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Dissipative chaotic scattering
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We show that weak dissipation, typical in realistic situations, can have a metamorphic consequence on
nonhyperbolic chaotic scattering in the sense that the physically important particle-decay law is altered, no
matter how small the amount of dissipation. As a result, the previous conclusion about the unity of the fractal
dimension of the set of singularities in scattering functions, a major claim about nonhyperbolic chaotic scat-
tering, may not be observable.
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Chaotic scattering@1–3# is a physical manifestation o
transient chaos@4#, which is due to the existence of nona
tracting chaotic invariant sets, i.e., chaotic saddles, in
phase space. As a result, a Cantor set of singularities aris
physically measurable scattering functions relating an ou
variable after the scattering to an input variable before
scattering@2#. Generally, the dynamics of chaotic scatteri
may be characterized as eitherhyperbolicor nonhyperbolic.
In hyperbolic chaotic scattering, all the periodic orbits a
unstable and there are no Kol’mogorov-Arnol’d-Mos
~KAM ! tori in the phase space and, as such, the surv
probability of a particle in the scattering region typical
decays exponentially with time. In nonhyperbolic chao
scattering@5,6#, there are both KAM tori and chaotic sets
the phase space. Due to the stickiness effect of KAM tor
particle initialized in the chaotic region can spend a lo
time in the vicinity of KAM tori, leading to an algebraic
decay @7# of the survival probability of the particle in th
scattering region. A surprising result in nonhyperbolic ch
otic scattering is that, because of the algebraic decay,
fractal dimension of the set of singularities in a scatter
function is unity@6#.

A physically important issue in the study of nonline
dynamics is to understand how robust a phenomeno
against perturbations or deviations between the underly
mathematical model and physical reality. In the case of c
otic scattering, most of the theoretical investigations so
have been restricted to Hamiltonian or conservative syste
In a realistic situation, a small amount of dissipation can
expected. Take, for example, chaotic scattering arising in
context of particle advection in hydrodynamical flows@8#. In
most existing studies, the condition of incompressibility
assumed of the underlying flow@8#, which allows the prob-
lem to be casted in the context of Hamiltonian dynamics
the particle velocities can be related to flow’s stream funct
in a way that is completely analogous to the Hamilto
equations in classical mechanics. Real hydrodynamical fl
cannot be perfectly incompressible, and the effects of ine
and finite mass of the particles advected by the flow
effectively those due to friction, or dissipation@9#.
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The aim of this paper is to study the effect of dissipati
on chaotic scattering dynamics. We first consider hyperb
chaotic scattering and argue that weak dissipations hav
negligible effect on the physical observables of chaotic sc
tering, such as scattering functions. We then focus on n
hyperbolic chaotic scattering and find that, in contrast to
hyperbolic case, the scattering dynamics can be altered
weak dissipation in a fundamental way. The major con
quence of dissipation is that it typically converts KAM to
into periodic attractors. As a result, the underlying chao
saddle can undergo a metamorphic bifurcation to a struc
ally different chaotic set, playing the role of chaotic invaria
set that generates fractal basin boundaries@10#. There is an
immediate transformation of the decay law of scattering p
ticle from being algebraic in the Hamiltonian case to bei
exponential in the dissipative case, no matter how small
amount of dissipation. As a result, the fractal dimension
the chaotic saddle decreases from the integer value in
Hamiltonian case. These findings have striking implicatio
to the study of chaotic scattering: they suggest that
algebraic-decay law, regarded to hold universally in non
perbolic chaotic scattering, is apparently structurally unsta
against weak dissipations. More importantly, the previou
believed integer dimensions of the chaotic saddles@6# in
nonhyperbolic chaotic scattering may not be observable
realistic physical situations where dissipation is present.

We begin by presenting a picture for the formation of t
fractal sets in chaotic scattering. Consider the idealiz
model of the hierarchical construction of Cantor sets in
unit interval. For hyperbolic scattering, an open subinter
in the middle of the unit interval is removed first. From ea
one of the two remaining subintervals, the same fract
from their middle is removed, and so on. Each step of t
construction can be thought of as an iteration of the hyp
bolic tent map with slope larger than two. The total leng
that remains decays exponentially with the number of ite
tions and the resulting Cantor set has a fractal dimens
~e.g., box-counting dimension! smaller than one. For nonhy
perbolic chaotic scattering, the same construction applies
the fraction removed at each step decreases with time, sa
inversely proportional to time. This simple reduction of th
fraction removed captures the essence of the effect of K
tori: their ‘‘stickiness’’ to particle trajectories in the phas
space@6#. The remaining length decays algebraically wizil.
©2001 The American Physical Society05-1
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FIG. 1. Phase-space structu
and time-delay function for map
~1! with l54.0. ~a! n50: KAM
island ~in gray!, scattered orbits
~in blank!, and the fractal bound-
aries of the scattered orbits~in
black!. ~b! n50.01: captured or-
bits ~in black! and scattered orbits
~in blank!. The plus sign is the
fixed point attractor.~c!, ~d! Time
delay in the conservative and dis
sipative cases of~a! and ~b!, re-
spectively.T is the time taken by
particles to reachAx21y2>100.
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time and, even though the measure of the remaining
asymptotes to zero, the resulting Cantor set has dimen
one @6#.

How does dissipation change the above construction?
skeleton of the underlying chaotic saddle is formed by p
odic orbits. When the system is hyperbolic, its structural s
bility guarantees the survival of all periodic orbits und
small changes of the system parameters. Accordingly,
structure of the Cantor set in the presence of a small am
of dissipation is expected to be the same as before. When
dynamics is nonhyperbolic, however, qualitatively differe
behavior can take place. Marginally stable periodic orbits
KAM islands can become stable, turning their nearby pha
space regions into the corresponding basins of attrac
@11#. This means that, part of the previous chaotic sad
now becomes part of the basins of the attractors. Most
portantly for the scattering dynamics, the converted sub
supports orbits in the neighborhood of the KAM islands th
otherwise would be scattered after a long, algebraic ti
These orbits are solely responsible for the nonhyperb
character of the scattering in the conservative case. Du
the existence of dense orbits in the original chaotic sad
the noncaptured part of the invariant set remains in
boundaries of basins of the periodic attractors. Therefore,
invariant set is the asymptotic limit of the boundaries b
tween scattered andcapturedorbits, rather than those be
tween scattered andscatteredorbits as in the conservativ
case. Chaos thus occurs on the nonattracting invarian
whose stable manifold becomes the boundary separating
basins of the attractors and of the scattering trajector
Through this simple reasoning we can see that the struc
and the meaning of the Cantor set is fundamentally alte
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in successive steps we remove aconstantinstead of a de-
creasing fraction in the middle of each interval. As a res
the scattering dynamics becomes hyperbolic with expon
tial decay. The dimension of the Cantor set immediately
creases from unity as a dissipation parameter is turned
There is now more than one possible outcome: some of
removed intervals correspond to scattered orbits and the
ers correspond to orbits captured by the attractors. We st
that the appearance of attractors accompanied by a meta
phosis of the chaotic saddle can occur for arbitrarily sm
dissipation.

We now present numerical support for the effect of we
dissipation on chaotic scattering, particularly the metam
phic transformation of particle decay and fractal dimens
in the nonhyperbolic case. Our model is a dissipative vers
of the two-dimensional area-preserving map utilized in R
@6# to establish the unity of the fractal dimension, a partic
larly convenient model for studying nonhyperbolic chao
scattering. The map reads

M S x
yD5 Hl@x2~x1y!2/42n~x1y!#

l21@y1~x1y!2/4#
, ~1!

wherel.1 andn>0 are parameters. The map is conserv
tive for n50 and dissipative forn.0. For n50, almost all
orbits started from negative values ofy are scattered to in-
finity. In this case, the dynamics is nonhyperbolic forl
&6.5 and hyperbolic forl*6.5. The computation of the
particle decay and fractal dimension in nonhyperbolic sc
tering requires examining very small scales, which makes
numerical computation a highly nontrivial task@5#. The ad-
vantage of using map~1! instead of a continuous flow is tha
5-2
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it makes high-precision computation possible. Our res
are, however, expected to hold in typical nonhyperbolic s
tems with KAM tori.

We study map~1! in the nonhyperbolic regime, withou
and with dissipation. We setl54.0. When there is no dissi
pation (n50), there is a major KAM island in the phas
space, as shown in Fig. 1~a!. The fractal boundaries of th
basins of scattering trajectories to infinity are also show
which correspond to the stable manifold of the chaotic sad
in the scattering region. When dissipation is presentn
.0), the fixed point in the center of the island becomes
attractor. Dynamically, it happens because the magnitude
the eigenvalues of periodic orbits associated with islands
one, which are reduced by dissipation in general. The b
of attraction of this attractor ‘‘captures’’ the island itself an
orbits close to the stable manifold of the previously exist
invariant set, as shown in Fig. 1~b!. The intricate character o
the basin of attraction with apparent fractal boundar
comes from points of the invariant set that are arbitra
close to the island forn50. The newly created basin o
attraction contains these points and hence, all their preima
as well. These preimages extend in the phase space alon
original stable manifold of the chaotic saddle, which is t
reason that the boundaries mimic those of the original ba
of scattering trajectories@Figs. 1~a! versus 1~b!#. Because of
this similarity, the scattering functions and time-delay fun
tions, which are physically measurable, resemble each o
in both the conservative and weakly dissipative case,

FIG. 2. Time decay for map~1! with l54.0, in the interval
@x0 ,x011027#. ~a! n50, x050.577 005 0. The inlet corresponds
the initially exponential decay.~b! n50.001,x050.576 000 6.
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shown, respectively, in Figs. 1~c! and 1~d!, where the time
delay of particles launched from the horizontal liney522
toward the scattering region is plotted against th
x-coordinates on the line.

To examine the decay laws of the scattering particles,
approximate the survival probability of a particle in the sc
tering region byR(n), the fraction of a large number o
particles still remaining in the scattering region~defined by
Ax21y2,r ! at time n, which are initiated in subregion
close to the boundaries of the scattering basins. For con
nience, we chooser 5100 and choose initial conditions from
the horizontal line aty0522. When the dynamics is nonhy
perbolic and conservative, the decay ofR(n) with time is
exponential for smalln and algebraic for largen, as shown in
Fig. 2~a! for l54.0: R;e2an for n&250 andR;n2b for
n*250, wherea>0.08 andb>1.0. In the presence of a
small dissipation, the time decay becomes strictly expon
tial and with the same decay rate of the exponential reg
of the conservative case,a>0.08, as shown in Fig. 2~b! for
n50.001. The original algebraic decay in the conservat
case is destroyed by the dissipation because orbits
points close to the island, and that otherwise would be stu
are captured by the periodic attractor. The decay rate in g
eral changes under further increases of the dissipation.
n50.01, for instance, we obtaina.0.06. In the hyperbolic
region the time decay is always exponential. Forl58.0, for
example, the decay ratea remains essentially constant an
equal to 0.9 in the range 0<n<0.01.

The uncertainty algorithm@10# can be used to comput
the fractal dimensionD of the set of intersection points be
tween the stable manifold of the chaotic saddle and a
from which scattering particles are initiated. As above,
choose the liney0522. In the absence of attractors,D is the
dimension of the set of singularities in scattering functio
In Ref. @6#, it is argued thatD51 when map~1! is nonhy-
perbolic and conservative. A technical point about the n
merical evaluation of the dimension in this case is that
result converges slowly to unity, and the convergence rat
determined by the reduction of length scales in the com
tation @6#. When a small amount of dissipation is prese
D11 becomes the dimension of the boundaries betw
scattered and captured basins. The numerical convergen
D is in this case faster and essentially independent of the
of the interval under consideration. Forl54.0 and n
50.01, we obtainD>0.8, a well-convergent value as th
length scale is reduced over six orders of magnitude. T
dimension is much less sensitive to the presence of diss
tion if the dynamics is hyperbolic. Forl58.0, for instance,
we obtainD>0.44 for bothn50 and 0.01.

Dissipation can also lead to several coexisting attrac
for some values ofl in the originally nonhyperbolic region
Periodic attractors are created through saddle-node bifu
tions asl is varied. These attractors then undergo per
doubling cascades until the accumulation point where ch
appears. For small dissipation, however, the chaotic inte
in the parameter space can be so small that it is difficul
detect chaotic attractors numerically. In fact, forn on the
order of 0.01 or smaller, the dynamics of map~1! is domi-
nated by low-period periodic attractors. Periodic attractors
5-3
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high periods either have small basins of attraction or exis
small intervals in the parameter space. Since periodic att
tors result from the stabilization of periodic orbits in KAM
islands, the parameter regions in which these attractors e
are approximately the same as those of the correspon
islands. In addition, the sizes of the basins are of the s
order of the sizes of the original islands in the phase sp
@12#.

In summary, our qualitative and quantitative examinatio
indicate that weak dissipation, no matter how small, can f
damentally alter the nature and dynamics of nonhyperb
chaotic scattering. The algebraic-decay law, commonly
lieved to hold in such a case, is typically converted into
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exponential-decay law in the metamorphic sense that
conversion can be induced by arbitrarily small amount
dissipation. A consequence of such a metamorphosis is
the previously claimed@6# unity of the fractal dimension of
the set of singularities in scattering functions may not
physically meaningful. To our knowledge, there has been
previous attempt to address the effect of dissipation in o
Hamiltonian systems, but this is a physically important iss
of nonlinear dynamics that deserves further attention.
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T. Tél, C. Grebogi, and J. A. Yorke, Phys. Rev. E51, 4076

~1995!; G. Stolovitzky, T. J. Kaper, and L. Sirovich, Chaos5,

671 ~1995!.
@9# M. R. Maxey and J. J. Riley, Phys. Fluids26, 883 ~1983!.

@10# See, for example, S. W. McDonald, C. Grebogi, E. Ott, and
A. Yorke, Physica D17, 125 ~1985!.

@11# The phenomenon of stabilization of periodic orbits induced
dissipation was previously reported in the context of multis
bility and complexity of closed systems, U. Feudel and C
Grebogi, Chaos7, 597 ~1997!.

@12# Small additive noise, another perturbation likely to appear
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