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Universal and nonuniversal features in shadowing dynamics of nonhyperbolic chaotic systems
with unstable-dimension variability
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An important quantity characterizing the shadowability of computer-generated trajectories in nonhyperbolic
chaotic system is the shadowing time, which measures for how long a numerical trajectory remains valid. This
time depends sensitively on an initial condition. Here, we show that for nonhyperbolic systems with unstable-
dimension variability, the probability distribution of the shadowing time contains two distinct scaling behav-
iors: an algebraic scaling for short times and an exponential scaling for long times. The exponential behavior
depends on the system details but the small-time algebraic behavior appears to be universal.
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The validity of numerical trajectories is a fundamen
problem in chaotic dynamics. Given a chaotic system,
can compute a numerical trajectory, starting from a rand
initial condition, and ask whether there is a true trajectory
the system dynamics from a slighly different initial cond
tion, which stays in a small neighborhood of the numeri
one. This is the problem of shadowing of numerical traje
tories.

An understanding of the shadowing dynamics relies
the mathematical notion of hyperbolicity. Roughly, the d
namics is hyperbolic on a chaotic set if at each point of
trajectory, the tangent space can be split into expanding
contracting subspaces and the angle between them
bounded away from zero. Furthermore, the expanding s
space evolves into the expanding one along the trajec
and the same holds for the contracting subspace. Otherw
the set is nonhyperbolic. The following results have be
established.

~1! Hyperbolic chaotic systems permit infinite shadowi
of numerical trajectories@1,2#.

~2! For nonhyperbolic chaotic systems with tangenc
~i.e., points at which the expanding and contracting dir
tions coincide!, shadowing can be expected for a fini
amount of time that depends on the computer roundoff e
@3,4#.

~3! If the dimensions of the expanding and contracti
subspaces are not constant on different parts of the inva
set, i.e., if there is unstable dimension variability, then sh
owing of numerical trajectories for relatively long time
impossible@5–9#. The severe obstruction to shadowing in t
presence of unstable-dimension variability appears to
common in high-dimensional chaotic systems, i.e., th
with multiple positive Lyapunov exponents@6–9#.

A key quantity to characterize shadowing is theshadow-
ing time, which measures for how long a numerical traje
tory remains valid in the sense that it stays close to a
trajectory. Due to chaos, this time depends sensitively
initial conditions. It is thus natural to speak about theaver-
age shadowing time@3,8# and theprobability distributionof
shadowing time@8#. For a random initial condition, the shad
owing time can be measured by examining the evolution
thepointwise shadowing distance, the local phase-space dis
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tance between the resulting numerical trajectory and a
one. For chaotic systems with tangencies, the issue of s
owing time is relatively well settled. In particular, rigorou
works indicate that the average shadowing time is invers
proportional to the square root of the computer roundoff@3#.
The situation is more complicated for nonhyperbolic syste
with unstable-dimension variability. The following is wher
current understanding stands@8#. For such a system, th
shadowing distance typically increases exponentially a
encountering a glitch point, where a change in the unsta
dimension occurs, then decreases exponentially in hyperb
regions, and so on, with a lower bound determined by
computer roundoff. The switches between the expanding
contracting behaviors occur randomly in time, suggest
that the behavior of the logarithmZ of the pointwise shad-
owing distance mimics that of a random walker. A calcu
tion of the corresponding first-passage time gives the ave
shadowing time, which depends on the system details in
following manner:^t&;22m/s2, wherem.0 and s are
the mean and standard deviation of the finite-time Lyapun
exponent that is closest to zero.

In this paper, we examine the probability distributio
F(t) of the shadowing time and show that there are univ
sal and nonuniversal scaling features. We find that for sm
t values the distribution exhibits a universal algebraic sc
ing, while the distribution is exponential for large values
t. The exponential distribution depends on system deta
That is,

F~t!;H t23/2 for small t,

exp~2at! for larget,
~1!

where the constanta is system dependent. The scaling re
tion ~1! means that for nonhyperbolic systems with unstab
dimension variability, shadowing of numerical trajectori
can be expected only in short time because longer shadow
time is exponentially improbable.

To compute the shadowing time, it is necessary to mon
the evolution of the shadowing distance, which can be
fined as follows. Consider aD-dimensional map of the form
xn115f(xn ,p), wherexPR D andp is a parameter. The ma
can be regarded, for example, as arising from a Poinc´
©2003 The American Physical Society02-1
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surface of section of a (D11)-dimensional flow, or it may
represent the time-T map obtained at timesnT (n
50,1, . . . ) bynumerically solving a set of ordinary differ
ential equations. Consider a numerical~pseudo-! trajectory
of length (N11): $pn%n50

N . Due to the computer roundof
error, typically there is a small difference betweenpn11 and
f(pn) for n50,1, . . . ,N21, wheref(pn) is the image ofpn

under the true dynamics. Letd be an upper bound of all thes
errors along the pseudotrajectory, i.e.,udnu[upn112f(pn)u
,d, for n50, . . . ,N21, whered is on the order of com-
puter roundoffec . A true trajectory$xn%n50

N , on the other
hand, satisfiesf(xn)5xn11, for n50, . . . ,N21. The true
trajectorye shadowsthe pseudotrajectory if there exists ane
such that uxn2pnu,e for n50, . . . ,N. The quantity uxn

2pnu is the pointwise shadowing distance@3,6–8#. For hy-
perbolic attractors, given ad pseudo-orbit, it is always pos
sible to find a true trajectory whose pointwise shadow
distance with respect to the pseudo-orbit is of orderd. For
nonhyperbolic systems, however, the pointwise shadow
distance can reach the size of the entire attractor, for
stance, at glitch points where shadowing breaks down@3#.
The shadowing distanceis the maximum distance deforme
from any point of a pseudotrajectory to the correspond
point of a true trajectory as the computing error and round
go to zero.

The above definition of the pointwise shadowing distan
requires knowledge about the true trajectory, which is gen
ally not available. It is thus necessary to obtain an appro
mation to the true trajectory. The following procedure h
been proposed@3#. Given a pseudotrajectory$pn%n50

N , a
Newton-Raphson root-finding procedure is used to find
correctioncn to each point of the pseudotrajectory, whic
yields a less noisy trajectory, say$yn%n50

N . Let yn5pn1cn .
The correctionscn are determined by decomposing them in
components along the local stable and unstable subspac
cn5sn1un . Reference@3# gives the details of an iterativ
refinement scheme that computes, for eachn, corrections in
the stable and unstable directions assn115Sp@Df(pn)•(sn
1dn)# and un5Up@Df21(pn11)•(un112dn11)# using the
boundary conditionss050 and uN50. Here,Df(pn) is the
Jacobian matrix off at pn , andSp andUp are the projection
operators into the stable and unstable subspaces, re
tively. After a refined trajectory is computed, the pointwi
shadowing distance can be computed by using this trajec
and the original one.

In our numerical computation, we use the kicked dou
rotor, which has been a paradigmatic model for study
high-dimensional chaotic phenomena@10#, particularly, the
shadowing problem@6,7#. We use the parameters as given
Ref. @6# and choose the periodic forcing strengthr as the
control parameter. Atr'8.0, the second largest Lyapuno
exponent becomes positive, leading to a high-dimensio
chaotic attractor with two positive exponents forr*8.0. Se-
vere unstable-dimension variability occurs forr'8.0 @6#. In
numerical simulation, the numberNu of unstable directions
is chosen as the numberN1 of asymptotically positive
Lyapunov exponents. For the special case where
asymptotic exponent cannot be distinguished from zero,
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find that choosing eitherNu5N1 or Nu5N111 has no in-
fluence on our results, which are all statistical in nature. T
means that, for instance, for the double-rotor map forr
[r058.0, Nu can be chosen to be either 1 or 2. Figur
1~a!–~c! show, on a logarithmic scale, the evolution of th
pointwise shadowing distance forr58.0, 8.5, and 9.0, re-
spectively. Due to the severe unstable-dimension variab
for r5r0, numerical trajectories cannot be shadowed
appreciable lengths of time. This is reflected by the w
variations of the pointwise shadowing distance over ma
orders of magnitude. The large values arise from sudden
frequent changes in the dimensions of the stable and uns
subspaces along the trajectory that stymie the refinem
procedure. Asr is increased fromr0, the degree of unstable
dimension variability is reduced, causing a progressive
provement in shadowing. For instance, forr58.5 @Fig. 1~b!#
andr59.0 @Fig. 1~c!#, the pointwise shadowing distance a
pears to stay below unity most of the time. In the time int
val of 104 iterations, there are two events forr58.5, in
which the pointwise shadowing distance exceeds unity, w
there is none forr59.0.

The shadowing time can be conveniently defined as
time interval during which the pointwise shadowing distan
stays less thane!1. With the seemingly random variation
in the pointwise shadowing distance, the shadowing time
be regarded as a random variable. The dynamics gover
the evolution of the pointwise shadowing distance can na
rally be modeled as a stochastic process, in the sense tha
a fixed parameter, a different initial conditioin gives a diffe
ent realization of the process@such as Fig. 1~a!#. To obtain
the probability distribution of the shadowing time, we co
struct a histogram of the values of time intervalst, during
which the shadowing distance is less than the thresholde.
Figure 2~a! shows, on a logarithmic scale, fore51025 the

FIG. 1. ~a!–~c! Realization of the evalution of the pointwis
shadowing distance for the double-rotor map forr[r058.0, r
58.5, andr59.0, respectively.
2-2
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histograms forr[r0 ~thin solid line!, r58.5 ~crosses1
dashed line!, andr59.0 ~circles 1 thin solid line!, respec-
tively. We observe that fort,td'102, the distributions
F(t) appear to be algebraic, while fort.td , F(t)’s de-
crease rapidly witht. In fact, the decaying behavior ofF(t)
for t.td appears to be exponential, as shown on a semilo
rithmic scale in Fig. 2~b!. The exponential decay is syste
dependent in the sense that its rate depends on the para
r. In particular, the rate is large forr5r0, indicating that it
is highly improbable to have a long shadowing time due
the severe unstable-dimension variability at this param
value. As r is increased fromr0 to 9.0, the degree o
unstable-dimension variability is reduced so that the ex
nential decay inF(t) becomes slower. The remarkable fe
ture is that the algebraic decay for smallt appears to be
universalwith the scaling exponent23/2, which holds for
many other values ofr in the interval@7.8,10# that we have
examined. This universal feature, which governs the shad
ing dynamics in short time scale for dynamical systems w
unstable-dimension variability, has not been noticed pre
ously.

To explain the universal and nonuniversal features
shadowing, as exemplified by Fig. 2, we consider a rando
walk model. A trajectory encounters both approximately h
perbolic regions and regions with glitches. The shadow
dynamics in the hyperbolic regions is equivalent to a rand
walk toward the reflecting barrier determined by the co
puter roundoff because, in this case, shadowing theory g
antees the existence of a nearby true trajectory@1#. An ap-
proximation of the true trajectory can be found with
refinement technique@3# that adjusts the points on the traje
tory in a consistent manner along the stable and unst
directions. As a result, insofar as the trajectory is in a hyp
bolic region, on an average, the pointwise shadowing

FIG. 2. Probability distributions of the shadowing timet for r
[r058.0 ~thin solid line!, r58.5 ~crosses1 dashed line!, andr
59.0 ~circles1 thin solid line!. In ~a! the distributions are shown
on a logarithmic scale, indicating a universal algebraic scaling
havior with exponent23/2 for small values oft. In ~b! the distri-
butions are plotted on a semilogarithmic scale, indicating an ex
nential decaying behavior that depends apparently on the sy
details.
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tance decreases exponentially with time toward the low
boundd. When a glitch occurs, the consistency in the traje
tory adjustments, which can be achieved in hyperbolic
gions, is immediately destroyed causing the pointwise sh
owing distance to increase in an exponential manner. In
walker i space, it is equivalent to an excursion away from t
reflecting barrier.

We are thus led to consider the following model:sn11
5wnsn , wheresn stands for the shadowing distance at tim
n, andwn is a random variable that describes the expans
or contraction of the local shadowing distance at timen.
Introducing a new variableyn5 log10sn , we obtain yn11
5yn1n1zn , wheren[^ log10wn& is the drift of the random
walk and zn5 log10wn2^ log10wn& is a zero mean random
variable. Approximately@11#, we can write down the Fokker
Planck equation,]P/]t52n]P/]y1(D/2)]2P/]y2, where
P(t,y) is the probability distribution for having the walk a
distancey at time t, and the diffusion coefficient is given b
D5^zn

2&. For computing the probability distribution of th
shadowing time, the maximum relevant pointwise shadow
distance isyth5 log10e, the threshold distance below whic
shadowing is considered to hold. There is thus an absorb
boundary condition atyth : P(t,yth)50. The shadowing dis-
tance cannot be smaller than the computer roundoffec ,
which stipulates a reflecting boundary condition at log10ec :
@J(t,y)[2nP1(D/2)dP/dy#uy5 log10ec

50. Assuming the

walker starts at an arbitrary place log10ec,y0,yth at t50,
we have the initial conditionP(0,y)5d(y2y0). Under these
boundary and initial conditions, the Fokker-Planck equat
can be solved@12#, which gives the following probability
distribution for the first-passage time of the walk acrossyth
~the shadowing time!:

F~t!;
t23/2

A2pD
expS 2

n2t

2D D , ~2!

where the proportional constant depends on the choice o
initial conditiony0. For small values oft, the dependence o
F(t) on t is mainly algebraic with the universal scalin
exponent of23/2. For large values oft, the exponentially
decaying behavior inF(t) dominates with the rate given b
a5n2/(2D). These are the scaling results in Eq.~1!. The
dependence of the exponential rate on system details ca
assessed by computing the dependence of the diffusion
rametersn and D on a system parameter. We find that, a
proximately, the average drift depends inversely on the
rameter variation:unu;1/(r2r0), for r.r0), and the
diffusion coefficient D is relatively constant~data not
shown!.

A few remarks are in order. First, the average driftn,
which is a key parameter in the random-walk model, d
creases asr is increased fromr0. In fact, the value of the
average drift appears to be maximum when unstab
dimension variability is most severe. This is somewhat
pected from Figs. 1~a–c!, the plots of the logarithmic point-
wise shadowing distance, or the displacement of the rand
walker for different values ofr, where we see that the ap
parently random evolution of the distance indeed exhib
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much larger drift forr5r0, compared with other values o
r. Dynamically, this happens due to the existence of
maximally possible number of glitch points on the attrac
for r5r0 when unstable-dimension variability is most s
vere. As a result, the pointwise shadowing distance suffe
relatively large number of expanding phases as compare
the number of contracting phases experienced during the
perbolic phases leading to an appreciable amount of drif
the random walk model. This is somewhat different from t
diffusion model used in Ref.@8#. Second, the solution to th
Fokker-Planck equation, under the boundary and initial c
ditions, gives satisfactory explanations for our numerical
sults. The setting of the initial and boundary value problem
in fact quite standard@12#, and it also appears in other con
texts such as noisy on-off intermittency@13,14#. Our results
are completely consistent with those in that context. Th
between the universal scaling inF(t) ~algebraic! and the
nonuniversal scaling~exponential! regimes, there is a cross
over regime int, where both the algebraic and exponent
contributions are important. This is the so-called ‘‘should
,

e

v.

D
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regime’’ in noisy on-off intermittency@13#. The crossover
time is approximately given bytd'D21@ ln(e/ec)#

2, which
defines the time scale of diffusion@14#. There is another time
of interest, which is the drift timeunu21ln(e/ec). These rep-
resent the typical times for the shadowing distance to re
the threshold from the level of computer roundoff due
diffusion and drift, respectively.

In summary, we have uncovered universal and nonuniv
sal features in the shadowing dynamics of nonhyperb
chaotic systems with unstable-dimension variability@15#.
Our results provide a more detailed understanding of the f
damental problem of shadowing in terms of statistical ch
acterizations. Our theoretical treatment suggests that
shadowing problem shares the same dynamical mecha
as that for on-off intermittency under noise.

We thank Professor T. Sauer for valuable comments. T
work was supported by the AFOSR under Grant N
F49620-98-1-0400 and by the NSF under Grant No. PH
9996454.
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