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Topology of the conceptual network of language
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We define two words in a language to be connected if they express similar concepts. The network of
connections among the many thousands of words that make up a language is important not only for the study
of the structure and evolution of languages, but also for cognitive science. We study this issue quantitatively,
by mapping out the conceptual network of the English language, with the connections being defined by the
entries in a Thesaurus dictionary. We find that this network presents asmall-worldstructure, with an amazingly
small average shortest path, and appears to exhibit an asymptotic scale-free feature with algebraic connectivity
distribution.
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Any language is composed of many thousands of wo
linked together in an apparently fairly sophisticated way
language can thus be regarded as a network, in the follow
sense:~1! the words correspond to nodes of the network, a
~2! a link exists between two words if they express simi
concepts. Clearly, the underlying network of a language
necessarily sparse in the sense that the average numb
links per node is typically much smaller than the total nu
ber of nodes. Identifying and understanding the common
work topology of languages is of great importance, not o
for the study of languages themselves, but also for cogni
science where one of the most fundamental issues conc
associative memory, which is intimately related to the n
work topology.

Recently, there has been a tremendous amount of inte
in the study of large, sparse, and complex networks since
seminal papers by Watts and Strogatz@1# on the small-world
characteristic and by Baraba´si and Albert on scale-free fea
tures@2#. The small-world concept isstatic in the sense tha
it describes the topological property of the network at
given time. Two statistical quantities characterizing a sta
network are clusteringC and shortest pathL, where the
former is the probability that any two nodes are connecte
each other, given that they are both connected to a com
node, and the latter measures the minimal number of li
connecting two nodes in the network. Regular networks h
high clusterings and small average shortest paths, with
dom networks at the opposite of the spectrum which h
small shortest paths and low clusterings@3#. Small-world
networks fall somewhere in between these two extremes
particular, a network is small world if its clustering coeffi
cient is almost as high as that of a regular network but
average shortest path is almost as small as that of a ran
network with the same parameters. Watts and Strogatz d
onstrated that a small-world network can be easily c
structed by adding to a regular network a few additio
random links connecting otherwise distant nodes. The sc
free property, on the other hand, is defined by an algeb
behavior in the probability distributionP(k) of k, the num-
1063-651X/2002/65~6!/065102~4!/$20.00 65 0651
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ber of links at a node in the network. This property isdy-
namicbecause it is the consequence of the natural evolu
of the network. The ground-breaking work by Baraba´si and
Albert @2# demonstrates that the algebraic distribution in t
connectivity of scale-free network is caused by two ba
factors in the temporal evolution of the network: growth a
preferential attachment, where the former means that
number of nodes in the network keeps increasing and
latter stipulates that the probability for a new node to
connected to an existing node is proportional to the num
of links that this node already has. The scale-free prope
appears to be universal for many networks and most of
scale-free networks are also small world. As of today,
small-world and scale-free features have been discovere
many networks in nature, and there has also been a l
number of theoretical models proposed to explain these
tures@4,5#.

In this paper, we study the network structure of langua
@6#. We present results for the English language, but they
expected to hold for any other languages because the fu
mental role of the language, i.e., to communicate ideas
shared by all the languages. We construct a conceptual
work from the entries in a Thesaurus dictionary and consi
two words connected if they express similar concepts. T
network is clearly evolving and sparse. We argue that t
network exhibits the small-world property as a result of na
ral optimization and, interestingly, the network is asympto
cally scale-free due to its dynamic character. We believe
shall argue that these findings are important not only
linguistics, but also for cognitive science.

A Thesaurus dictionary gives for every entry a list
words that are conceptually similar to the entry word. F
example, the list for the word ‘‘nature’’ includes ‘‘universe,
‘‘world,’’ and ‘‘character.’’ We define a network from this in
a natural way, where each word is a node, and two nodes
connected if one of the corresponding words is listed in
entry of the other one. To build this network, we use
online English Thesaurus dictionary that is freely availa
@7#, which has over 30 000 entries, and lists on average o
©2002 The American Physical Society02-1
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100 words per entry. The words that have an entry in
dictionary are calledroot words. Not all words in the list of
a given root word are themselves root words. In the const
tion of the network, only words that are root words are co
sidered, and the others are dropped. The resulting netw
has an average of about 60 connections per node. This n
ber is much less than the total number of nodes, and thus
are dealing with asparsenetwork, where each node is con
nected to only a small fraction of the network. This is
necessary condition for the notion of small world to ma
sense. The construction of the network is depicted in Fig

We first present results concerning the small-world pr
erty of the network. We expect the network to be high
clustered, because there are many sets of related words
are highly interconnected. For example, ‘‘nature’’ is co
nected to ‘‘universe,’’ and is also connected to ‘‘world,’’ an
‘‘world’’ and ‘‘universe’’ are connected. The numerical ca
culation ofC yields 0.53, which is compared in Table I wit
the corresponding value for a random network with the sa
parameters, in which the clustering approaches zero, s
the probability that two nodes are connected is independ
on whether they are connected to a common node or not
see that in factC is more than 250 times larger than th
random network value computed from the relationC
5 k̄/(N21) @4#. On the other hand, because each word
linked to only 60 others~on average!, compared to over
30 000 in total, and since only words expressing similar c
cepts are linked, one might be tempted to conclude thaL
should be large, and that one might need to cross hundre
even thousands of links to go from one word to another w
a very different meaning. However, a calculation ofL yields
the amazingly low number of 3.2, which is very close to t

FIG. 1. Illustration of the connections in the conceptual netw
for a few words. The thick line is the shortcut between the wo
‘‘universe’’ and ‘‘character,’’ which are connected by ‘‘nature.’’

TABLE I. Results for the conceptual network defined by t
Thesaurus dictionary, and a comparison with a corresponding
dom network with the same parameters.N is the total number of

nodes~root words!, k̄ is the average number of links per node,C is
the clustering coefficient, andL is the average shortest path.

N k̄ C L

Actual configuration 30 244 59.9 0.53 3.16
Random configuration 30 244 59.9 0.002 2.5
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value of about 2.5 of the corresponding random network

timated from the relationL' ln N/ln k̄ @4#, as shown in Table
I. This means that one only needs three steps on averag
connect any two words in the 30 000-words dictionary.

The reason why the average shortest path for the con
tual language network is so low is related to the existence
words that correspond to two or more very different co
cepts. For example, ‘‘nature’’ is connected to ‘‘universe,’’ b
it is also connected to ‘‘character.’’ Thus, two words wi
such distinct meanings such as ‘‘universe’’ and ‘‘characte
are separated by only two links in the network~c.f. Fig. 1!.
The word ‘‘nature’’ is thus a shortcut that connects regions
the network that would otherwise be separated by m
links. The presence of such shortcuts is what makesL small.
In fact, less than 1% of the words require more than fo
steps to be reached from any given word, on average
shown in Table II. For example, one can reach any ot
word starting from ‘‘nature’’ with five steps or less.

Our first result is thus that the conceptual network
highly clustered and at the same time has a very sm
length, i.e., it is asmall-world network. Since the lengthL in
small-world networks grows only logarithmically with th
number of nodes@1#, even if we included more words in th
dictionary ~and consequently more nodes!, L would not
change by much, and our conclusions still hold. Another i
portant point is that even though we used the dictionary o
particular language~English!, since the Thesaurus associat
words based on their concepts, we expect similar result
hold for other languages as well. In fact, in any language
network will be highly clustered, and any language h
words that function as shortcuts, guaranteeing thatL is very
small, even though the particular words that act as short
may be different for different languages.

Next we consider the dynamical feature of the concept
network. The language is an evolving system, where n
words are continually created and added to the network.
conceptual network of language can thus be regarded
growing network. But, how are the new nodes attached in
conceptual network? The answer is encoded in the proba
ity distribution P(k) of the connectivity. If new nodes ar
randomly added to the network,P(k) follows an exponential
distribution @8#: P(k);exp(2bk). If new nodes are prefer
entially added to the network, e.g., if the probabilityP i for

k
s

n-

TABLE II. Average numberNn of nodes at a shortest pathL
5n from a given node in the conceptual network.r[Nn /N is the
fraction of nodes corresponding toNn .

n Nn r

1 59.9 0.002
2 2,961 0.098
3 19,762 0.653
4 7,205 0.238
5 222 0.007
6 28.5 0.001
7 4.7 ;1024

8 0.06 ;1026
2-2



-

t
an
-

d
ch
ls

th
ne
it
w

r-

-

a

. W

to
o
t
io
n
th
la
th

th
c
n

am
ng

ct
n

om

e
the
ro-
th.
-

et-
the
be
on-
af-

to
the
h-

our
an
re-
et-
-
ld
ffi-
re

kes
ven
by
s a
has

he
the

et-
e
ded

IP
.

ex-

RAPID COMMUNICATIONS

TOPOLOGY OF THE CONCEPTUAL NETWORK OF LANGUAGE PHYSICAL REVIEW E65 065102~R!
an already existing nodei to acquire a link from the new
node is proportional toki , the number of links that nodei
already has, thenP(k) exhibits the following algebraic scal
ing @2,8#:

P~k!;k2a, ~1!

wherea53. The algebraic scaling law~1! reflects the fact
that there is a self-organizing principle governing the grow
of the network, which has indeed been discovered in m
realistic networks@2,5#. For our conceptual network of lan
guage, we expect the distributionP(k) to reflect the intrin-
sically coherent manner by which a language is suppose
evolve. However, the rule of a perfect preferential atta
ment P i;ki appears to be too idealized as there are a
random factors affecting how a new word is added to
language. We thus hypothesize that for the conceptual
work of language, a new node is added to the network w
both preferential and random attachments. Specifically,
assume,

P i;~12p!ki1p, ~2!

wherep and (12p) are the weights of random and prefe
ential attachments, respectively. A recent work@9# indicates
that the attachment rule~2! leads to the following connectiv
ity distribution:

P~k!;S k1
p

12pD 2g

, g531
p

m~12p!
, ~3!

wherem is the number of new links added to the network
each time step. We see that for smallk, P(k) exhibits an
approximately exponential behavior, while for largek, P(k)
appears to be algebraic with an exponent greater than 3
then expect to observe acrossoverfrom the exponential to
algebraic behavior ask is increased. This indeed appears
be the case for the conceptual network of language, as sh
in Fig. 2, where the asymptotic algebraic scaling exponen
about 3.5, which is consistent with the theoretical predict
in Eq. ~3!. This indicates that our hypothesis of mixed co
tributions from preferential and random attachments in
development of the conceptual network of language is p
sible, and there is indeed a self-organized structure in
network to certain degree.

A heuristic justification for our hypothesis~2! is as fol-
lows. Because of the small-world topology, each node of
conceptual network on average has a large fraction of lo
connections and a small fraction of long range connectio
When a new node is added to the network, it has the s
probability of attaching to any one of the already existi
nodes. But, once it attaches a nodej it has the tendency to
connect preferentially to the nodes that are already conne
to j @10#. Preferential attachment comes from the seco
step, since the probability that a nodei is in the neighbor-
hood of nodej is proportional to the number of linkski of
nodei; while the random component comes from the rand
06510
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choice of the first connectionj and the subsequent long rang
connections. The small-world property is consistent with
evolutionary character of the network, as the growing p
cess tends to keep high clustering and small shortest pa

In comparison with the small-world model originally pro
posed in Ref.@1#, a scale-free network presents a highly h
erogeneous distribution of links per node. In spite of this,
evolution of the conceptual network is demonstrated to
robust, in that most of the words correspond to nodes c
nected to few other nodes, and can be removed without
fecting the structure of the network@9,11#. There are also
words that are the most visible ones, but they are unlikely
be suddenly lost or undergo an abrupt transformation in
evolution without a self-organized reconnection of the neig
bors @12#.

We conclude with some thoughts on the meaning of
results for cognitive science. It is well known that hum
memory is associative, which means that information is
trieved by connecting similar concepts, just as in our n
work above@13,14#. From the standpoint of retrieval of in
formation in an associative memory, the small-wor
property of the network represents a maximization of e
ciency: on the one hand, similar pieces of information a
stored together, due to the high clustering, which ma
searching by association possible; on the other hand, e
very different pieces of information are never separated
more than a few links, or associations, which guarantee
fast search. We thus speculate that associative memory
arisen partly because of a maximization of efficiency in t
retrieval by natural selection. This issue may be related to
fact that the neural network is probably a small-world n
work as well @15,16#, which is probably necessary for th
brain to be able to hold a conceptual network that is nee
for associative memory.

This work was supported by FAPESP and AFOSR C
~Critical Information Protection! Program under Grant No
F49620-01-1-0317.

FIG. 2. Algebraic scaling behavior ofP(k) for the conceptual
network of the English language. The inset shows the initially
ponential decay ofP(k).
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