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Can noise make nonbursting chaotic systems more regular?
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It has been known that noise can enhance the temporal regularity of dynamical systems that exhibit a
burstingbehavior—the phenomenon of coherence resonance. But can the phenomenon be expected for non-
bursting chaotic systems? We present a theoretical argument based on the idea of time-scale matching and
provide experimental evidence with a chaotic electronic circuit for coherence resonance in nonbursting chaotic
systems.

DOI: 10.1103/PhysRevE.66.015204 PACS number~s!: 05.45.Xt, 05.40.2a
i
en
s
-
ea
ige
a
c
e

e
n

ys

e
u

te
em
e

a
g
y

te
,
a
r
ie
o
e
th
e

ca
le

s

o
e

so-
-
-
als,
rity
ve
his
by

. In
st-
es,
ime
e, a

ternal
les,
our
otic

nly
, so
aotic

ting
r a
dent
uld
ys-

ell-
-
e,
n by
he

en-

ay
the
ge,
rst-

s an
the

timal
The interplay between noise and nonlinearity in dynam
cal systems can lead to a variety of interesting phenom
such as stochastic resonance where the detectability of a
nal can be enhanced by noise@1#. The phenomenon of noise
induced enhancement of the temporal regularity in nonlin
dynamical systems has been known since the work by S
and Horsthemke@2#. They discovered that for a system ne
a saddle-node bifurcation, noise can induce a pronoun
peak in the power spectrum of dynamical variables. Sig
and Horsthemke named the phenomenonnoise-induced fre-
quency. A closely related phenomenon, i.e., noise-induc
collective oscillation, or stochastic resonance in the abse
of an external periodic signal in excitable dynamical s
tems, was discovered and analyzed by Huet al. @3#, who also
introduced a quantitative measureb ~to be described later! to
characterize the degree of enhancement of the temporal r
larity by noise. Recently, the phenomenon was analyzed
lizing the FitzHugh-Nagumo equations@5# by Pikovsky and
Kurths who renamed it ascoherence resonance@4#.

Most existing theoretical@6# and experimental@7,8# works
on coherence resonance address excitable dynamical sys
that typically generate bursting time series. In such a syst
there is usually a reference or a ‘‘silent’’ state, e.g., a fix
point, near which a trajectory can spend long stretches
time. The trajectory can also leave the reference state
return to its neighborhood in a relatively short time, givin
rise to a ‘‘burst.’’ The bursts can be due to the inherent d
namics of the system itself, or they can be excited by ex
nal perturbations or noise through a threshold mechanism
the firing behavior of many types of neurons in biologic
systems. The bursts can occur at either relatively regula
random time intervals, for which the corresponding Four
spectrum either contains a pronounced peak or has a br
band feature. Coherence resonance thus means that nois
actually be utilized either to improve the sharpness of
existing spectral peak, as in the former case, or to induc
pronounced spectral peak and enhance it, as in the latter
More recently, the phenomenon was extended to coup
chaotic oscillators exhibiting on-off intermittency@9,11#. In
an applied sense, coherence resonance may be a u
mechanism for signal processing@10#.

While many nonlinear dynamical systems, nonchaotic
chaotic, can indeed exhibit bursting behaviors, many oth
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do not. A question of interest is then whether coherence re
nance can occur innonburstingdynamical systems. Our in
terest here is in chaotic systems@8#. Suppose there is a cha
otic system that generates irregular but nonbursting sign
and suppose in a specific application the temporal regula
of a signal is of interest. Would external noise help impro
the temporal regularity of this signal? The purpose of t
paper is to provide an affirmative answer to this question
presenting both theoretical and experimental evidence
particular, we argue theoretically that for a typical nonbur
ing chaotic system with many possible intrinsic time scal
noise can introduce a new time scale, or the external t
scale. When the noise amplitude reaches a proper valu
resonant state can be reached in the sense that the ex
time scale matches one of the dominant internal time sca
leading possibly to coherence resonance. To verify
theory, we present experimental evidence with a cha
electronic circuit, the Chua’s circuit@12#. The implication of
our work is that noise can generally be beneficial, not o
for bursting chaotic systems but also for nonbursting ones
coherence resonance is expected to be ubiquitous in ch
systems in general.

Our argument for coherence resonance in nonburs
chaotic systems goes as follows. Note that in order fo
resonance to occur, it is necessary to have two indepen
and competing time scales. At least one time scale sho
depend on noise. To gain insight we consider a chaotic s
tem with a simple rotational structure so that there is a w
defined internal time scalet int . This time scale is thus de
terministic and it does not change with noise. Nois
however, can induce another time scale. This can be see
realizing that for a chaotic attractor, which is bounded in t
phase space, in general there exists areferencestate, such as
that due to the harmonic oscillator embedded in the differ
tial equations in the Ro¨ssler system@13#. Noise can cause a
trajectory initiated in the reference state to wander aw
from it. Since the system is bounded, at a later time
trajectory will come back to the reference state. On avera
this process defines a time scale, which is the stochastic fi
passage time with respect to the reference state. This i
external time scale induced by noise, so it depends on
noise amplitudeD. We write it astext(D). As the noise is
strengthened, we expect to see a resonance at the op
noise levelD* , where
©2002 The American Physical Society04-1
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text~D* !5t int . ~1!

The above heuristic argument can in fact be made m
quantitative. In particular, the existence of the external s
chastic time scaletext and how it varies with noise can b
studied by considering the following simple one-dimensio
model with a reference state, under the influence of nois

dx

dt
5@2l1h~ t !#x1Dj~ t !, ~2!

whereel is the largest eigenvalue of the the reference s
x50, h(t) is a zero-mean process~either random or chaotic!
that models the finite-time fluctuations in the stability of t
reference state, andDj(t) is the external noise. The tim
seriesx(t) is therefore a realization of a stochastic proce
X(t), and its probability distribution functionP(x,t) obeys
the Fokker-Planck equation,

]P

]t
52

]

]x F S 2lx1
1

2
hxD PG1

1

2

]2

]x2
@~hx21D !P#,

~3!

whereh is the amplitude ofh(t). To compute the first pas
sage time, imagine there is an absorbing boundary atx5a.
The boundedness of the system implies that there must
reflecting boundary atx5b. With these boundary conditions
the Fokker-Planck equation can be solved to yield the
lowing expression for the first-passage time@14#:

^Tf p&52E
x0

a

dy~hy21D !l/h21/2

3E
b

y

~hz21D !21/22l/hdz, ~4!

wherex0 is the initial value ofx(t). Figure 1 shows a typica

FIG. 1. Mechanism for coherence resonance in nonbursting
otic systems: the dashed horizontal line denotes the determin
frequency and the solid curve indicates the general behavior o
first-passage frequency of the underlying stochastic process. C
ence resonance occurs when there is a match between the tw
dependent frequencies at some optimal noise levelD* .
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behavior of the first-passage frequencyvext(D)[1/
^Tf p&(D) versus the noise amplitudeD, which is obtained
utilizing an arbitrary value ofb and an arbitrary initial con-
dition v0. The general feature is that the frequency increa
with noise. Since the internal frequencyv0 is approximately
constant, generically thevext(D) curve can intersectv0 at
some optimal noise amplitudeD* , leading to the time-scale
match required for coherence resonance. The optimal n
level D* depends on the details of the system and canno
predicted by our simple theory.

For a more general chaotic system, the internal time sc
t int can be regarded as arising from the recurrence of
flow. For instance, one can imagine a Poincare´ surface of
section and observe the average time interval between
cessive piercing through the section. A coherence resona
can occur when this deterministic time matches the fi
passage time induced by noise.

Our experimental system is the Chua’s chaotic circ
@12#, as shown in Fig. 2. The differential equations that d
scribe the circuit in a noiseless situation aredx/dt5(1/
Cb)@(y2x)/R2 f (x)#, dy/dt5(1/Ca)@(x2y)/R1z#, and
dz/dt52(1/L)(y1Rnz), wherex, y, andz are proportional
to the voltages across the capacitorsCb and Ca , and the
current through the inductorL, respectively. The nonlinea
diode has the following piecewise linear, current-voltage
lation: f (x)5Gbx1(Ga2Gb)(ux1Eu2ux2Eu)/2. The cir-
cuit is assembled on a high quality printed-circuit board a
enclosed in a electromagnetic sheilding box to avoid the
fluence of external disturbances. The circuit is powered b
low ripple, low noise power supply~HPE3631A, HP!. Exter-
nal Gaussian white noise is introduced in the circuit by us
a synthesized function generator~DS345, SRS! in which the
noise amplitude can be controlled digitally. The circuit op
ates in the audio-frequency range and the signals are m
sured using a 12-bit data acquisition board~KPCI3110,
Keithley! with sampling frequency at least one order of ma
nitude higher than the Nyquist rate. The parameters of
circuit are tuned so that it generates a chaotic attractor.

In the recent experimental work in Ref.@8#, the Chua’s
circuit is tuned to generate a double-scroll chaotic attrac
and the bistable behavior is extracted for testing cohere
resonance. In particular, the dynamical variablex(t), which
exhibits chaotic switchings between the two components
the attractor, is digitized to yield a signalu(t) that assumes
only two distinct values, say61. This is done by assigning
u(t)51 when the trajectory moves on one scroll andu(t)
521 when it moves on another. The effect of noise on
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FIG. 2. The Chua’s circuit used in our experiment.
4-2



is

pa

w

o
d

an
v

n

s
al
ea

m
se

ance,
es

-
r in

and
eso-
nals
ity.
is the

in-
e

ar-
os-
sug-
on

o.
Y-

e

RAPID COMMUNICATIONS

CAN NOISE MAKE NONBURSTING CHAOTIC SYSTEMS . . . PHYSICAL REVIEW E 66, 015204~R! ~2002!
temporal regularity of the bistable signalu(t) is then inves-
tigated and coherence resonance is found. Our aim here
coherence resonance for more generalcontinuous-timecha-
otic signals, so we focus on a dynamical variable that ap
ently does not exhibit a bursting behavior. The signaly(t)
from the Chua’s circuit satisfies this requirement, as sho
in Fig. 3.

For the parameter setting in Fig. 2, under the influence
noise, the Fourier spectrum ofy(t) exhibits a peak centere
at f 0'4.5 kHz, as shown in Figs. 4~a!–4~c! for noise volt-
age at 1.0 V, 2.5 V, and 8.0 V, respectively. The domin
peak in the power spectrum at the intermediate noise le
(2.5 V) is apparently sharper than those at the~relatively!
small and large noise levels, indicating a higher degree
temporal regularity at noise levels nearD52.5 V. This is
clearly the sign of noise-induced enhancement of a freque
component@2# or coherence resonance@4#. To quantify it, we
utilize the following quantity first proposed by Huet al. @3#:

b[H f p /D f , ~5!

whereH is the height of the spectral peak,f p is the location
of the peak in the spectrum, andD f is the half width of the
peak. Thus, a sharper and higher spectral peak yield
higher value ofb, indicating a higher degree of tempor
regularity. Figure 4~d! shows the coherence-resonance m
sureb, defined with respect to the spectral peak atf 0, versus
the noise voltageD. We see thatb is small at low noise
levels, increases as the noise is increased, reaches a
mum at an optimal noise level, and decreases as the noi

FIG. 3. Chaotic signaly(t) from the Chua’s circuit that we us
to study coherence resonance.
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increased further. These are features of coherence reson
which appear to be quite general in wide parameter regim
of the circuit. Figures 4~a!–4~d! thus represent a direct ex
perimental support that coherence resonance can occu
nonbursting chaotic systems.

In summary, we have presented theoretical arguments
experimental evidence for the existence of coherence r
nance in chaotic systems. Our emphasis is on chaotic sig
that do not exhibit any excitable feature such as bistabil
We show that in a general sense, coherence resonance
result of the match between two time scales, one determ
istic and the other stochastic. While the deterministic tim
scale can be readily identified for excitable systems, we
gue that any chaotic system, excitable or not, naturally p
sesses such a time scale due to recurrence. Our results
gest that coherence resonance is a very comm
phenomenon in chaotic dynamical systems.

This work was sponsored by AFOSR under Grant N
F49620-98-1-0400 and by NSF under Grant No. PH
9996454.

FIG. 4. From the Chua’s chaotic circuit in Fig. 2:~a!–~c! Fou-
rier spectra at three different noise voltages;~d! the coherence-
resonance measureb1 versus the noise voltage.
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