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An important quantity characterizing the shadowability of computer-generated trajectories in nonhyperbolic
chaotic system is the shadowing time, which measures for how long a numerical trajectory remains valid. This
time depends sensitively on an initial condition. Here, we show that for nonhyperbolic systems with unstable-
dimension variability, the probability distribution of the shadowing time contains two distinct scaling behav-
iors: an algebraic scaling for short times and an exponential scaling for long times. The exponential behavior
depends on the system details but the small-time algebraic behavior appears to be universal.
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The validity of numerical trajectories is a fundamentaltance between the resulting numerical trajectory and a true
problem in chaotic dynamics. Given a chaotic system, on@ne. For chaotic systems with tangencies, the issue of shad-
can compute a numerical trajectory, starting from a randonowing time is relatively well settled. In particular, rigorous
initial condition, and ask whether there is a true trajectory ofworks indicate that the average shadowing time is inversely
the system dynamics from a slighly different initial condi- proportional to the square root of the computer roun{®ff
tion, which stays in a small neighborhood of the numericalThe situation is more complicated for nonhyperbolic systems
one. This is the problem of shadowing of numerical trajec-with unstable-dimension variability. The following is where
tories. current understanding stand8]. For such a system, the

An understanding of the shadowing dynamics relies orshadowing distance typically increases exponentially after
the mathematical notion of hyperbolicity. Roughly, the dy-encountering a glitch point, where a change in the unstable
namics is hyperbolic on a chaotic set if at each point of thedimension occurs, then decreases exponentially in hyperbolic
trajectory, the tangent space can be split into expanding anegions, and so on, with a lower bound determined by the
contracting subspaces and the angle between them @mputer roundoff. The switches between the expanding and
bounded away from zero. Furthermore, the expanding sulzontracting behaviors occur randomly in time, suggesting
space evolves into the expanding one along the trajectorthat the behavior of the logarithid of the pointwise shad-
and the same holds for the contracting subspace. Otherwisewing distance mimics that of a random walker. A calcula-
the set is nonhyperbolic. The following results have beertion of the corresponding first-passage time gives the average

established. shadowing time, which depends on the system details in the
(1) Hyperbolic chaotic systems permit infinite shadowingfollowing manner:(7)~ —2m/g?, wherem>0 and o are
of numerical trajectoriefl,2]. the mean and standard deviation of the finite-time Lyapunov

(2) For nonhyperbolic chaotic systems with tangenciesexponent that is closest to zero.
(i.e., points at which the expanding and contracting direc- In this paper, we examine the probability distribution
tions coincid¢, shadowing can be expected for a finite ®(7) of the shadowing time and show that there are univer-
amount of time that depends on the computer roundoff errosal and nonuniversal scaling features. We find that for small
[3.,4]. 7 values the distribution exhibits a universal algebraic scal-
(3) If the dimensions of the expanding and contractinging, while the distribution is exponential for large values of
subspaces are not constant on different parts of the invariant The exponential distribution depends on system details.
set, i.e., if there is unstable dimension variability, then shadThat is,
owing of numerical trajectories for relatively long time is ap
impossibled’5—9]. The severe obstruction to shadowing in the T for small 7,
presence of unstable-dimension variability appears to be P(7)~ exp—ar) forlarger,
common in high-dimensional chaotic systems, i.e., those
with multiple positive Lyapunov exponenf6—9]. where the constard is system dependent. The scaling rela-
A key quantity to characterize shadowing is #teadow- tion (1) means that for nonhyperbolic systems with unstable-
ing timeg which measures for how long a numerical trajec-dimension variability, shadowing of numerical trajectories
tory remains valid in the sense that it stays close to a truean be expected only in short time because longer shadowing
trajectory. Due to chaos, this time depends sensitively ofime is exponentially improbable.
initial conditions. It is thus natural to speak about theer- To compute the shadowing time, it is necessary to monitor
age shadowing timg3,8] and theprobability distributionof ~ the evolution of the shadowing distance, which can be de-
shadowing timg8]. For a random initial condition, the shad- fined as follows. Consider B-dimensional map of the form
owing time can be measured by examining the evolution ok, ;=f(x,,p), wherexe R P andpis a parameter. The map
the pointwise shadowing distancthe local phase-space dis- can be regarded, for example, as arising from a Poincare
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surface of section of al{+ 1)-dimensional flow, or it may
represent the tim@& map obtained at timesnT (n
=0,1,...) bynumerically solving a set of ordinary differ-
ential equations. Consider a numeri¢pseudo} trajectory
of length (N+1): {pn}ﬁ:o. Due to the computer roundoff
error, typically there is a small difference betwggn ; and
f(p,) forn=0,1,... N—1, wheref(p,) is the image o,
under the true dynamics. Létbe an upper bound of all these
errors along the pseudotrajectory, i.65,|=|pn+1—f(pn)|
<4, forn=0,... N—1, where§ is on the order of com-
puter roundoffe.. A true trajectory{xn},’:‘zo, on the other
hand, satisfied(x,)=X,.1, for n=0,... N—1. The true
trajectorye shadowshe pseudotrajectory if there exists an
such that|x,—p,/<e for n=0,... N. The quantity|x,
—p,| is the pointwise shadowing distanf®6—§. For hy-
perbolic attractors, given & pseudo-orbit, it is always pos-
sible to find a true trajectory whose pointwise shadowing
distance with respect to the pseudo-orbit is of oréeiFor

nonhyperbolic systems, however, the pointwise shadowing 10 0 5000 n 10000
distance can reach the size of the entire attractor, for in-
stance, at glitch points where shadowing breaks d@8in FIG. 1. (a—(c) Realization of the evalution of the pointwise

The shadowing distances the maximum distance deformed shadowing distance for the double-rotor map foxp=8.0, p
from any point of a pseudotrajectory to the corresponding=8-5, andp=9.0, respectively.

point of a true trajectory as the computing error and roundoff

go to zero. find that choosing eithel,=N, or N,=N, +1 has no in-

The above definition of the pointwise shadowing distancefluence on our results, which are all statistical in nature. This
requires knowledge about the true trajectory, which is genermeans that, for instance, for the double-rotor map gor
ally not available. It is thus necessary to obtain an approxi=,;=8.0, N, can be chosen to be either 1 or 2. Figures
mation to the true trajectory. The following procedure hasi(a—(c) show, on a logarithmic scale, the evolution of the
been proposed3]. Given a pseudotrajectoryp,tn_o, @  pointwise shadowing distance fer==8.0, 8.5, and 9.0, re-
Newton-Raphson root-finding procedure is used to find &pectively. Due to the severe unstable-dimension variability
correctionc, to each point of the pseudotrajectory, which for p=p, numerical trajectories cannot be shadowed for
yields a less noisy trajectory, sdy,}h_,. Lety,=pn+Gc,. appreciable lengths of time. This is reflected by the wide
The correctiong,, are determined by decomposing them intovariations of the pointwise shadowing distance over many
components along the local stable and unstable subspacesaslers of magnitude. The large values arise from sudden and
c,=S,+U,. Referencd3] gives the details of an iterative frequent changes in the dimensions of the stable and unstable
refinement scheme that computes, for eachorrections in  subspaces along the trajectory that stymie the refinement
the stable and unstable directions s ;= S,[ Df(py) - (s, procedure. Ag is increased fronpg, the degree of unstable-
+6,)] and unzup[fol(an)-(unH—b‘nﬂ)] using the dimension variability is reduced, causing a progressive im-
boundary conditions,=0 and uy=0. Here,Df(p,) is the  provement in shadowing. For instance, for 8.5[Fig. 1(b)]
Jacobian matrix of atp,, andS, andi{, are the projection andp=9.0[Fig. 1(c)], the pointwise shadowing distance ap-
operators into the stable and unstable subspaces, respgmears to stay below unity most of the time. In the time inter-
tively. After a refined trajectory is computed, the pointwiseval of 10 iterations, there are two events fpr=8.5, in
shadowing distance can be computed by using this trajectoryhich the pointwise shadowing distance exceeds unity, while
and the original one. there is none fop=9.0.

In our numerical computation, we use the kicked double The shadowing time can be conveniently defined as the
rotor, which has been a paradigmatic model for studyingime interval during which the pointwise shadowing distance
high-dimensional chaotic phenomefE)], particularly, the stays less tham<1. With the seemingly random variations
shadowing probleni6,7]. We use the parameters as given inin the pointwise shadowing distance, the shadowing time can
Ref. [6] and choose the periodic forcing strengthas the be regarded as a random variable. The dynamics governing
control parameter. Ap~8.0, the second largest Lyapunov the evolution of the pointwise shadowing distance can natu-
exponent becomes positive, leading to a high-dimensionaklly be modeled as a stochastic process, in the sense that for
chaotic attractor with two positive exponents for8.0. Se-  a fixed parameter, a different initial conditioin gives a differ-
vere unstable-dimension variability occurs fo=8.0[6]. In  ent realization of the procegsuch as Fig. (&)]. To obtain
numerical simulation, the numbét, of unstable directions the probability distribution of the shadowing time, we con-
is chosen as the numbe¥. of asymptotically positive struct a histogram of the values of time intervalsduring
Lyapunov exponents. For the special case where onwhich the shadowing distance is less than the threskold
asymptotic exponent cannot be distinguished from zero, w&igure 2a) shows, on a logarithmic scale, fe=10"° the
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tance decreases exponentially with time toward the lower
bounds. When a glitch occurs, the consistency in the trajec-
tory adjustments, which can be achieved in hyperbolic re-
gions, is immediately destroyed causing the pointwise shad-
owing distance to increase in an exponential manner. In the
walkeri space, it is equivalent to an excursion away from the
reflecting barrier.

We are thus led to consider the following modsj: 1
=Ww,S,, Wheres, stands for the shadowing distance at time
n, andw, is a random variable that describes the expansion
or contraction of the local shadowing distance at time
Introducing a new variable/,=l0g;5S,, we obtainy, .,
=yn+v+z,, wherev=(log,qw,) is the drift of the random
% % afan o walk and z,=log;gw,—(log;gw,,) is a zero mean random

T - o variable. Approximately11], we can write down the Fokker-
0 5000 T 10000 Planck equationgP/dt=— vdP/ay+ (D/2)3*P/dy?, where
S o P(t,y) is the probability distribution for having the walk at

FIG. 2. P_robab_lllty_ distributions of the shadowmg_ timefor p distancey at timet, and the diffusion coefficient is given by

=po=8.0 (thin solid ling, p=8.5 (crossest dashed ling andp 72y " £or computing the probability distribution of the

=9.0 (circles + thin solid ling. In (a) the distributions are shown shadowing time. the maximum relevant pointwise shadowin
on a logarithmic scale, indicating a universal algebraic scaling be= 9 ’ P 9

havior with exponent-3/2 for small values ofr. In (b) the distri- dlstance_ 'Sy_chIOgl_Oé’ the threshold dlstgnce below Wh'Ch_
butions are plotted on a semilogarithmic scale, indicating an exposhadowing is considered to hold. There is thus an absorbing

nential decaying behavior that depends apparently on the systeRPundary condition &y, : P(t,yy,) =0. The shadowing dis-
details. tance cannot be smaller than the computer roundgif
which stipulates a reflecting boundary condition at; }@g:
histograms forp=p, (thin solid ling, p=8.5 (crosses+  [J(t,y)=—vP+(D/2)d P/dYJ|y:|ogloeC:0- Assuming the
dashed ling andp=9.0 (circles + thin solid ling, respec-  \yalker starts at an arbitrary place lgg.<yo<Vi, att=0,
tively. We observe that forr<rq~ 10%, the distributions e have the initial conditioR(0,y) = 8(y — Y). Under these
@(7) appear to be algebraic, while far>74, ®(7)'s de-  poundary and initial conditions, the Fokker-Planck equation
crease rapidly withr. In fact, the decaying behavior df(7)  can be solved12], which gives the following probability

for 7> 74 appears to be exponential, as shown on a semilogagistribution for the first-passage time of the walk acrggs
rithmic scale in Fig. ). The exponential decay is system (the shadowing time

dependent in the sense that its rate depends on the parameter

p. In particular, the rate is large far=p,, indicating that it 7302 V27
is highly improbable to have a long shadowing time due to (1)~ exp{ — —) 2)
the severe unstable-dimension variability at this parameter 2aD 2D

value. As p is increased fromp, to 9.0, the degree of
unstable-dimension variability is reduced so that the expowhere the proportional constant depends on the choice of the
nential decay inP(7) becomes slower. The remarkable fea- initial conditiony,. For small values of, the dependence of
ture is that the algebraic decay for smallappears to be ®(7) on 7 is mainly algebraic with the universal scaling
universalwith the scaling exponent 3/2, which holds for ~exponent of—3/2. For large values of, the exponentially
many other values gf in the interval[ 7.8,1( that we have decaying behavior i (7) dominates with the rate given by
examined. This universal feature, which governs the shadowa= »?/(2D). These are the scaling results in Ed). The
ing dynamics in short time scale for dynamical systems withdependence of the exponential rate on system details can be
unstable-dimension variability, has not been noticed previassessed by computing the dependence of the diffusion pa-
ously. rametersy and D on a system parameter. We find that, ap-
To explain the universal and nonuniversal features inproximately, the average drift depends inversely on the pa-
shadowing, as exemplified by Fig. 2, we consider a randomrameter variation:|v|~1/(p—po), for p>py), and the
walk model. A trajectory encounters both approximately hy-diffusion coefficient D is relatively constant(data not
perbolic regions and regions with glitches. The shadowinghown.
dynamics in the hyperbolic regions is equivalent to a random A few remarks are in order. First, the average drift
walk toward the reflecting barrier determined by the com-which is a key parameter in the random-walk model, de-
puter roundoff because, in this case, shadowing theory guacreases ap is increased fronp,. In fact, the value of the
antees the existence of a nearby true trajeciéfyAn ap- average drift appears to be maximum when unstable-
proximation of the true trajectory can be found with adimension variability is most severe. This is somewhat ex-
refinement techniquig] that adjusts the points on the trajec- pected from Figs. (a—0, the plots of the logarithmic point-
tory in a consistent manner along the stable and unstablise shadowing distance, or the displacement of the random
directions. As a result, insofar as the trajectory is in a hyperwalker for different values op, where we see that the ap-
bolic region, on an average, the pointwise shadowing disparently random evolution of the distance indeed exhibits
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much larger drift foro=p,, compared with other values of regime” in noisy on-off intermittency{13]. The crossover

p. Dynamically, this happens due to the existence of thd@ime is approximately given byy~D ~Y[In(e/e)]% which
maximally possible number of glitch points on the attractordefines the time scale of diffusig4]. There is another time

for p=po, when unstable-dimension variability is most se- of interest, which is the drift timév| lIn(e/e,). These rep-
vere. As a result, the pointwise shadowing distance suffers gesent the typical times for the shadowing distance to reach
relatively large number of expanding phases as compared the threshold from the level of computer roundoff due to
the number of contracting phases experienced during the hyiffusion and drift, respectively.

perbolic phases leading to an appreciable amount of drift in In summary, we have uncovered universal and nonuniver-
the random walk model. This is somewhat different from thesal features in the shadowing dynamics of nonhyperbolic
diffusion model used in Ref8]. Second, the solution to the chaotic systems with unstable-dimension variabilitys].
Fokker-Planck equation, under the boundary and initial con©Our results provide a more detailed understanding of the fun-
ditions, gives satisfactory explanations for our numerical re-damental problem of shadowing in terms of statistical char-
sults. The setting of the initial and boundary value problem isacterizations. Our theoretical treatment suggests that the
in fact quite standarfi12], and it also appears in other con- shadowing problem shares the same dynamical mechanism
texts such as noisy on-off intermittenf¥3,14]. Our results  as that for on-off intermittency under noise.

are completely consistent with those in that context. Third,

between the universal scaling ib(7) (algebrai¢ and the We thank Professor T. Sauer for valuable comments. This
nonuniversal scalingexponential regimes, there is a cross- work was supported by the AFOSR under Grant No.
over regime inr, where both the algebraic and exponential F49620-98-1-0400 and by the NSF under Grant No. PHY-
contributions are important. This is the so-called “shoulder9996454.
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