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Topology of the conceptual network of language
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We define two words in a language to be connected if they express similar concepts. The network of
connections among the many thousands of words that make up a language is important not only for the study
of the structure and evolution of languages, but also for cognitive science. We study this issue quantitatively,
by mapping out the conceptual network of the English language, with the connections being defined by the
entries in a Thesaurus dictionary. We find that this network presesiteafi-worldstructure, with an amazingly
small average shortest path, and appears to exhibit an asymptotic scale-free feature with algebraic connectivity
distribution.
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Any language is composed of many thousands of word®er of links at a node in the network. This propertydis
linked together in an apparently fairly sophisticated way. Anamicbecause it is the consequence of the natural evolution
language can thus be regarded as a network, in the followingf the network. The ground-breaking work by Barsiand
sense(1) the words correspond to nodes of the network, andAlbert [2] demonstrates that the algebraic distribution in the
(2) a link exists between two words if they express similarconnectivity of scale-free network is caused by two basic
concepts. Clearly, the underlying network of a language igactors in the temporal evolution of the network: growth and
necessarily sparse in the sense that the average number meferential attachment, where the former means that the
links per node is typically much smaller than the total num-number of nodes in the network keeps increasing and the
ber of nodes. Identifying and understanding the common netatter stipulates that the probability for a new node to be
work topology of languages is of great importance, not onlyconnected to an existing node is proportional to the number
for the study of languages themselves, but also for cognitivef links that this node already has. The scale-free property
science where one of the most fundamental issues concerappears to be universal for many networks and most of the
associative memory, which is intimately related to the netscale-free networks are also small world. As of today, the
work topology. small-world and scale-free features have been discovered in
Recently, there has been a tremendous amount of interestany networks in nature, and there has also been a large
in the study of large, sparse, and complex networks since theumber of theoretical models proposed to explain these fea-
seminal papers by Watts and Strogglty on the small-world  tures[4,5].

characteristic and by Barasiaand Albert on scale-free fea- In this paper, we study the network structure of language
tures[2]. The small-world concept istaticin the sense that [6]. We present results for the English language, but they are
it describes the topological property of the network at aexpected to hold for any other languages because the funda-
given time. Two statistical quantities characterizing a statianental role of the language, i.e., to communicate ideas, is
network are clusteringC and shortest pati., where the shared by all the languages. We construct a conceptual net-
former is the probability that any two nodes are connected tavork from the entries in a Thesaurus dictionary and consider
each other, given that they are both connected to a commamwo words connected if they express similar concepts. The
node, and the latter measures the minimal number of linksetwork is clearly evolving and sparse. We argue that this
connecting two nodes in the network. Regular networks haveetwork exhibits the small-world property as a result of natu-
high clusterings and small average shortest paths, with ramal optimization and, interestingly, the network is asymptoti-
dom networks at the opposite of the spectrum which haveally scale-free due to its dynamic character. We believe and
small shortest paths and low clusteringd. Small-world  shall argue that these findings are important not only for
networks fall somewhere in between these two extremes. ltinguistics, but also for cognitive science.

particular, a network is small world if its clustering coeffi- A Thesaurus dictionary gives for every entry a list of
cient is almost as high as that of a regular network but itsvords that are conceptually similar to the entry word. For
average shortest path is almost as small as that of a randoaxample, the list for the word “nature” includes “universe,”
network with the same parameters. Watts and Strogatz deniworld,” and “character.” We define a network from this in
onstrated that a small-world network can be easily cona natural way, where each word is a node, and two nodes are
structed by adding to a regular network a few additionalconnected if one of the corresponding words is listed in the
random links connecting otherwise distant nodes. The scaleentry of the other one. To build this network, we use an
free property, on the other hand, is defined by an algebraionline English Thesaurus dictionary that is freely available
behavior in the probability distributio®(k) of k, the num-  [7], which has over 30 000 entries, and lists on average over
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letter . TABLE Il. Average numberN,, of nodes at a shortest path
unncerse =n from a given node in the conceptual netwopk=N, /N is the
fraction of nodes corresponding Iy, .
n N p
character
1 59.9 0.002
2 2,961 0.098
3 19,762 0.653
world 4 7,205 0.238
actor 5 222 0.007
6 28.5 0.001
FIG. 1. lllustration of the connections in the conceptual network 7 47 104
for a few words. The thick line is the shortcut between the words 8 0 66 10-6

“universe” and “character,” which are connected by “nature.”

100 words per entry. The words that have an entry in the .
dictionary are calledoot words Not all words in the list of ~value of about 2.5 of the corresponding random network es-
a given root word are themselves root words. In the construdimated from the relatioh ~In N/Ink [4], as shown in Table
tion of the network, only words that are root words are con-l. This means that one only needs three steps on average to
sidered, and the others are dropped. The resulting networdonnect any two words in the 30 000-words dictionary.
has an average of about 60 connections per node. This num- The reason why the average shortest path for the concep-
ber is much less than the total number of nodes, and thus wigal language network is so low is related to the existence of
are dealing with sparsenetwork, where each node is con- words that correspond to two or more very different con-
nected to only a small fraction of the network. This is acepts. For example, “nature” is connected to “universe,” but
necessary condition for the notion of small world to makeit is also connected to “character.” Thus, two words with
sense. The construction of the network is depicted in Fig. 1such distinct meanings such as “universe” and “character”
We first present results concerning the small-world prop-are separated by only two links in the netwddkf. Fig. 1.
erty of the network. We expect the network to be highly The word “nature” is thus a shortcut that connects regions of
clustered, because there are many sets of related words ttthe network that would otherwise be separated by many
are highly interconnected. For example, “nature” is con-links. The presence of such shortcuts is what makssall.
nected to “universe,” and is also connected to “world,” and In fact, less than 1% of the words require more than four
“world” and “universe” are connected. The numerical cal- steps to be reached from any given word, on average, as
culation of C yields 0.53, which is compared in Table | with shown in Table Il. For example, one can reach any other
the corresponding value for a random network with the samavord starting from “nature” with five steps or less.
parameters, in which the clustering approaches zero, since Our first result is thus that the conceptual network is
the probability that two nodes are connected is independertighly clustered and at the same time has a very small
on whether they are connected to a common node or not. Wength, i.e., it is asmall-world networkSince the lengtih in
see that in faciC is more than 250 times larger than the small-world networks grows only logarithmically with the
random network value computed from the relatiéh  number of node$l], even if we included more words in the

=W(N—1) [4]. On the other hand, because each word jdictionary (and consequently more noded. would not
linked to only 60 otherson average compared to over change by much, and our conclusions still hold. Another im-
30000 in total, and since only words expressing similar conPortant point is that even though we used the dictionary of a
cepts are linked, one might be tempted to conclude that particular IanguageE_ngllsh, since the Thesaurus associates
should be large, and that one might need to cross hundreds $ords based on their concepts, we expect similar results to
even thousands of links to go from one word to another witH10ld for other languages as well. In fact, in any language the

a very different meaning. However, a calculationlofields ~ network will be ‘highly clustered, and any language has
the amazingly low number of 3.2, which is very close to theWords that function as shortcuts, guaranteeing that very
small, even though the particular words that act as shortcuts

) may be different for different languages.
TABLE 1. _R_esults for the concep_tual n?twork defined l:_>y the Next we consider the dynamical feature of the conceptual
Thesaurus dictionary, and a comparison with a corresponding ran- : -
) : network. The language is an evolving system, where new
dom network with the same parameteksis the total number of .
d ¢ words. Kis th ber of link Py words are continually created and added to the network. The
?hoe ii;?grixvorcoséffiéisente;r\s:sgt]:en;\;gr:r:sr|1r;rtse2'?r gtoh s conceptual network of language can thus be regarded as a
9 ' 9 path. growing network. But, how are the new nodes attached in the
conceptual network? The answer is encoded in the probabil-

N K Cc L . BT L
K ity distribution P(k) of the connectivity. If new nodes are
Actual configuration 30244 59.9 0.53 3.16 randomly added to the networR(k) follows an exponential
Random configuration 30244 599 0002 25 distribution[8]: P(k)~exp(=pK). If new nodes are prefer-

entially added to the network, e.g., if the probability for
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an already existing nodeto acquire a link from the new 10°
node is proportional td;, the number of links that nodie

already has, theR(k) exhibits the following algebraic scal-

ing [2,8]:

107'F ° :

P(k)

P(k)~k™*, D

where a=3. The algebraic scaling lawl) reflects the fact
that there is a self-organizing principle governing the growth 107 " 1
of the network, which has indeed been discovered in many
realistic networkg2,5]. For our conceptual network of lan- 107!
guage, we expect the distributidh(k) to reflect the intrin-
sically coherent manner by which a language is supposed t¢ 1073 .- -

evolve. However, the rule of a perfect preferential attach- 0 4 &0 0 10 200
ment I1;,~k; appears to be too idealized as there are alsc 10" 102 10°
random factors affecting how a new word is added to the k

language. We thus hypothesize that for the conceptual net- . . .
work of language, a new node is added to the network with FIG. 2. Algebraic scaling behavior ¢1(k) for the conceptual

both preferential and random attachments. Specifically, wgﬁ;véonrtli(argétzylzggl('i;] language. The inset shows the initially ex-
assume, '

II;~(1-p)ki+p, 2 choice of the first connectignand the subsequent long range
connections. The small-world property is consistent with the
evolutionary character of the network, as the growing pro-
cess tends to keep high clustering and small shortest path.
In comparison with the small-world model originally pro-
posed in Ref[1], a scale-free network presents a highly het-
erogeneous distribution of links per node. In spite of this, the
evolution of the conceptual network is demonstrated to be
p robust, in that most of the words correspond to nodes con-
+ m(1l—p)’ 3 nected to few other nodes, and can be removed without af-
fecting the structure of the netwofld,11]. There are also
words that are the most visible ones, but they are unlikely to
be suddenly lost or undergo an abrupt transformation in the
evolution without a self-organized reconnection of the neigh-

wherep and (1-p) are the weights of random and prefer-
ential attachments, respectively. A recent wi@k indicates
that the attachment rul®) leads to the following connectiv-
ity distribution:

p -y
P(k)’“ k+ rp) y 7:3

wherem is the number of new links added to the network at
each time step. We see that for smigllP(k) exhibits an
approximately exponential behavior, while for langeP (k)
il ors[12].
appears to be algebraic with an exponent greater than 3. V\Pe . .
) We conclude with some thoughts on the meaning of our
then expect to observe @ossoverfrom the exponential to

! . o o results for cognitive science. It is well known that human
algebraic behavior ak is increased. This indeed appears to . o ; , L

memory is associative, which means that information is re-

be the case for the conceptual network of language, as shown . - : ;

g : . . .Irleved by connecting similar concepts, just as in our net-

in Fig. 2, where the asymptotic algebraic scaling exponent is

about 3.5, which is consistent with the theoretical predictio work above[13,14. From the standpoint of retrieval of in-

in Eq. (3). This indicates that our hypothesis of mixed con-%rmatlon in an associative memory, the small-world

tributions from preferential and random attachments in the’ oper.ty of the network represents a maximization .Of effi-
ciency: on the one hand, similar pieces of information are

d_evelopment of the .conceptual network'of language 'S.plauétored together, due to the high clustering, which makes
sible, and there is indeed a self-organized structure in the . -~ N
. Searching by association possible; on the other hand, even

network to certain degree. very different pieces of information are never separated b
A heuristic justification for our hypothesi®) is as fol- y b P Y

lows. Because of the small-world topology, each node of th‘%”nore than a few links, or associations, which guarantees a

. FSt search. We thus speculate that associative memory has
conceptual network on average has a large fraction of local ;

. ? .~ ~arisen partly because of a maximization of efficiency in the
connections and a small fraction of long range connections, .. . -

) ; retrieval by natural selection. This issue may be related to the
When a new node is added to the network, it has the sam

robability of attaching to anv one of the already existin Yact that the neural network is probably a small-world net-
P y oNing y onhe y Ywork as well[15,16), which is probably necessary for the
nodes. But, once it attaches a ngdié has the tendency to brai .
. ain to be able to hold a conceptual network that is needed
connect preferentially to the nodes that are already connectgér associative memor
to j [10]. Preferential attachment comes from the secon Y-
step, since the probability that a nodés in the neighbor- This work was supported by FAPESP and AFOSR CIP

hood of nodg is proportional to the number of linkg of  (Critical Information ProtectionProgram under Grant No.
nodei; while the random component comes from the randonmF49620-01-1-0317.
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