can no longer be
preserved. In general, a neutral vector associated with a sub-
set can no longer be a neutral one, when the trajectory that
- “carries” the vector moves to another subset with more un-
stable directions. Thus, we see that unstable dimension vari-
ability plays a fundamental role in determining the topology
of the flow after onset of noisy chaos.

The disappearance of the neutral direction can also be
seen by examining the influence of noise on the spectra of
the Lyapunov exponents. Again take a three-dimensional
flow as an example. Leki<\5<\P=0 andA5<\5=0
<)\f be the Lyapunov spectra of the periodic attractor and of

FIG. 2. Schematic illustration of the destruction of the neutralthe chaotic saddle, respectively, in the absence of noise. Let
direction of the noisy chaotic flow due to unstable dimension vari-)\3<)\2<)\l be the Lyapunov spectrum of the noisy attractor.
ability. The local planes about the periodic attractor and a point inq, D<D,, the noisy attractor is only a fattened version of
the .chaotic.sad,dle do not coincjde in general, and these planes e original periodic attractor. Thus we ha\)q=)\ip(i
not in a Poincarsurface of section. =1,2,3) [20]. In particular, there is still a null Lyapunov

means that a trajectory moves in regions containing periodi@Xponem)‘l:O’ despite the presence of noise, indicating

orbits with distinct unstable dimensions. A feature that dis-Nat the topology of the flow is preserved. FoPD, there

tinguishes this type of unstable dimension variability with Is an intermittent hqpping of .the. frajectory between regions
that in the literaturé12] is that here, the subsets with differ- tat contain the original periodic attractor and the chaotic
ent unstable dimensions are located in distinct regions of th2ddle. Letfp andfs be the fractions of time that the trajec-
phase space, whereas in high-dimensional chaotic systerfY SPends asymptotically in the corresponding regions.
such as the kicked double roti?], unstable periodic orbits 1 nen we have
in these subsets tend to mix with each other in the phase
space.

The above argument can be extended to higher-
dimensional systems. For instance, one can consider periodic
windows in a chaotic region in the parameter space. If the
chaotic attractors near the periodic windows have unstable
dimension 2 or higher, the chaotic saddle in the window isT

'tthFE)ne Cg;g?\;;tza\égntt?r?ussgn ?raljlgsttgrti)lees Ot“hrgfnns]'oo\?e' ':]O'SE agalll__ ISy attractor now contains no null exponent. Th_gs, imme-
. o o : . ; %lately after the noise amplitude exceeds the critical value
space regions containing periodic orbits with either two Oy " the noisv att b haotic in th hat i
more unstable directions of none. . y attractor becomes chaotic in the sense that its
largest Lyapunov exponent is positive. This chaotic attractor
, o is, however, fundamentally different in its flow topology
C. Destruction of neutral direction of flow from any deterministic chaotic attractors in that it no longer
At a fundamental level, after onset of chaos, unstable dicontains a neutral direction. We stress that this topological
mension variability induced by noise will destroy the neutraldisturbance of the flow exists only fob>D.. For D
direction of the flow. For a three-dimensional flow, the origi- <D, the neutral direction of the flow is well preserved,
nal periodic attractor contains no unstable direction, and théespite the presence of noise.
chaotic saddle possesses one unstable dimension. The role oflt should be emphasized that the Lyapunov spectra
noise, when it is sufficiently largeD(>D,), is to link these  {\T A5 AE} and{\$,\5.,\3} in Eq. (5) are defined with re-
two dynamical invariant sets with distinct unstable dimen-spect to the invariant sets, namely, the periodic attractor and
sions. Now examine the local eigenplanes that contain thehaotic saddle, respectively, in the absence of noise. These
neutral direction of the flow associated with the periodic at-sets are located in different regions in the phase space and
tractor and the chaotic saddle, as shown schematically in Fighey are distinct in the sense that, dynamically, they are not
2. In the local eigenplane about the periodic attractor, there imutually connected. That is, in the absence of noise, a point
a stable direction and a neutral direction. kdie the eigen- in a set can never move to another set. Bar D, the two
vector in the neutral direction. In the eigenplane of a point insets can still be regarded as distinct because they are not
the chaotic saddle, there is an unstable direction and a neutmalutually connected in the sense that, although a point on the
direction. When a trajectory is driven by noise from the pe-chaotic saddle can be moved to the periodic attractor by
riodic attractor to the chaotic saddle along its stable maninoise, the converse is not true. Hdi>D,., the two sets are
fold, the eigenvectov maps tov’ (see Fig. 2, which can lie  mutually connected and so are no longer distinct in a strict
anywhere in the local eigenplane of the corresponding pointense. However, fob=D_., a trajectory typically spends
in the chaotic saddle. After a time, the vector will be alignedlong stretches of time near the original periodic attractor with

Chaotic
saddle

Periodic
attractor /

Almfp)\]?‘i‘ fS)\§: fs)\§>o,
Ao~ fpAb+EN5=fpA5<0, (5)
)\3~fp)\§+ fs)\?s’<0

he remarkable feature is that the Lyapunov spectrum of the

026210-4



NOISE-INDUCED UNSTABLE DIMENSION.. .. PHYSICAL REVIEW BE57, 026210 (2003

occasional visits to the chaotic saddle, which occur in a relawherer is the average lifetime of the chaotic transients, and
tively short time. Under this circumstance the sets can behe inverse of whichik=1/r, is the escape rate of the saddle
regarded as distinct but only in an approximate sense. Th&21,22. Since trajectories escape from the chaotic saddle

is, Eq.(5) is approximately valid only foD=D.,. along the unstable manifold, at large positive titnne N(t)
trajectory points will be in the vicinity of the unstable mani-
Ill. SCALING THEORY fold. Let B be a small box withir§S that contains part of the

unstable manifold. The natural measure associated with the

We now derive the general scaling ldiq. (4] in all  ynstaple manifold irB can thus be defined 483,24
dimensions. Consider amN(+ 1)-dimensional flow in a peri-

odic window. In the absence of noise, the chaotic saddle has _ ~ Ny(t,B)

K, positive exponents, one zero exponent, &ndnegative my(B)=lim lim N(D) (10
Lyapunov exponentsK(,+ Ks=N) which can be ordered as =+ No—er

follows:

whereN(t,B) is the number of th&l(t) orbits inB at time
S RS S | B N S t. Similarly, the natural measure of the stable manifold in a
! ! s box B in Sis[23,24
=-\g. - (6)
Ng(t,B)
N(t) ’

ug(B)= lim lim

t—+o Noﬂoo

The periodic attractor has one zero exponent ldntkgative (1)

exponents, as follows:

@) whereNg(t,B) is thenumber of initial conditionsn B whose
trajectories do not leavs before timet.

For D<D,, an asymptotic trajectory is confined in the From definitions(10) and (11), we see that the natural

neighborhood of the periodic attractor, so the largesfnéasures associated with the stable and unstable manifolds

Lyapunov exponent of the noisy attractor is simply in Bare determmgd by the nu_mbers of trajectory pointBin

=\P°=0. ForD=D, (after the transition to chaps\, is at time zero and timé respectively. The natural measyie

—_ P_
0=APO>—\T7>...—\".

approximately given by of the chaotic saddle can then be defined by considering
N(p,t,B), the number of trajectory points B at a timept
Alwfp(D))\POJrfS(D))\EIZfS(D))\ﬁj . (8) in between zero any
. : } N(p,t,B
Because of the averaging effect of noise, we expect the de w(B)= lim  lim m(p ), (12)

pendence on noise of the largest Lyapunov expohéﬁtof

the original chaotic saddle to be weak. Thus the main depen-

dence of\; on noise comes fronfig(D), the frequency of where 0<p<1, N.(0t,B)=Ng(t,B), and N.(1t,B)

visit to the chaotic saddle, which is determined by the mea=N(t,B). For largeN, andt, trajectories remaining irs

sure of its stable manifold in the noisy basin of the periodicwould stay near the chaotic saddle for most of the time be-
attractor. To obtain the scaling behaviorfg{D), it is nec- tween zero and, except at the beginning when they are
essary to examine the natural measure and the dimensi@itracted toward the saddle along the stable manifold, and at

N(t)

t—+ow N0—>oc

formulas for chaotic saddle in general. the end when they exit along the unstable manifold. Thus the
measure defined in Eq12) is independent op, insofar as
A. Natural measures and dimension formulas 0<p<1.

Note that, althougiN(t) decreases exponentially in time,
this decaying factor has been compensated in the definitions
The dimension spectra of a chaotic saddle and its stablef the natural measur¢gqgs.(10)—(12)]. These measures are
and unstable manifolds are determined by the correspondintpus invariant under the dynamics, and they are also called

natural measures, which can be defined as follows. Imagine the conditionally invariant measure22]. Numerically, the
phase-space regio8 that contains a chaotic saddle. The natural measure of the chaotic saddle can be computed by
stable and unstable manifolds of the chaotic saddle are setsing the sprinkler methof24] or the PIM-triple method

of points that asymptote to it under the forward and back{25,26], the latter can generate long trajectories on the cha-
ward iterations of the map, respectively. If a large numlygr  otic saddle.

of random initial conditions are distributed B the corre- To define the fractal dimensions, it is necessary to cover
sponding trajectories will leav® eventually. They do so by the chaotic saddle with a grid of boxes of sizelLet u; be
being attracted along the stable manifold, wandering near thihe natural measure contained in flie box. The dimension
chaotic saddle for a finite amount of time, and then exitingspectrum 27,28 of the chaotic saddlf24,29 is

along the unstable manifold. L&t(t) be the number of tra-

1. Natural measure

jectories that still remain irg at timet. Due to the chaotic E q
nature of the saddlé\(t) decreases exponentially in time, 1 In : Mi
dg=Im—7 ———F—. (13
N(t)=Noe ", (9) - -1 Ins

026210-5



LAl et al. PHYSICAL REVIEW E 67, 026210(2003

For instance, the information dimension is Ks=0, K,=1, andd,=1. The Lyapunov dimensions of the
chaotic saddle and its stable manifold are equal:
. Zilu‘ilnlu‘i d_d_ﬂ_ _i 21
di=lim =5 (14) R TR

The dimension spectra of the stable and unstable manifolds®r @n interval of sizes, the natural measure of the stable

can be defined similarly based on their natural measures. manifold is proportional toe%s. When the noise is slightly
above the critical level D=D.), the length in which the

2 Dimension formulas stable manifold penetrates the noisy basin of the periodic

. ) . attractor is proportional tolf—D.). We thus have, for the
The Kaplan-Yorke conjecture states that the mformatlonfrequency of visit to the chaotic saddle

dimension of a chaotic set is equal to the Lyapunov dimen-
sion [30], which can be computed by the Lyapunov expo- fo(D)~(D—Dg)ds~(D—Dg)t (A", (22)
nents of the set. For a chaotic saddle, Hahal. [29] ob-
tained explicit formulas for the Lyapunov dimensiodg, Since there is no zero Lyapunov exponent, B).becomes
ds, andd of the stable and unstable manifolds of the saddle, o S
and itself, respectively. Consider thedimensional map on a A~fp(D)N"+fg(D)N (23
Poincaresurface of section. Given the Lyapunov spectrum of _
the chaotic saddle in E@6), its forward entropy is ForD=Dc, fp(D)~1, we have
Ky . N—AP=~fg(D)AS~(D— D)t (A%, (24)
S_ S+_ =
HE=2, 22" 7. (9 \which is similar to the scaling lawd) with the following
scaling exponent:
Then the dimension of the unstable manifold of the chaotic
saddle is 1
a=1— ? (25)
S_(yS- S— A>T
HS—(\$™+- - +A7)

S—
)\|+l

dy=Ky+1+ J (16) A feature to notice is that in the common situation where the
lifetime of the chaotic saddle in a periodic window is large

where the integer is determined by (7>1), the scaling exponent is expected to be close to unity.

)\?4_ . +)\|57+A,S;1>HS>)\?+ o +)\Isf . 17 2. Two dimensions

For a two-dimensionalPoincar¢ map arising from a
The dimension of the stable manifold of the chaotic saddle ishree-dimensional flow, consider a circle of si2zeThe natu-
ral measure of the stable manifold contained within is pro-

HS—(Z37 4+ +A5" portional to
ds=Ks+J+ " , (18
N3i1 69s=(62)952,
whereJ is determined by where 62 is proportional to the area of the circle ands the

lifetime of the chaotic saddle of the Poincamap (r is thus
AT NSNS =HSEAT AT (19 in the unit of T, the average time that a typical trajectory
crosses the Poincarsection. Let \>0>\5 be the
The dimension of the chaotic saddle itself is Lyapunov exponents of the saddle. We haue=1, J=0,
d=d +d—N (20) and dg=2—(1/A$7). From Fig. 1b), we see that forD
ut s T =D, the area in which the stable manifold of the chaotic
saddle penetrates the noisy basin of the periodic attractor is
B. Scaling laws of Lyapunov exponent with noise in low proportional to: DZ_ Dg). We thus have
and high dimensions s
1. One dimension N1~ (D?=DY)%2~(D =Dt~ M, (26)
For pedagogical purpose, we consider a one-dimensionathich is the scaling laWEqg. (4)] with the following scaling
chaotic map. In this case, the notion of a neutral directiorexponent:
does not exist but, nonetheless, we can show that when the
system is in a periodic window, the Lyapunov exponent ver- B 1
sus the noise obeys the same scaling [&q. (4)]. Let AS a=1- \S;
>0 and\P<0 be the Lyapunov exponents of the chaotic !
saddle and of the periodic attractor, respectively. We haveégain, if 71, the scaling exponent is close to unity.

(27)
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FIG. 3. For the logistic map at parametexrs-3.8008 andD
=10 *8~1.6x 10 %: (a) noisy chaotic attractor antb) intermit-
tent time seriegx,}.

3. N dimensions

For an N-dimensional magor an (N+ 1)-dimensional
flow], a similar derivation gives the scaling la\iq. (4)]
with the following scaling exponent:

1 HS— A"+ +A57)
CY:N KstJd+ n
)\J+l

(28)

IV. NUMERICAL RESULTS WITH WELL-STUDIED
CHAOQOTIC SYSTEMS

A. One-dimensional map

PHYSICAL REVIEW B57, 026210 (2003

-6 -58

62
log,,(D-D.)

FIG. 4. (a) The increase of the Lyapunov exponentvs the
noise variation D—D_.. The critical noise amplitude D,
~10 %L (b) Algebraic scaling betweeh —\p andD—D.. The
scaling exponent is close to uniindicated by the dashed line

mated to beD,~10 %L Figure 4b) shows\—\p versus

D —D. on a logarithmic scale, which appears to be algebraic.
A least-squares fit gives the following estimate of the scaling
exponent: 1.06:0.04. For the logistic map in this period-8
window, the Lyapunov exponent and the lifetime of the cha-
otic saddle are estimated to hé~0.425 andr~649. The
theoretical exponent is thus close to unity, which is con-
sistent with the numerical value.

B. Three-dimensional autonomous flows

1. Rassler system
We consider additive noise to the &ber oscillatof32].

In a broad sense, for one-dimensional maps, noise camhe system equations are

still induce unstable dimension variability. For instance, in a
periodic window, the attractor has only one stable direction
while the coexisting chaotic saddle has only an unstable di-
rection. Noise can cause a trajectory to visit both. The issue
of interest concerning transition to noisy chaos is then the
scaling of the Lyapunov exponefithe neutral direction is
not an issug To demonstrate the validity of the scaling law
[Eq. (4)] and the scaling-exponent formul&q. (25)], we wherec is the bifurcation parameteD is the noise ampli-
consider the logistic maj81] x,,, 1= ax,(1—X,), whereais  tute, andé, , , are independent Gaussian random variables of

a=3.8008. The noisy logistic map is diagram of the Rssler system in the absence of noise, where

the asymptotic values of the dynamical variaplebtained at

dx/dt=—y—z+D&(L),
dy/dt=x+0.2y + D£,(1), (30)

dz/dt=0.2+2z(x—c) + DE&,(1),

Xn+1=aXp(1=Xp) +D&;, (29)
whereD is the noise strength ang, is a Gaussian random
variable of zero mean and unit variance. Figurés) &and
3(b) show, forD=10"48~1.6x 10 °, the noisy chaotic at-
tractor in the &,_1,x,) plane and the time seri€x,}, re-

the Poincaresurface of sectiox=0 are plotted versus the
parameterc. We see that periodic windows are quite com-
mon. For instance, a period-3 window exists abost5.3.
Figure Ga) shows the projection of the period-3 attractor into
the (x,y) plane forc=5.3. To study the effect of noise, we
fix ¢ at this value and examine the dynamics as noise ampli-

spectively. An intermittent behavior can be seen, where théude is increased from zero. We use the standard second-
trajectory visits the period-8 attractor and the chaotic saddlerder Milshtein method33] to integrate stochastic differen-

coexisting in the window in different times. Figurega#

shows the Lyapunov exponentversus the noise amplitude,

where we observe that~\ <0 for D<D. andX\ starts to

tial equations(30). We find that chaos arises f@>D,
~10 2?5~5.5x10 3. For D=D,, the asymptotic trajec-
tory of the system is confined in the neighborhood of the

increase forD>D.. The critical noise amplitude is esti- original period-3 attractor most of the time, as shown in Fig.

026210-7



LAl et al. PHYSICAL REVIEW E 67, 026210 (2003
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¢ log,, (D-D)
FIG. 5. Bifurcation diagram of the noiselessd3tr system. .

FIG. 7. For the Resler system(a) the first two Lyapunov ex-
6(b) for D=0.01. For a larger value oD, the trajectory ponents vsD about the transition, antb) algebraic scaling of the
appears to spend relatively more time in the region where thi&rgest Lyapunov exponent witb —D.. From (a), we see that
original chaotic saddle resides, as shown in Fig).GFigure there is no I_onge_r a neutral direction _of the flow @>D.. The
7(a) shows the first two Lyapunov exponents of the dashed line inb) indicates the theoretical sloge
asymptotic attractor versus the noise amplitiRleWe see . . . .
that forD<D., the largest Lyapunov exponent is zero, in- The theo_re'ucally predicted a!gebralc Sga"”g exponent
dicating that the noisy flow is not chaotic. The presence of? Ed- (27) involves two quantitiesr and A7, the average
the null Lyapunov exponent means that, in spite of noise!'fet'm_e and the IargesF Lyapunov exponent of the original
there is a neutral direction associated with the flow. Bor ~chaotic saddle, respectively. To computeve seD =0, use
>D,, the largest Lyapunov exponent becomes positive, s& large number of transient chaotic trajectories, and count the
the noisy flow is chaotic. The remarkable phenomenon is thatfumberN(t) of trajectories that have not fallen in the neigh-
there is no longer a null Lyapunov exponent, indicating theborhood of the penqdm attractor at t.|meThe inverse of the
disappearance of the neutral direction for noisy chaotic flowfate of the exponential decay M(t) gives7. The decay law
Thus the topology of the noisy flow is disturbed fundamen-c@n be conveniently computeijr?n a Poincsueface of sec-
tally after the onset of chaos by unstable dimension variabiltion. Say one obtainsi(n)~e"*", wheren is the discrete
ity, as we have argued. FigurébJ shows, forD=D,, the time andk is the decay rate. The actual lifetime is thus given
scaling of the largest Lyapunov exponent of the noisy chaoti®y 7=T/«, whereT is the average return time of the flow to
attractor withD — D, which is apparently algebraic. A least- the Poincaresection. To estimate\y, there are different

squares fit between lgg\; and logo(D—D,) gives the Ways.(1) One can compute the finite-time Lyapunov expo-
slope of 0.94-0.03. nents for many transient chaotic trajectories and construct a

histogram of the exponents. In particular, one can distribute a

sF . ' ka) ] large number of initial conditions in the phase space and
ot 4 choose those whose trajectories behave chaotically for a rela-
> st ] tively long time. These constitute approximately an ensemble
—10} . . . E of initial conditions that can be regarded as being distributed
-10 according to the natural measure of the chaotic saddle. For
each such initial condition, the corresponding Lyapunov
S spectrum can be computed in finite timgyielding the prob-
> o ability distributions for the distinct exponents of the chaotic
_;2: saddle. For a chaotic set, the distributions are approximately
-10 Gaussian with width that decreases in time according {o 1/
[34]. The centers of the distributions are the asymptotic val-
5r j ues of the corresponding exponents, if an infinite number of
> Or 1 initial conditions is used. The center of the distribution of the
-5r largest exponent is thus a good approximatioméffor a
'1010 : m finite number of initial conditions2) For a periodic window

that is relatively small in size in the parameter axis, the

Lyapunov exponents of the chaotic saddle in the window are
FIG. 6. Asymptotic trajectory of the Rsler system fofa) D approximately the same as the exponents for a chaotic attrac-

=0, (b) D=0.01, and(c) D=0.02. tor at a parameter value slightly before or after the window.
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FIG. 9. For the Lorenz system in a period-6 window, the attrac-
FIG. 8. Bifurcation diagram of the noiseless Lorenz system. Theor for (a) D=0, (h) D=0.06, and(c) D=0.2.

Poincaresurface of section used to compute the diagram=isy
-1 about 0.99 (\f~0.59 andr~75.0). There is again a good

) ) agreement between numerics and theory.
We use the second approach to obtain an estimated value for

\;. For the Rasler system, we obtain~24.1 and\}

. . . C. Coupled Rassl it
~0.35, which givese~0.94. We see that there is an excel- oupled Rasler system

lent agreement between the theoretical scaling[Bg: (4)] As a high-dimensional example, we consider the follow-
and numerics. ing system of two coupled Rsler chaotic oscillatorg32]
under noise:

2. Lorenz system q /dt K )+ D§l )
. . X oldt=—y; ,— 7y Xp1— X1, ,
We next consider the noisy Lorenz systEBb, L2 Le 2 2t b

dx/dt=10(y—x) +D&(1), dy1 o/ dt=x, 5+ 0.2y ;+ DET AL), (32

— _ 3
dy/dt: ’yX7y7XZ+ ny(t), (31) d21’2/dt—0.2+ 21’2(X1’2 53)+ Dgl,z(t)’
where K is the coupling strength. For small coupling, the

dz/dt=—(8/3)z+xy+DE,(1), chaotic set of the system can have two positive Lyapunov

wherevy is the bifurcation parameter, aq , , are indepen-
dent Gaussian random variables of zero mean and unit vari il (a)
ance. Figure 8 shows a bifurcation diagram containing a pe-
riodic window, where the asymptotic values of the dynamical
. 7 . X <
variablex(t) at the Poincaresurface of sectioz=y—1 is
plotted againsty. In the parameter range there is a period-6
window. We fix y=92.8. The period-6 attractor in the ab-
sence of noise is shown in Fig(é). As noise is turned on,
the structure of the attractor appears to become progressivel
more complicated, as shown in Figshpand 9c) for D - )
=0.06 and D=0.2, respectively. The behavior of the <
Lyapunov exponents versus the noise amplitude is shown ir 2

Fig. 10@), which is similar to that of the Kesler system. We & 18

see that, for small noise, the largest Lyapunov exponent is w0 Ty

zero, indicating that the trajectory is still confined in the . . . .

vicinity of the period-6 attractor. Transition to chaos occurs g 28 -26 2.4 22 -2
at D=D ~10 '“%~0.025. For D>D., the largest log,, (D-D)

Lyapunov exponent becomes positive, and the neutral direc-

tion of the flow is destroyed. The algebraic scaling of the FiG. 10. For the noisy Lorenz system in a period-6 windéay:
largest Lyapunov exponent versu3 { D) is shown in Fig.  the first two Lyapunov exponents near the transition to chéms;
10(b), where the numerical scaling exponent is estimated t@igebraic scaling of the largest Lyapunov exponent after the onset
be 0.97-0.03. The theoretical exponent is estimated to beof chaos. The dashed line indicates the theoretical slope.
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FIG. 11. For the noisy coupled Bsler systeniEq. (32)] in a FIG. 12. The topological rigidityyo vs the noise amplitude for

period-3 window, (@) the first four Lyapunov exponents near the (& the Resler andb) the Lorenz systems.
transition to chaos, andb) algebraic scaling of the largest
Lyapunov exponent after the onset of chaos. The dashed line indi7(g), 10(a), and 11a), A, first increases from zero d3 is

cates the theoretical slope. strengthened fromD., reaches maximum at somB,,

] ] ) ) ) =D,., and then decreases asymptotically to zeroDags
exponents. A period-3 window exists f&r=0.01 in which jcreased further, mimicking a resonance-like behavior. The
there is a periodic attractor and a chaotic saddle with tWwqy,aniityA , is thus a measure of the degree of the topological
Eog'tnlﬁoveggogﬁgi‘s oT?huereatt(gct;??/\grss u;hteheﬂr:?)ﬁs;o;r:"n Idisturbance to the deterministic flow by noise. \gf be the
ta/delzo D. Trarl?sition to chaos occurs d@b—D ~10~ 23 PlGalue of Ay at D, the following quantity can be defined:
~0.0044, where foD>D, there is a positive Lyapunov
exponent and the noisy chaotic flow has no neutral direction. Yo=1- ﬁ, (34)
Figure 11b) shows the algebraic scaling of; with D AT
—D., where the numerical scaling exponent is approxi-
mately 1.02-0.02. To estimate the theoretical exponent where if y,=1, the topology of the flow is preserved in the
we note that for Eq(32), N=5, K;=3, andJ=1. Compu-  sense that there is a neutral direction ang0 indicates a
tations give N{ ~0.34, \; ~0.29, andr~113.2, andH  severe destruction of such a topology. Equivalengly,also
=\; +\, —1/7~0.62. Equation28) thus yields the value measures the degree of noise-induced unstable dimension
of « variability, which is most severe if,=0. We call x, the

topological rigidity of the flow[36]. Figures 12a) and 12b)

)\}—71) show, for the Resler and Lorenz systems studied in Sec.
=z 3+1+ ———|~0.99, IV B, respectively, yo versus the noise amplitud®. The
A2 resonantlike behavior iyq is apparent. Note that this topo-

] ] ) logical aspect of the influence of noise is meaningful only for
which agrees with the numerical result. continuous-time flows.

V. TOPOLOGICAL RIGIDITY, INTERMITTENCY, B. Intermittency

AND VALIDITY OF SCALING ASSUMPTION . . .
The mechanism of the transition to chaos as the noise

A. Tolological rigidity amplitude is increased, which is supported by numerical ex-

From the numerical examples with continuous-time flows2MPples in Sec. 1V, indicates that a typical trajectory is con-

in Sec. IV, we see that the topology of the noisy chaotic flowfined in the neighborhood of_the original perlc_)qlc attractor
after the transition is fundamentally different from that of the for D<<D¢. ForD=Dc, there is a small probability that the
noisy but nonchaotic flow before the transition. To characterirajectory can escape the original attractor and visit the origi-

ize this change in the flow topology, we introduce the quanh@l chaotic saddle. As the saddle is nonattracting, the trajec-
tity tory will be attracted to the attractor, and so on. An intermit-

tent behavior is then expected f@=D., in which a
Ag=min|\;| for i=1,...N, (33)  trajectory spends most of the time in the vicinity of the origi-
nal periodic attractor with occasional bursts out of the attrac-
which is the minimum of the absolute value of the Lyapunovtor. If we regard motions near the attractor as an “off” state
exponent closest to zero. Thus, as can be seen from Figand the bursts as an “on” state, there is then on-off intermit-
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FIG. 13. For the noisy Rsler system in the period-3 window, FIG. 15. For the noisy Rssler system in the period-3 window,
the behaviors of a trajectory on the Poincpfane §/,,2,) defined |3 minar-phase distributions of the on-off intermittency fai D
by x=0 for (&) D=0, (b) D=0.01, and(c) D=0.02. =0.01 and(b) D=0.02. The distributions are apparently exponen-

tial.

tency[6,37-39. But what are the characteristics of the on-
off intermittency associated with a noise-induced transitionpe characterized by the laminar-phase distribution, that is,
to chaos? _ . . . the probability distribution of the time that the trajectory
behavior can be conveniently visualized on a Poincare  semilogarithmic scale, the laminar-phase distributiBiis,)
face of section. Figures 18-13(c) show, for the Resler  for p=0.01 andD =0.02, respectively, wherg denotes the
oscillator in the period-3 window studied in Sec. IV B 1, tra- time interval during which the trajectory is in the “off” state.
jectories on the Poincarglane {/,,,z,) defined byx=0 for  For Figs. 1%a) and 18b), 7, is obtained by setting an arbi-
D=0, D=0.01, _and D=0.02, respectively. FoD=D. trary numerical thresholdy, in Figs. 14a) and 14b). The
[pa_nel(b)], the trajectory tend_s to conc_entrate on the or'.g'nalapparently linear behavior in the plot of I&§7) versusT,
period-3 attractofpanel(a)] with ocqasmnal motion outside indicates that the laminar-phase distributioreigonential
the attractor wandering in a chaotic manner. For the three- Similar behaviors also occur for the Lorenz system. We
:lmets |t§rated mapf_on éhe I_D?lnlf:;zectlzn, ths ptirlo((jj-B_at- focus on the period-6 window studied in Sec. IV B 2. Figures
ractor becomes a fixed point. YP’ zp) be the evia- 16(a)—16(c) show typical trajectories on the Poincgrkane
tion of a trajectory from the fixed point. We expect the tlme(x ) defined byz=y—1 for D=0, D=0.06, andD
traces ofAy,(n) andAzy(n) to exhibit an on-off intermit- :B,gp respectivel)y BeZause of the robust one-dimensional
tency forD=D., as shown in Figs. 14) and 14b) for D o '
=0.01 and 0.02, respectively. The intermittent behavior can

100 T T T T T T T
(a) . o °
: : : : a
2} (a) > Or .
- [ ]
10020 -10 0 10 20 30
100 T T T T T T T
o (b) g
2 ' ' ' ' = or )
0 1000 2000 3000 4000 5000 P
n ~100— ;
30 -20 -10 0 10 20 30
100— . . : . : —
(C) A__ﬁ/
>Q 0- /’\
_1 00 : .‘l 1 1 1 1 1 1
) . . | ‘ -3 20 -10 0 10 20 30
0 1000 2000 3000 4000 5000 p

n
FIG. 16. For the noisy Lorenz system in the period-6 window,

FIG. 14. For the noisy Rssler system in the period-3 window, the behaviors of a trajecotry on the Poincpfene &p.Yp) defined
on-off intermittency inAy(n) for (a) D=0.01 and(b) D=0.02. by z=vy—1 for () D=0, (b) D=0.06, and(c) D=0.2.
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10 y y T g Away from the onset, the distribution is algebraic for snrall
@ but has an exponential tail for large,
x> g P(r)~ 7 Y% An, (35

whereB>0 is a constant. A more recent study indicates that
) 1000 2000 3000 2000 5000 the exponential_behavior tends to dominat.e if th_ere is a
n symmetry-breaking39]. The robust exponential scaling be-
havior observed for almost all times in Figs. 15 and 18 thus
suggests that there is a symmetry breaking in the underlying
system, generating on-off intermittency associated with
noise-induced transition to chaos.
The exponential distribution of the laminar phases associ-
ated with the transition to chaos in discrete-time random
s s s s maps was observed and analyzed in R&f. Here we wish
0 1000 2000 3000 4000 5000 to point out that the behavior can also be understood by
n considering an on-off intermittent process with symmetry
FIG. 17. For the noisy Lorenz system in the period-6 window, Preéaking. In particular, we consider a one-dimensional vari-
on-off intermittency inAx,(n) for (&) D=0.06 and(b) D=0.2. ableX(n) characterizing the deviation begween the trajectory
and original periodic attractor on a Poincaerface of sec-
tion. (The null Lyapunov exponent is thus irrelevant for our
structure of the chaotic Lorenz system, under noise th€onsideration herg.The largest nontrivial Lyapunov expo-
trajectory tends to move approximately along a one-nent\ is negative forD<D. and slightly positive forD
dimensional curve. Figures (& and 17b) show the on-off =D.. In finite times, there are fluctuations in the exponent.
intermittent behavior in the variablex,(n) for D=0.06 and ~ Approximately, the dynamics ok(n) obeys
0.2, respectively, which is the component of the deviation
of the trajectory from the original period-6 attractor on a X(n+21)=exp[\;+ 7:£1(n)]1X(n)+bFf(X,) + 7262(N),
six-times iterated map on the Poincgrane. The laminar-

phase distributions of the on-off intermittency are apparently (36)
exponential, as shown in Figs. @ and 18b) for D=0.06
andD=0.2, respectively. wheren,&1(n) is a zero-mean chaotic process that simulates

In most previous works on on-off intermitten¢®7,38,  the fluctuations of the finite-time Lyapunov exponent,
the laminar-phase distributions appear to be algebraic, dif(X,) models symmetry-breaking, ang&,(n) represents
least for small times. In fact, as pointed out in H88], ina  the noise term. Introducing a new variabfe= —In X, Eq.
typical system setting of on-off intermittency where the (36) becomes, approximately, a random walk,
phase space contains an invariant subspace, the laminar-
phase distribution is strictly algebraic with the universal scal- Yoi1=Yn+ vy, (37
ing exponent of—3/2 at the onsef on-off intermittency.
wherew,, is determined by the symmetry-breaking term, the
noise, and the fluctuations of the finite-time Lyapunov expo-
nent. In general, we expe¢v,)#0 and in fact, it can be
large because of symmetry breakif®p]. The average drift
of the random walk is given by=[vF(v)dv+0, where
F(v) is the probability distribution ofv. To solve the ran-
dom walk, one can write down the associated Fokker-Planck
50 equation,

0 50 100

[y

P —JP DaZP -
@y Py 38

where P(Y,t) is the probability distribution of finding the

walker at locationY at timet and D=f(v—7)2F(v)dv is
-6 : : . ’ the diffusion coefficient. A detailed solution to E(R8) for
()} 10 20 30 40 50 . . : . .
T on-off intermittency with symmetry breaking can be found in
Ref.[39], which predicted that the distribution of the laminar
FIG. 18. For the noisy Lorenz system in the period-6 window, phase is exponential, insofar as a parameter characterizing
laminar-phase distributions of the on-off intermittency fay D  the symmetry breaking is not zero, no matter how small.
=0.06 and(b) D=0.2. The distributions are exponential. Biased random walks thus represent a plausible mechanism
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FIG. 19. After transition to chaos, linear dependence of the av- FIG. 20. After transition to chaos, linear dependence of the larg-
erage bursting amplitude of on-off intermittency on the largestest Lyapunov exponent; onf, the frequency of visit to the original
Lyapunov exponent fofa) the Rassler system in the period-3 win- chaotic saddle fofa) the Rasler system in the period-3 window
dow and(b) the Lorenz system in the period-6 window studied in and(b) the Lorenz system in the period-6 window studied in Sec.
Sec. IV. V.

to account for the on-off Intermittent behavior <”BSOC""Y[Q%onal to the frequency of visit to the original chaotic saddle.
with noise-induced chaos near its onset.

Another aspect of the on-off intermittency concerns theHOW good is this assumption? To provide a justification, we

average amplitude of the bursts. ¥tal. [6] predicted that, computg th? frequendyfor D=D, and pl.(.)t itagainsk, as
for a fixed noise amplitude, the average size of the burstSNOWN in Figs. 2(&) and 2@b) for the Ressler and Lorenz
scales linearly with a system parameter. We note that th8YStems considered in Sec. IV. The linear dependencg of
purpose of Refl6] is to understand the fractal distribution of ©n f appears to be robust.

floaters on the surface of a fluid based on transition to chaos

in random maps. The natural setting is thus to fix the noise VI. MORE EXAMPLES

amplitude and to investigate how a chaotic attractor arises in
the underlying random map as a system parameter is varied.
In such a setting, the largest Lyapunov exponent scales lin- In this physical example, we show that the requirement of
early with the variation of system parameter from the criticalthe coexistence of a periodic attractor and a chaotic saddle
value. Our setting is different in that we focus on the transi-can be relaxed to the coexistence of a chaotic attractor and a
tion to chaos as the noise amplitude is increased, for fixedonattracting chaotic saddle. Here noise can cause the cha-
system parameters. Assuming the system is in a periodigtic attractor to develop an additional positive Lyapunov ex-
window of periodp, to define the average bursting ampli- ponent and, remarkably, this exponent scales algebraically
tude, we focus on th@-times-iterated map on a Poincare with the noise variation as predicted.

A. A high-dimensional physical example

surface of section and examine the deviat®of the trajec- As shown in Fig. 21, our system consists of a pendulum
tory x, from the fixed pointxgJ of the map(which corre-  of lengthL,, massM,, and viscous dissipation with coef-
sponds to the original periop-attractoy, ficient C,, attached to the lower eri8lof a linear viscoelastic
rod of lengthL,, cross sectio\, , mass density, , elastic-
S=V(Ixp—xpl?), (39 ity modulusE,, and coefficient of internal viscous dissipa-

tion C, [41]. The upper endA of the rod is subject to a
e|5eriodic motionx(t), resulting in a body force throughout
the rod. We restrict the rod to undergo motions along its
ence O—D.), we expect the dependence 8 on (D |ongitydinal axisx and the pendulum to planar motions. Let
— D) not to be linear, but the dependenceSain A, should "4y and g(t) denote, respectively, the displacement field

be approximately linear, as shown in Fig. 19, where paneljs ihe rod with respect to A and the angular displacement of
(@) and(b) are for the Resler system in the period-3 window (}he pendulum mass.

and for the Lorenz systems in the period-6 window studie Let é=x/L, ,7=w,t (derivative with respect te- is de-
r p

in Sec. IV, respectively. noted by a “dot”), wherewf):g/Lp is the natural frequency

of the uncoupled pendulum, denote normalized spatial and

temporal variables, respectively. Let=u/L, be the dimen-
The base of our scaling analysis is Ef), which states sionless displacement field for the rod. The dynamics of the

that forD=D¢, the largest Lyapunov exponexi is propor-  rod-pendulum configuration are described by

where(-) can be either the ensemble or time averages. B
cause of the algebraic dependence\ gfon the noise differ-

C. Validity of scaling assumption
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FIG. 21. The geometry of the rod-pendulum system. The dotted

configuration is the stable equilibrium.
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In the above model, the physical parameters that control
the coupling between the pendulum and the rod are the fre-
quency ratio u=w,/w; and the mass ratio g
=My/Ap.L,. For a fixedB, the limit of the coupled sys-
tem[Eq. (40)] as u— 0 describes the motions of the para-
metrically forced uncoupled pendulum. That is, the coupling
is one way due to the drivingA(t), which we assume to be
periodic with period Zr/w. However, in reality, the driving
is always perturbed by a small component of the displace-
ment forces. So we assume a very small perturbation in the
frequency of the driving below.

A modal expansion of th&/(&,7) reduces the coupled
system to the following set of coupled oscillators, which we
truncate for our simulations. We include a separate periodic
driving as a limit-cycle solution which contains a variation in
the driving frequencyw due to the velocity of the pendulum,

Y1ZY2:

_ 1
Y2:(—S[ —2515Y2+§,32yg sin(2y;)—(siny;)ys+1+ 8

:_[1_VB(T)+XA(T)]Sin(0)_ngby (40 1
+20y,+ ba 1+/—3 3 r
pPr? PN(E, ) PV(ET) PV(E,7)
- T2
4 T? 9E? ATIE? C Ya
> 2 y3:;v
Y7
== Xal7), (4D) .
Ya=5-[—Ya=2Lya+ By; cosy,+ 8(1—aye) — (1+B)],
V(¢=0,m)=0, K
Y 2872 Y5=Ys+ (0.14 0Y,) Y~ Ys(Y5+Y2),
Jele=1m=- P 1-Teots)], 42 e e TR
Yo=—(0.1- 0y2)Ys Y6 Ye(Y5+Y3),
where
N where =1+ B cogy,. Details of the full derivation of the
V(& m)=U(&7)-U(§), (43)  continuum expansion can be found in Rigfl]. Notice that
the limit cycle is modeled by the last two equations. The
0 )_M27T2 21+ B)é— &2 (44) frequency contains a feedback modulation term, representing
(&)= 8 [2A+B)é-&7], the interaction of the pendulum and rod displacement with
the periodic driver. The coupling is now bidirectional. As
T _ ) modeled, the truncated rod-beam system is autonomous. For
TE—pZ=02+[1—XB(T)]cos(0), (45 our computations here, we use the paramejersl, {;
Mplpwp =0.01, {=0.01, a=1.8, ©=0.0625, v=1.9527, ando

Xa(7)=Xa(7)/Ly, and Xg(7)=xg(7)/L,. The variable
V(&,7) denotes the normalized displacement field with re-
spect to the normalized static displacement figidt) (44),
and Vg(7)=V(£=1,7). Equation(42) gives the boundary
conditions for the coupled rofEq. (41)]. Note that the fre-
guency of the uncoupled pendulug. (40)] and those of
the rod[Eq. (41)] are respectively normalized to unity and
0 pm=wi/o,=1(2m-1),m=1.2, ... where o?,
=m?(2m—1)E,/L?p, (the original natural frequencies of
the uncoupled rod The dissipation factors for the pendulum
and the rod are given respectively by=C/20,L M, and
{=C,/8w,m?L2p, . Equation(45) gives the normalized ten-
sion T along the pendulum arm.

[ee]

=0.0001. Here the relatively small value of indicates a
small variation in the frequency of the driving term.

In the deterministic case, there is a chaotic attractor with
one positive Lyapunov exponent. With additive noise of am-
plitudeD, a nearby chaotic saddle is excited and the potential
number of unstable dimensions is increased from one to two.
This can be seen by the number of positive Lyapunov expo-
nents. Figure 2@) shows the six Lyapunov exponents for
the pendulum model vs the noise amplitude. The system be-
comes high-dimensionally chaotic with two positive
Lyapunov exponents forD>D., where D ,~10 01
~0.66. Notice that, foD<D., the second largest exponent
represents the neutral direction. Figurdt®Zhows the scal-
ing of this exponent with the noise variation on a logarithmic
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‘ . ‘ FIG. 23. (a) The Lyapunov exponents for the MSI model vs
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log,, (O-D) D.~10"27". (b) The algebraic scaling between—\p and D
—D.. The scaling exponent is 1.870.05.
FIG. 22. (a) The Lyapunov exponents for the pendulum model

vs the noise amplitudB. The critical noise amplitude for transition with B(t)=pBo(1+ Scos 2qt). In [9,40], this model was
to high-dimensional noisy chaos B,~10 . (b) The algebraic  studied under additive noise. It was shown that for suffi-
scaling of the noise-induced positive Lyapunov exponent with noisq;ienﬂy strong noise, the dynamics of the system can be trans-
Val’iation: The Scaling exponent is close to Unity, in agreement W|t|'f0rmed from regular per|0d|c Cycles to Stochas“c Chaos In
our prediction. the deterministic case with parameter valueg.at0.02, «
=1/0.0279, y=100, By=1575, and6=0.095, there exist

- hich is ol : hi | h Nvo stable periodic orbits, two unstable periodic orbits, and a
1.050.04, which is close to unity. This example, together ;a1 formed heteroclinic orbit. There is no periodic win-

with others in Sec. IV, thus illustrates that our predicted scalyq, srycture in the parameter space but instead, the noise
ing of the noise-induced positive Lyapunov exponent hold

. ) ' " %ssentially completes the near-heteroclinic tangencies to cre-
not only for Iow—dlmen§|onal phaos W'th one positive expo- 46 noise-induced intermittency. The two stable periodic or-
nenF .bUI also for high-dimensional noisy chaos with rnlJItIpIebits and the stochastic chaotic saddle between them form a
positive exponents. single connected dynamical invariant set, which has a posi-
tive Lyapunov exponent. The exponent appears to obey the
B. Nonautonomous systems algebraic Scaling law.

Nonautonomous systems may also exhibit noise-induced Numerically, we observe that with additive noise, the sec-
chaos. The difference between autonomous and nonauton@nd Lyapunov exponent is decreased. For large noise, the
mous systems in terms of the Lyapunov exponents is that fopystem becomes chaotic with one positive exponent and an-
the latter, there is always a zero Lyapunov exponent assocfther negative Lyapunov exponenfiNote that the third
ated with the time axis, regardless of the noise level, as onkyapunov exponent is not effected by noise and is always
can regard the time as an independent variable to convert tH#€ro because it represents tilneigure 23 shows the two
system into an autonomous one. For nonautonomous syste@ntrivial Lyapunov exponents vs the noise amplitude,
under additive noise, the general observation is that th&here we observe that;~\p for D<D. and starts to in-
maximal Lyapunov exponent tends to increase as noise igrease foD>D.. The critical noise amplitude is estimated
increased through a critical value. Remarkably, this increast® beD.~10"*7"~0.0017. Figure 2®) shows\ —\p ver-
obeys the same algebraic scaling law as in autonomous sys8usD —D. on a logarithmic scale, which appears to be lin-
tems. ear. A least-squares fit gives the following estimate of the

As an illustrative example, we consider the following algebraic scaling exponent: 1.8D.05, which is close to
modified susceptible-infected mod@!iSl) arising in epide-  unity.
miology [9,40]:

S'(t)=p—uS(t)=BMOII)S(Y),

VII. DISCUSSION

(46) The interplay between deterministic chaos and noise has
been a topic of continuous interdst—9,13 as it is funda-
mental to both nonlinear dynamics and statistical physics.

|’(t)=(%)ﬁ(t)l(t)S(t)—(M+a)l(t),
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While both noise and chaos signify random behavior in thewhere our results may be relevant are the followifi. It
system dynamics, their meaning and consequences are dhlias been suggested that pathological destruction of chaotic
ferent. Chaos is characterized by a sensitive dependence behavior may induce some types of brain seiz{i# and
initial conditions, but a noisy system is not necessarily chaheart failure§43]. In vital physiological systems chaotic dy-
otic. There are, however, circumstances under which noiseamics can in fact be considered as “normpd4]. Bifurca-
can induce chaos, a phenomenon that has long been recdipns to periodic behavior are viewed as a pathophysiological
nized[1-9]. A common situation is where the system has theloss of the range of adaptive possibilitighs]. In these situ-
potential to become chaotic or it is already transiently chaations the presence of noise can be advantageous as it can
otic. In such a case, as the noise amplitude is increased, thelp induce or restore chao®) Maintaining chaos can be
system can develop an attractor that emulates chaos. Theeitical for industrial applications such as fluid mixing6].
characteristic features of the transition to chaos are the focusoise can again be quite desirak(®). There are applications
of this paper. Our main contributions are the followirid) where one wishes to induce chaos to disable systems such as
we find that the dynamics of noisy chaos is typically severelyelectronic circuits, which can possibly be achieved by noisy
nonhyperbolic as it is associated with unstable dimensiomperturbations. A good understanding of how a nonlinear sys-
variability, (2) as a result of this nonhyperbolicity, for tem can emulate chaotic behavior in response to noise is
continuous-time physical systems described by differentiatlearly essential for designing the perturbations.
equations, the topology of a noisy chaotic flow is fundamen-
tally differen_t from thoge of the detgrministig flovishaotic _ ACKNOWLEDGMENTS
or nonchaotit or of noisy nonchaotic flows in that there is
no neutral direction associated with noisy chaos; e)dve Z.L.and Y.C.L. are supported by the AFOSR under Grant
have established a universal scaling law associated with thido. F49620-98-1-0400 and by the NSF under Grant No.
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