
a 85287

PHYSICAL REVIEW E 66, 046139 ~2002!
Smallest small-world network
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Efficiency in passage times is an important issue in designing networks, such as transportation or computer
networks. The small-world networks have structures that yield high efficiency, while keeping the network
highly clustered. We show that among all networks with the small-world structure, the most efficient ones have
a ‘‘single center’’ node, from which all shortcuts are connected to uniformly distributed nodes over the
network. The networks with several centers and a connected subnetwork of shortcuts are shown to be ‘‘almost’’
as efficient. Genetic-algorithm simulations further support our results.
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The small-world network models have received much
tention from researchers in various disciplines, since t
were introduced by Watts and Strogatz@1# as models of rea
networks that lie somewhere between being random and
ing regular. Small-world networks are characterized by t
numbers: the average path lengthL and the clustering coef
ficient C. L, which measures efficiency@2# of communication
or passage time between nodes, is defined as being the
age number of links in the shortest path between a pai
nodes in the network.C represents the degree of local ord
and is defined as being the probability that two nodes c
nected to a common node are also connected to each o

Many real networks are sparse in the sense that the n
ber of links in the network is much less thanN(N21)/2, the
number of all possible~bidirectional! links. On one hand,
random sparse networks have short average path length~i.e.,
L; logN), but they are poorly clustered~i.e., C!1). On the
other hand, regular sparse networks are typically highly c
tered, butL is comparable toN. ~All-to-all networks have
C51 andL51, so they are most efficient, but most expe
sive in the sense that they have allN(N21)/2 possible con-
nections and so they are dense rather than sparse.! The small-
world network models have advantages of both random
regular sparse networks: they have smallL for fast commu-
nication between nodes, and they have largeC, ensuring suf-
ficient redundancy for high fault tolerance. Many networ
in the real world, such as the world-wide web~WWW! @3#,
the neural network ofC. elegans@1,4#, collaboration net-
works of actors@1,4#, networks of scientific collaboration
@7#, and the metabolic network ofE. coli @8#, have been
shown to have this property. The models of small-world n
works are constructed from a regular lattice by adding a r
tively small number of shortcuts at random, where a li
between two nodesu andv is called ashortcutif the shortest
path length betweenu and v in the absence of the link
is more than two@4#. The regularity of the underlying
lattice ensures high clustering, while the shortcuts reduce
size ofL.
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Most work has focused on average properties of s
models over different realizations ofrandom shortcut con-
figurations. However, a different point of view is necessa
when a network is to be designed to optimize its perf
mance with a restricted number of long-range connectio
For example, a transportation network should be designe
have the smallestL possible, so as to maximize the ability o
the network to transport people efficiently, while keeping
reasonable cost of building the network. The same can
said about communication networks for efficient exchange
information between nodes. We fix the number of shortc
here and as a result the clustering coefficientC for any con-
figuration of shortcuts is approximately as high as that of
underlying lattice. The problem we address in this paper
given a number of shortcuts in a small-world network, whi
configuration of these shortcuts minimizes L?@5#.

Most random choices of shortcuts result in a suboptim
configuration, since they do not have any special structu
or organizations. On the contrary, many real networks h
highly structured configurations of shortcuts. For example
long-range transportation networks, the airline connecti
between major cities which can be regarded as shortcuts
far from being random, but they are organized around hu
Efficient travel involves ground transportation to a near
airport, then flights through a hub to an airport closest to
destination, and ground transportation again at the end.

In the following, we show that the average path lengthL
of a small-world network with a fixed number of shortcu
attains its minimum value when there exists a ‘‘center’’ nod
from which all shortcuts are connected to uniformly distri
uted nodes in the network@6#. An example of such a con
figuration is illustrated in Fig. 1~a!. We also show that if a
small-world network has several ‘‘centers’’ and its subn
work of shortcuts isconnected, thenL is almost as small as
the minimum value. An example of such configuration
shown in Fig. 1~b!. We then derive an explicit formula fo
the minimum average path length in the case of the sm
world network models constructed from a one-dimensio
lattice by adding a fixed number of shortcuts. Finally, w
verify the results by performing genetic-algorithm simul
tions for minimizingL.

Our general argument proceeds as follows. A small-wo
network is composed of two parts: the underlying netwo
©2002 The American Physical Society39-1
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~e.g., a regular lattice! and the subnetwork of shortcuts co
taining only the shortcuts and their nodes. Letm denote the
number of shortcuts. First, forL to be as short as possible
the subnetwork of shortcuts must be connected. This con
tivity is unlikely to happen if the shortcuts are chosen
random, since the network is sparse. Indeed, the probab
is less thanm!/Nm21, whereN is the number of nodes in th
network. For example, forN51000 andm510, the prob-
ability is smaller than 10222. Having a disconnected compo
nent in the subnetwork of shortcuts increases the value oL.
In particular, consider the configuration of shortcuts
shown in Fig. 2~a!, where one of the shortcuts in Fig. 1~a! is
disconnected from the rest of the subnetwork of shortcuts
the shortest path between a pair of nodes involves go
from the disconnected shortcut to the rest of the subnetw
then its length is increased by 2 compared to the path len
between the corresponding pair in Fig. 1~a!. This increases
the average path lengthL.

Next, observe that the nodes in the subnetwork of sh
cuts must be uniformly distributed over the network. Th
can be seen by noting that the average length of the sho
path from a node to its nearest shortcut is smallest w
these nodes are uniformly distributed.

Finally, among all possible configurations of connect
subnetworks of shortcuts with uniformly distributed node
ones with a single center involve the largest number of no
~namely,m11). Figure 2~b! shows some examples of con
nected subnetworks withm56. Obviously, increasing the
number of nodes involved in the shortcut subnetwork
ducesL, since it reduces the average path length to the n
est shortcut node. Among all connected configurations
shortcuts havingm11 nodes, the ones having a single cen
give the shortest value forL, since the average path length
the shortcut subnetwork is the smallest in that case.

These arguments indicate that given a fixed numbe
shortcuts, the networks with a connected subnetwork

FIG. 1. Examples of shortcut configuration with~a! a single
center and~b! two centers.

FIG. 2. ~a! Configuration with one shortcut disconnected fro
the rest of the subnetwork of shortcuts.~b! Various configuration of
shortcuts withm56 shortcuts.
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shortcuts having nodes uniformly distributed have smalleL
than a typical random configuration, and among those
ones with a single center minimizeL. In other words, the
‘‘smallest’’ small-world networks are characterized by the
structures.

Now we will compute explicitly the average path leng
for a configuration with a single center in the case of sm
world networks constructed from a one-dimensional latti
ConsiderN nodes arranged uniformly on a circle of un
circumference, where each node is connected to its
nearest-neighbor nodes. In addition, consider shortcuts
nectingm arbitrary pairs of nodes. To make the calculati
simple, we take the continuum limitN→` with m fixed, in
which the network becomes a continuous graph compose
a circle corresponding to the lattice and chords represen
the shortcuts. Let us define the distanced(P,Q) between
pointsP andQ on the continuous graph as the length of t
shortest continuous path along the graph,regarding the
length of a chord as zero. In other words, a shortcut is re
garded as identifying two points on the circle, rather th
merely connecting them. Then, the number of links in t
shortest path between nodesP andQ in the original network,
normalized byN, tends tod(P,Q) as N→`. This one-
dimensional model, despite being one of the simplest mod
of small-world networks, captures basic features of ma
real networks. In Ref.@9#, a mean-field-type argument wa
used to derive an analytical expression for an average oL
over random configurations of shortcuts, which was later
proved in Ref.@10#. In the following, we derive an analytica
expression for the configuration with a single center.

Consider the configuration of shortcuts with a center no
connected tom other points on the circle, as shown in Fig.
The m11 points including the center point are equa
spaced withj[1/(m11), and they divide the circle into
m11 arcs of the same length. We will compute the avera
d(P,Q) taken over all pairs (P,Q). Without loss of gener-
ality, we may considerP as fixed. LetAP be the arc in which
P lies. Suppose first thatQPAP as in Fig. 3~a!. Because the
end points ofAP are connected to each other by two sho
cuts via the center, the distance inAP is equivalent to the
distance on a circle of circumferencej. Therefore, the aver-
age ofd(P,Q) over all pairs (P,Q), such thatQPAP , is
equal to the average distance between two points on a c
of circumferencej, which isj/4. Suppose now thatQ¹AP
as in Fig. 3~b!. Let us denote the distance fromP to its
closest shortcut connection bya, and the distance fromQ

FIG. 3. The continuum limit model with configuration having
single center.~a! Q is in AP , the arc containingP, and~b! Q is not
in AP .
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to its closest shortcut byb. Since the shortest path betwee
P andQ must pass through two shortcuts of length zero,
have d(P,Q)5a1b. Averaging this over all possible
choices ofa andb, which can take any value between 0 a
j/2 independently, we obtainj/2. Noting that the probabili-
ties thatQPAP and thatQ¹AP are 1/(m11) and m/(m
11), respectively, the normalized average path lengthl can
be calculated as

l 5d~P,Q!5
1

m11 S j

4D1
m

m11 S j

2D5
2m11

4~m11!2
.

Let us now consider more general situation where e
node in the network has connections to its neighbor
nodes, up tokth nearest neighbors. Because of the conn
tions to kth nearest neighbors, following the shortest pa
between nodesP andQ takes 1/k times less steps compare
to the case discussed above. Hence, we must also scalel, the
normalized average path length of the network, by a fac
1/k yielding

l 5
1

k
d~P,Q!5

2m11

4k~m11!2
. ~1!

An important observation about Eq.~1! is that it can be writ-
ten as l 5 f (m)/k, where f (m) is a function that depend
only on the number of shortcuts. The formula derived in R
@9# for the averagel r of normalized path length over rando
configuration of shortcuts also has the same form with
ferent function forf, namely,

l r5
1

2kAm212m
tanh21S m

Am212m
D . ~2!

Note also that since the shortcuts are considered to h
length zero, the derivation above remains correct as lon
the subnetwork of shortcuts is connected and has unifor
distributed nodes, suggesting that in the continuum li
these two conditions are sufficient to achieve the minim
of L.

Figure 4 compares the calculation summarized in Eq.~1!
~continuous curve! with numerical computation ofl for a
single center~circles! and of l r over 10 random configura
tions of shortcuts~squares!. This shows an excellent agree
ment of Eq.~1! with the simulation. In fact, the error in th
Eq. ~1! due to the approximationN→` is of order 1/N,
mainly because the normalized length of a shortcut is c
sidered to be zero rather than 1/N. The inset in Fig. 4 shows
the ratio l r / l as a function of the number~m! of shortcuts.
Here the ratio is computed from numerical simulatio
~circles! and from the theoretical results~1! and~2! ~continu-
ous curve!. Since Eq.~1! is valid for m!N and Eq.~2! is
valid for 1!m!N, the curve in the inset is exact in the lim
N→` with m@1 fixed. Using the asymptotic forml r
;(log 2m)/4m of Eq. ~2! for m@1, one sees thatl r / l
; logm, explaining the fact that the curve in the inset
almost a straight line for largem. Numerical results in the
inset indicate that the effect of finite size and large short
density actually increases the ratio, making the benefi
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optimizing the shortcut configuration to a single-cen
model even larger than the theoretical prediction.

Finally, we simulate optimization of the shortcut config
ration for a one-dimensional array of nodes using
genetic-algorithm~GA! methodology@11#. An initial popula-
tion is described as being a collection of various short
configurations specified bym pairs of integers representin
the locations of nodes connected by shortcuts. The fitnes
each configuration is defined to beL21, whereL is the av-
erage path length. A new population of shortcut configu
tions is created from the old one in analogy with reprodu
tion in population genetics: a configuration is viewed
being the genome of an individual in the population, and
creating a new population, we allow there to be one-po
crossovers~i.e., interchanging subsets of shortcuts! and mu-
tations~i.e., changes in the location of end points by Gau
ian random numbers!. This creation process is continued u
til the fitness of the best individual in the population
constant over 100 generations. This gives a candidate for
optimal solution. The program for the simulation was dev
oped using a C11 library calledGAlib @12#.

Ten best solutions~here best means having shortest av
age path length! resulting from 254 independent runs wit
m510, k51, andN51000, and the population size of 10
are shown in Fig. 5. First, observe that in each case
subnetwork of shortcuts is connected. This was the cas
every solution found using the genetic algorithm. Second
each case there are centers from which many shortcuts e
nate. Moreover, the nodes in the subnetwork are appr
mately equally spaced around the circle. These observat
are consistent with the argument used above to establish
results. All solutions in Fig. 5 have the average path len
within 2% of the average path length achieved by the sing
center configuration~which is 44.577!. In contrast, the cor-
responding value for random shortcuts ('88) is almost
double the single-center solution. Although the single-cen

FIG. 4. Normalized path length of the network as a function
the numberm of shortcuts fork51. The continuous curve is Eq
~1!. The circles and squares are the numerical computation ofl for
the configuration with a single center and ofl r over 10 random
shortcut configurations, respectively. The inset shows the ratiol r / l
computed from numerical simulations~circles! and from theoretical
results~1! and~2! for N5` ~continuous line!. N5104 was used for
numerical computations.
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solution was not found by the genetic algorithm due to
limited number~254! of simulation runs, the results sho
that configurations with several centers are almost as
cient as the single-center configuration, as long as the
network of shortcuts is connected and its nodes are
formly distributed. The single-center solution was found
smaller networks withN5100 andm55, for which the
computation is less demanding.

Any other values ofk should lead to similar results. Th
case ofk52 is shown in Fig. 6. In fact, due to the generali
of the argument given earlier, we expect that the results
be extended to the case where the shortcuts are added
lattice of higher dimension, or to a regular network of a
other type.

The result of these simulations using the GA methodolo
shows that design elements for efficient networks are~1!
connectedness of the shortcut subnetwork,~2! uniform dis-
tribution of nodes in the subnetwork, and~3! existence of
centers.

We expect to see many examples of real networks w
such structures. Our computations on the neural networ
C. elegans~which has 285 nodes, 2347 links, and 112 sho
cuts! show that the structures are indeed present:~i! the
shortcut subnetwork has much fewer (515) connected com
ponents than the average ('47) for randomly chosen short
cuts, and the size of its giant component (575) is signifi-
cantly larger than the average ('12) over random shortcuts
~ii ! most ('88%) of the nodes are within one step of
shortcut;~iii ! there are a few nodes having many shortc
~11 shortcuts in the main center!. In general, a network with
such structures is robust against random failures, althoug
is sensitive to deliberate attacks to the centers. This prop
which is shared by scale-free networks@13#, is shown to

FIG. 5. Ten best solutions obtained by the genetic-algorit
simulations. The corresponding average path lengths are~a! L
544.962 ~b! L544.995, ~c! L545.043, ~d! L545.044, ~e! L
545.163, ~f! L545.221, ~g! L545.227, ~h! L545.275, ~i! L
545.283,~j! L545.286.N51000, m510, andk51 are used.
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characterize many real networks such as the Internet and
WWW @14#. However, some biological networks may be r
bust even against attacks on the centers since loss of a c
can result in shortcuts reconnecting to nearby nodes follow
by the optimization process that quickly recovers the sm
est configuration.

We have shown that among the small-world netwo
having a fixed number of shortcuts, the average path len
is smallest when there exists a single center through wh
all of the shortcuts are connected and shortcut nodes
uniformly distributed in the network. We have also show
that the average path length is almost as small when
shortcuts are connected and have a few centers, which
supported by the result of the GA simulations. Our resu
have important consequences in situations where the
ciency of information flow over a large network is require
The fact that the architecture of connected shortcuts w
centers arises through genetic algorithms suggests the p
bility that such a structure could emerge in networks in na
ral organisms~e.g., the neural network ofC. elegans!, al-
though the fitness used in GA here is not necessarily rela
to that of natural selection in biology. In particular, it pro
vides a potential mechanism for the appearance of hig
connected nodes while keeping high clustering in netwo
that are evolving but not necessarily growing, such as ne
and metabolic networks.
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FIG. 6. Ten best solutions from 81 independent runs of G
simulation with the population size of 30,N51000, m510, and
k52. The corresponding average path lengths are~a! L524.309,
~b! L524.379, ~c! L524.622, ~d! L524.627, ~e! L524.640, ~f!
L524.650, ~g! L524.653, ~h! L524.660, ~i! L524.779, ~j! L
524.798. The average path length is 23.795 for the single-ce
configuration, while it is approximately 43 for random shortcuts
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