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Smallest small-world network
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Efficiency in passage times is an important issue in designing networks, such as transportation or computer
networks. The small-world networks have structures that yield high efficiency, while keeping the network
highly clustered. We show that among all networks with the small-world structure, the most efficient ones have
a “single center” node, from which all shortcuts are connected to uniformly distributed nodes over the
network. The networks with several centers and a connected subnetwork of shortcuts are shown to be “almost”
as efficient. Genetic-algorithm simulations further support our results.
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The small-world network models have received much at- Most work has focused on average properties of such
tention from researchers in various disciplines, since theynodels over different realizations odndom shortcut con-
were introduced by Watts and Strogéid as models of real figurations. However, a different point of view is necessary
networks that lie somewhere between being random and bevhen a network is to be designed to optimize its perfor-
ing regular. Small-world networks are characterized by twomance with a restricted number of long-range connections.
numbers: the average path lendttand the clustering coef- For example, a transportation network should be designed to
ficientC. L, which measures efficiend2] of communication have the smalledt possible, so as to maximize the ability of
or passage time between nodes, is defined as being the avéte network to transport people efficiently, while keeping a
age number of links in the shortest path between a pair ofeasonable cost of building the network. The same can be
nodes in the networkC represents the degree of local order, said about communication networks for efficient exchange of
and is defined as being the probabmty that two nodes Conmformation betWeen nodes. We f|X the number Of ShOI’tCUtS
nected to a common node are also connected to each othdpere and as a result the clustering coeffici@rfor any con-

Many real networks are sparse in the sense that the nunhiguration of shortcuts is approximately as high as that of the

ber of links in the network is much less thafN—1)/2, the underlying lattice. The problem we address in this paper is:
number of all possiblebidirectiona) links. On one hand given a number of shortcuts in a small-world network, which

random sparse networks have short average path Iéngth configuration of these shortcuts minimizes[5P

L ~logN), but they are poorly clusterdle., C<1). On the Most random choices of shortcuts result in a suboptimal

. : fi [ i h h ial
other hand, regular sparse networks are typically highly clus" iguration, since they do not have any special structures

d. butl i ble ta\. (Al I ks h or organizations. On the contrary, many real networks have
tered, butl is comparable toN. (All-to-all networks have highly structured configurations of shortcuts. For example, in

C=1 andL=1, so they are most efficient, but most expen-jong range transportation networks, the airline connections
sive in the sense that they have I[N —1)/2 possible con-  pewveen major cities which can be regarded as shortcuts are
nections and so they are dense rather than spdisesmall-  far from being random, but they are organized around hubs.
world network models have advantages of both random angficient travel involves ground transportation to a nearest
regular sparse networks: they have snhafbr fast commu-  airport, then flights through a hub to an airport closest to the
nication between nodes, and they have laBgensuring suf-  destination, and ground transportation again at the end.
ficient redundancy for high fault tolerance. Many networks In the following, we show that the average path length
in the real world, such as the world-wide wélyWWw) [3], of a small-world network with a fixed number of shortcuts
the neural network ofC. elegans[1,4], collaboration net- attains its minimum value when there exists a “center” node,
works of actors[1,4], networks of scientific collaboration from which all shortcuts are connected to uniformly distrib-
[7], and the metabolic network dE. coli [8], have been uted nodes in the networl6]. An example of such a con-
shown to have this property. The models of small-world netfiguration is illustrated in Fig. (B). We also show that if a
works are constructed from a regular lattice by adding a relasmall-world network has several “centers” and its subnet-
tively small number of shortcuts at random, where a linkwork of shortcuts isconnectedthenlL is almost as small as
between two nodes andv is called ashortcutif the shortest  the minimum value. An example of such configuration is
path length betweem and v in the absence of the link shown in Fig. 1b). We then derive an explicit formula for
is more than two[4]. The regularity of the underlying the minimum average path length in the case of the small-
lattice ensures high clustering, while the shortcuts reduce th@orld network models constructed from a one-dimensional
size ofL. lattice by adding a fixed number of shortcuts. Finally, we
verify the results by performing genetic-algorithm simula-
tions for minimizingL.
*Email address: tnishi@chaos6.la.asu.edu Our general argument proceeds as follows. A small-world
"Email address: motter@chaos3.la.asu.edu network is composed of two parts: the underlying network
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FIG. 1. Examples of shortcut configuration wifh) a single

center andb) two centers. FIG. 3. The continuum limit model with configuration having a
single center(a) Q is in Ap, the arc containing?, and(b) Q is not
(e.g., a regular lattigeand the subnetwork of shortcuts con- in Ap.
taining only the shortcuts and their nodes. betlenote the
number of shortcuts. First, fdr to be as short as possible, shortcuts having nodes uniformly distributed have smaller
the subnetwork of shortcuts must be connected. This connegnhan a typical random configuration, and among those the
tivity is unlikely to happen if the shortcuts are chosen atpnes with a single center minimiZe In other words, the
random, since the network is sparse. Indeed, the probabilitysmallest” small-world networks are characterized by these
is less tharm!/N™~1, whereN is the number of nodes in the stryctures.
network. For example, foN=1000 andm=10, the prob- Now we will compute explicitly the average path length
ability is smaller than 10°%. Having a disconnected compo- for a configuration with a single center in the case of small-
nent in the subnetwork of shortcuts increases the value of world networks constructed from a one-dimensional lattice.
In particular, consider the configuration of shortcuts asconsiderN nodes arranged uniformly on a circle of unit
shown in Fig. 2a), where one of the shortcuts in Figalis  circumference, where each node is connected to its two
disconnected from the rest of the subnetwork of shortcuts. |ﬁearest-neighbor nodes. In addition' consider shortcuts con-

the shortest path between a pair of nodes involves goin@iectingm arbitrary pairs of nodes. To make the calculation
from the disconnected shortcut to the rest of the subnetworlgimme, we take the continuum limM— o with m fixed, in
then its length is increased by 2 compared to the path lengtiyhich the network becomes a continuous graph composed of
between the corresponding pair in Figa)ll This increases 3 circle corresponding to the lattice and chords representing
the average path length the shortcuts. Let us define the distard@P,Q) between
Next, observe that the nodes in the subnetwork of Shortpointsp andQ on the continuous graph as the |ength of the
cuts must be Uniformly distributed over the network. ThiSshortest continuous path a|ong the grapegarding the
can be seen by noting that the average length of the shortegingth of a chord as zerdn other words, a shortcut is re-
path from a node to its nearest shortcut is smallest whegarded as identifying two points on the circle, rather than
these nodes are uniformly distributed. merely connecting them. Then, the number of links in the
Finally, among all possible configurations of connectedshortest path between nodesndQ in the original network,
subnetworks of shortcuts with uniformly distributed nodes,normalized byN, tends tod(P,Q) as N—. This one-
ones with a single center involve the largest number of nodegimensional model, despite being one of the simplest models
(namely,m+1). Figure 2b) shows some examples of con- of small-world networks, captures basic features of many
nected subnetworks witm=6. Obviously, increasing the real networks. In Ref[9], a mean-field-type argument was
number of nodes involved in the shortcut subnetwork reysed to derive an ana|ytica| expression for an average of
ducesL, since it reduces the average path length to the neagyer random configurations of shortcuts, which was later im-
est shortcut node. Among all connected configurations oproved in Ref[10]. In the following, we derive an analytical
shortcuts havingn+ 1 nodes, the ones having a single centerexpression for the configuration with a single center.
give the shortest value fdr, since the average path length of  Consider the configuration of shortcuts with a center node
the shortcut subnetwork is the smallest in that case. connected tan other points on the circle, as shown in Fig. 3.
These arguments indicate that given a fixed number Oﬂ'he m+1 points including the center point are equally
shortcuts, the networks with a connected subnetwork ogpaced with¢=1/(m+1), and they divide the circle into

m+1 arcs of the same length. We will compute the average

(b) d(P,Q) taken over all pairsR,Q). Without loss of gener-

ality, we may consideP as fixed. LetAp be the arc in which

}é X P lies. Suppose first thdd € Ap as in Fig. 3a). Because the
7nodes 5 nodes end points ofAp are connected to each other by two short-

cuts via the center, the distance Ap is equivalent to the
\I/:>I Q distance on a circle of circumferenée Therefore, the aver-
age ofd(P,Q) over all pairs P,Q), such thatQe Ap, is
equal to the average distance between two points on a circle
FIG. 2. (a) Configuration with one shortcut disconnected from Of circumferencet, which is /4. Suppose now tha ¢ Ap
the rest of the subnetwork of shortcutls) Various configuration of as in Fig. 3b). Let us denote the distance frof to its
shortcuts withm=6 shortcuts. closest shortcut connection hy, and the distance fron®

7 nodes 6 nodes
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to its closest shortcut bg. Since the shortest path between
P and Q must pass through two shortcuts of length zero, we
have d(P,Q)=a+ 8. Averaging this over all possible
choices ofa and B, which can take any value between 0 and
&/2 independently, we obtai&/2. Noting that the probabili-
ties thatQe Ap and thatQ ¢ Ap are 1/(+1) and m/(m
+1), respectively, the normalized average path lehgthn

be calculated as

_— & m (& 2m+1
I=d(P,Q)= 7 >|= :
m+114/ m+112] 4(m+1)2 I
Let us now consider more general situation where each 10° 102 10*

node in the network has connections to its neighboring
nodes, up tcth nearest neighbors. Because of the connec-
tions to kth nearest neighbors, following the shortest path FIG. 4. Normalized path length of the network as a function of
between nodeP andQ takes 1K times less steps compared the numbem of shortcuts fork=1. The continuous curve is Eq.
to the case discussed above. Hence, we must alsolstlaée  (1). The circles and squares are the numerical computatidricsf
normalized average path length of the network, by a factothe configuration with a single center and lpfover 10 random

m

1Kk yielding shortcut configurations, respectively. The inset shows the Fatio
computed from numerical simulatiosircles and from theoretical
1 2m+1 results(1) and(2) for N=c (continuous ling N= 10" was used for
|=—-d(P,Q = ——. (1) numerical computations.
k 4k(m+1)?

optimizing the shortcut configuration to a single-center

An important observation about E) is that it can be writ- model even larger than the theoretical prediction.

ten asl=f(m)/k, wheref(m) is a function that depends Finally, we simulate optimization of the shortcut configu-
only on the number of shortcuts. The formula derived in Ref. _.. Y, . pt onfig
ration for a one-dimensional array of nodes using the

[9] for the averagé, of normalized path length over random . . S i
configuration of shortcuts also has the same form with dif-gene.tIC algor.|thrr(GA) mgthodolog){l_l]. An '”'“6?' popula
. tion is described as being a collection of various shortcut
ferent function forf, namely, . . s ; . .
configurations specified bgn pairs of integers representing
1 the locations of nodes connected by shortcuts. The fithess of
Ir=—tanh‘1(—>. (2)  each configuration is defined to he !, wherelL is the av-
2k\m?+2m Ym?+2m erage path length. A new population of shortcut configura-
] ) tions is created from the old one in analogy with reproduc-

length zero, the derivation apove remains correct as I'ong 8Seing the genome of an individual in the population, and in
the subnetwork of shortcuts is connected and has unlformlgreating a new population, we allow there to be one-point
distributed nodes, suggesting that in the continuum limitcrossovergi.e., interchanging subsets of shortguasd mu-
these two conditions are sufficient to achieve the MiniMUMgations(i.e., changes in the location of end points by Gauss-
of L. ) ) ) ian random numbe)sThis creation process is continued un-
Figure 4 compares the calculation summarized iN@Q. il the fitness of the best individual in the population is
(continuous curvewith numerical computation of for a  constant over 100 generations. This gives a candidate for the

single center(circles and of I, over 10 random configura- gptimal solution. The program for the simulation was devel-
tions of shortcutysquares This shows an excellent agree- gped using a & + library calledGaiib [12].

ment of Eq.(1) with the simulation. In fact, the error in the Ten best solutionghere best means having shortest aver-
Eqg. (1) due to the approximatiomN—oo is of order 1N, age path lengthresulting from 254 independent runs with
mainly because the normalized length of a shortcut is conm=10, k=1, andN= 1000, and the population size of 100
sidered to be zero rather tharN1/The inset in Fig. 4 shows are shown in Fig. 5. First, observe that in each case the
the ratiol, /I as a function of the numbd&m) of shortcuts.  subnetwork of shortcuts is connected. This was the case in
Here the ratio is computed from numerical simulationsevery solution found using the genetic algorithm. Second, in
(circles and from the theoretical results) and(2) (continu-  each case there are centers from which many shortcuts ema-
ous curve. Since Eq.(1) is valid for m<N and Eq.(2) is  nate. Moreover, the nodes in the subnetwork are approxi-
valid for 1<m<N, the curve in the inset is exact in the limit mately equally spaced around the circle. These observations
N—oo with m>1 fixed. Using the asymptotic forn, are consistent with the argument used above to establish our
~(log 2m)/4m of Eg. (2) for m>1, one sees that,/I results. All solutions in Fig. 5 have the average path length
~logm, explaining the fact that the curve in the inset is within 2% of the average path length achieved by the single-
almost a straight line for largen. Numerical results in the center configuratioriwhich is 44.577. In contrast, the cor-
inset indicate that the effect of finite size and large shortcutesponding value for random shortcuts-§8) is almost
density actually increases the ratio, making the benefit oflouble the single-center solution. Although the single-center
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~ FIG. 5. Ten best solutions obtained by the genetic-algorithm  F|G, 6. Ten best solutions from 81 independent runs of GA
simulations. The corresponding average path lengths(@rd.  simulation with the population size of 30)=1000, m= 10, and
=44.962 (b) L=44.995, (c) L=45.043, (d) L=45.044,(¢) L  k=2. The corresponding average path lengths(are=24.309,
=45.163, (f) L=45.221, (9) L=45.227, (h) L=45.275, () L (b) L=24.379,(c) L=24.622,(d) L=24.627, () L=24.640, (f)
=45.283,(j) L=45.286.N=1000, m=10, andk=1 are used. L=24.650, (g) L=24.653, () L=24.660, (i) L=24.779, (j) L
=24.798. The average path length is 23.795 for the single-center

solution was not found by the genetic algorithm due to theconfiguration, while it is approximately 43 for random shortcuts.

limited number(254) of simulation runs, the results show
that configurations with several centers are almost as eff . ;
cient as the single-center configuration, as long as the subfGate A8 BERAEE S B 00 e e e e center
fnoertrnwlc;/rléi;)tfrit?Stce):glelfﬁelssirfglr; nsg:ﬁgr 22(Ijutlitosn rx;se?osgz ;Jor;'éan result in shortcuts reconnecting to nearby nodes followed

C . ! h imization pr h ickly recovers the small-
smaller networks withN=100 andm=5, for which the by the optimization process that quickly recovers t

on is | q di est configuration.
computation is less demanding. We have shown that among the small-world networks

Any other values ok should lead to similar results. The paying a fixed number of shortcuts, the average path length
case ok=2 is shown in Fig. 6. In fact, due to the generality js smallest when there exists a single center through which
of the argument given earlier, we expect that the results cagj| of the shortcuts are connected and shortcut nodes are
be extended to the case where the shortcuts are added taaiformly distributed in the network. We have also shown
lattice of higher dimension, or to a regular network of an-that the average path length is almost as small when the
other type. shortcuts are connected and have a few centers, which was

The result of these simulations using the GA methodologysupported by the result of the GA simulations. Our results
shows that design elements for efficient networks @e have important consequences in situations where the effi-
connectedness of the shortcut subnetwgg,uniform dis-  ciency of information flow over a large network is required.
tribution of nodes in the subnetwork, ari@) existence of The fact that the architecture of connected shortcuts with
centers. centers arises through genetic algorithms suggests the possi-

We expect to see many examples of real networks withbility that such a structure could emerge in networks in natu-
such structures. Our computations on the neural network afal organisms(e.g., the neural network of. elegang al-

C. elegangwhich has 285 nodes, 2347 links, and 112 shortthough the fitness used in GA here is not necessarily related
cutg show that the structures are indeed preséntthe to that of natural selection in biology. In particular, it pro-
shortcut subnetwork has much fewer 15) connected com- vides a potential mechanism for the appearance of highly
ponents than the average-47) for randomly chosen short- connected nodes while keeping high clustering in networks
cuts, and the size of its giant componert {5) is signifi-  that are evolving but not necessarily growing, such as neural
cantly larger than the average-(2) over random shortcuts; and metabolic networks.

(i) most (=88%) of the nodes are within one step of a T.N. was supported by DARPA/ONR through Grant No.
shortcut; (i) there are a few nodes having many shortcutsN00014-01-1-0943. A.E.M. thanks Fapesp for financial sup-
(11 shortcuts in the main cenjefn general, a network with port. Y.C.L. was supported by AFOSR under Grant No.
such structures is robust against random failures, although E49620-01-1-0317. F.C.H. was supported in part by NSF
is sensitive to deliberate attacks to the centers. This propertyhrough Grant No. DMS-0109001. We are grateful for help-
which is shared by scale-free networks3], is shown to  ful suggestions from A. P. S. de Moura.
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