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We show that weak dissipation, typical in realistic situations, can have a metamorphic consequence on
nonhyperbolic chaotic scattering in the sense that the physically important particle-decay law is altered, no
matter how small the amount of dissipation. As a result, the previous conclusion about the unity of the fractal
dimension of the set of singularities in scattering functions, a major claim about nonhyperbolic chaotic scat-
tering, may not be observable.
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Chaotic scatterind1-3] is a physical manifestation of The aim of this paper is to study the effect of dissipation
transient chao$4], which is due to the existence of nonat- on chaotic scattering dynamics. We first consider hyperbolic
tracting chaotic invariant sets, i.e., chaotic saddles, in thehaotic scattering and argue that weak dissipations have a
phase space. As a result, a Cantor set of singularities arisesmegligible effect on the physical observables of chaotic scat-
physically measurable scattering functions relating an outputering, such as scattering functions. We then focus on non-
variable after the scattering to an input variable before théwyperbolic chaotic scattering and find that, in contrast to the
scattering[2]. Generally, the dynamics of chaotic scatteringhyperbolic case, the scattering dynamics can be altered by
may be characterized as eitieyperbolicor nonhyperbolic  weak dissipation in a fundamental way. The major conse-
In hyperbolic chaotic scattering, all the periodic orbits arequence of dissipation is that it typically converts KAM tori
unstable and there are no Kol'mogorov-Arnol'd-Moser into periodic attractors. As a result, the underlying chaotic
(KAM) tori in the phase space and, as such, the survivadaddle can undergo a metamorphic bifurcation to a structur-
probability of a particle in the scattering region typically ally different chaotic set, playing the role of chaotic invariant
decays exponentially with time. In nonhyperbolic chaoticset that generates fractal basin boundajri€y. There is an
scattering’5,6], there are both KAM tori and chaotic sets in immediate transformation of the decay law of scattering par-
the phase space. Due to the stickiness effect of KAM tori, dicle from being algebraic in the Hamiltonian case to being
particle initialized in the chaotic region can spend a longexponential in the dissipative case, no matter how small the
time in the vicinity of KAM tori, leading to an algebraic amount of dissipation. As a result, the fractal dimension of
decay[7] of the survival probability of the particle in the the chaotic saddle decreases from the integer value in the
scattering region. A surprising result in nonhyperbolic cha-Hamiltonian case. These findings have striking implications
otic scattering is that, because of the algebraic decay, th& the study of chaotic scattering: they suggest that the
fractal dimension of the set of singularities in a scatteringalgebraic-decay law, regarded to hold universally in nonhy-
function is unity[6]. perbolic chaotic scattering, is apparently structurally unstable

A physically important issue in the study of nonlinear against weak dissipations. More importantly, the previously
dynamics is to understand how robust a phenomenon ibelieved integer dimensions of the chaotic sadd@sin
against perturbations or deviations between the underlyingonhyperbolic chaotic scattering may not be observable in
mathematical model and physical reality. In the case of charealistic physical situations where dissipation is present.
otic scattering, most of the theoretical investigations so far We begin by presenting a picture for the formation of the
have been restricted to Hamiltonian or conservative systemsactal sets in chaotic scattering. Consider the idealized
In a realistic situation, a small amount of dissipation can bemodel of the hierarchical construction of Cantor sets in the
expected. Take, for example, chaotic scattering arising in thanit interval. For hyperbolic scattering, an open subinterval
context of particle advection in hydrodynamical floj@. In in the middle of the unit interval is removed first. From each
most existing studies, the condition of incompressibility iSone of the two remaining subintervals, the same fraction
assumed of the underlying flof8], which allows the prob- from their middle is removed, and so on. Each step of this
lem to be casted in the context of Hamiltonian dynamics agonstruction can be thought of as an iteration of the hyper-
the particle velocities can be related to flow’s stream functiorbolic tent map with slope larger than two. The total length
in a way that is completely analogous to the Hamilton'sthat remains decays exponentially with the number of itera-
equations in classical mechanics. Real hydrodynamical flowsons and the resulting Cantor set has a fractal dimension
cannot be perfectly incompressible, and the effects of inertige.g., box-counting dimensigsmaller than one. For nonhy-
and finite mass of the particles advected by the flow argerbolic chaotic scattering, the same construction applies but
effectively those due to friction, or dissipati¢fl]. the fraction removed at each step decreases with time, say, is

inversely proportional to time. This simple reduction of the
fraction removed captures the essence of the effect of KAM

*Permanent address: Departamento de MatiemAplicada, Uni-  tori: their “stickiness” to particle trajectories in the phase
versidade Estadual de Campinas, 13083-970 Campinas, SP, Brazipace[6]. The remaining length decays algebraically with
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time and, even though the measure of the remaining seh successive steps we removecenstantinstead of a de-
asymptotes to zero, the resulting Cantor set has dimensiarreasing fraction in the middle of each interval. As a result,
one|[6]. the scattering dynamics becomes hyperbolic with exponen-
How does dissipation change the above construction? Thigal decay. The dimension of the Cantor set immediately de-
skeleton of the underlying chaotic saddle is formed by pericreases from unity as a dissipation parameter is turned on.
odic orbits. When the system is hyperbolic, its structural staThere is now more than one possible outcome: some of the
bility guarantees the survival of all periodic orbits underremoved intervals correspond to scattered orbits and the oth-
small changes of the system parameters. Accordingly, thers correspond to orbits captured by the attractors. We stress
structure of the Cantor set in the presence of a small amoutihat the appearance of attractors accompanied by a metamor-
of dissipation is expected to be the same as before. When ttghosis of the chaotic saddle can occur for arbitrarily small
dynamics is nonhyperbolic, however, qualitatively differentdissipation.
behavior can take place. Marginally stable periodic orbits in  We now present numerical support for the effect of weak
KAM islands can become stable, turning their nearby phasedissipation on chaotic scattering, particularly the metamor-
space regions into the corresponding basins of attractiophic transformation of particle decay and fractal dimension
[11]. This means that, part of the previous chaotic saddlen the nonhyperbolic case. Our model is a dissipative version
now becomes part of the basins of the attractors. Most imef the two-dimensional area-preserving map utilized in Ref.
portantly for the scattering dynamics, the converted subsd6] to establish the unity of the fractal dimension, a particu-
supports orbits in the neighborhood of the KAM islands thatlarly convenient model for studying nonhyperbolic chaotic
otherwise would be scattered after a long, algebraic timescattering. The map reads
These orbits are solely responsible for the nonhyperbolic
character of the scattering in the conservative case. Due to
the existence of dense orbits in the original chaotic saddle,
the noncaptured part of the invariant set remains in the
boundaries of basins of the periodic attractors. Therefore, theherex>1 andv=0 are parameters. The map is conserva-
invariant set is the asymptotic limit of the boundaries be-tive for v=0 and dissipative fowr>0. For v=0, almost all
tween scattered andaptured orbits, rather than those be- orbits started from negative values pfare scattered to in-
tween scattered anscatteredorbits as in the conservative finity. In this case, the dynamics is nonhyperbolic for
case. Chaos thus occurs on the nonattracting invariant set6.5 and hyperbolic fok=6.5. The computation of the
whose stable manifold becomes the boundary separating thrticle decay and fractal dimension in nonhyperbolic scat-
basins of the attractors and of the scattering trajectoriegering requires examining very small scales, which makes the
Through this simple reasoning we can see that the structumeumerical computation a highly nontrivial tafk]. The ad-
and the meaning of the Cantor set is fundamentally alteredrantage of using mafl) instead of a continuous flow is that
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10° ‘ - , shown, respectively, in Figs.(d and X1d), where the time

10 delay of particles launched from the horizontal lipe —2
toward the scattering region is plotted against their
x-coordinates on the line.

To examine the decay laws of the scattering particles, we
approximate the survival probability of a particle in the scat-

] tering region byR(n), the fraction of a large number of
200 particles still remaining in the scattering regicstefined by
UX?+y?<r) at time n, which are initiated in subregions
1078 R~n"" ] close to the boundaries of the scattering basins. For conve-
nience, we choose= 100 and choose initial conditions from
1(')3 10° the horizontal line ayo= —2. When the dynamics is nonhy-
n ) . NG
perbolic and conservative, the decay Rfn) with time is

exponential for smalh and algebraic for large, as shown in
Fig. 2(a) for A=4.0: R~e™ “" for n=250 andR~n"~ for
n=250, whereae=0.08 andB=1.0. In the presence of a
small dissipation, the time decay becomes strictly exponen-
tial and with the same decay rate of the exponential regime
of the conservative case=0.08, as shown in Fig.(B) for
v=0.001. The original algebraic decay in the conservative
case is destroyed by the dissipation because orbits with
points close to the island, and that otherwise would be stuck,
are captured by the periodic attractor. The decay rate in gen-
eral changes under further increases of the dissipation. For
107 . . ‘ v=0.01, for instance, we obtaia=0.06. In the hyperbolic

50 100 150 |, 200 region the time decay is always exponential. ket8.0, for
example, the decay rai@ remains essentially constant and
equal to 0.9 in the range<Or=<0.01.

The uncertainty algorithni10] can be used to compute
the fractal dimensio of the set of intersection points be-
tween the stable manifold of the chaotic saddle and a line
it makes high-precision computation possible. Our resultdrom which scattering particles are initiated. As above, we
are, however, expected to hold in typical nonhyperbolic sysehoose the ling = — 2. In the absence of attractoi3,is the
tems with KAM tori. dimension of the set of singularities in scattering functions.

We study map(1) in the nonhyperbolic regime, without In Ref.[6], it is argued thaD =1 when map(1) is nonhy-
and with dissipation. We sét=4.0. When there is no dissi- perbolic and conservative. A technical point about the nu-
pation (v=0), there is a major KAM island in the phase merical evaluation of the dimension in this case is that the
space, as shown in Fig(d. The fractal boundaries of the result converges slowly to unity, and the convergence rate is
basins of scattering trajectories to infinity are also showndetermined by the reduction of length scales in the compu-
which correspond to the stable manifold of the chaotic saddl¢ation [6]. When a small amount of dissipation is present,
in the scattering region. When dissipation is presemt ( D+1 becomes the dimension of the boundaries between
>0), the fixed point in the center of the island becomes arscattered and captured basins. The numerical convergence of
attractor. Dynamically, it happens because the magnitudes @ is in this case faster and essentially independent of the size
the eigenvalues of periodic orbits associated with islands aref the interval under consideration. For=4.0 and v
one, which are reduced by dissipation in general. The basis0.01, we obtainD=0.8, a well-convergent value as the
of attraction of this attractor “captures” the island itself and length scale is reduced over six orders of magnitude. The
orbits close to the stable manifold of the previously existingdimension is much less sensitive to the presence of dissipa-
invariant set, as shown in Fig(H). The intricate character of tion if the dynamics is hyperbolic. For=8.0, for instance,
the basin of attraction with apparent fractal boundariesve obtainD=0.44 for bothr=0 and 0.01.
comes from points of the invariant set that are arbitrarily Dissipation can also lead to several coexisting attractors
close to the island fow=0. The newly created basin of for some values ok in the originally nonhyperbolic region.
attraction contains these points and hence, all their preimagé®eriodic attractors are created through saddle-node bifurca-
as well. These preimages extend in the phase space along ttiens as\ is varied. These attractors then undergo period
original stable manifold of the chaotic saddle, which is thedoubling cascades until the accumulation point where chaos
reason that the boundaries mimic those of the original basinappears. For small dissipation, however, the chaotic interval
of scattering trajectorield=igs. 1a) versus 1b)]. Because of in the parameter space can be so small that it is difficult to
this similarity, the scattering functions and time-delay func-detect chaotic attractors numerically. In fact, feron the
tions, which are physically measurable, resemble each otherder of 0.01 or smaller, the dynamics of mép is domi-
in both the conservative and weakly dissipative case, amated by low-period periodic attractors. Periodic attractors of
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FIG. 2. Time decay for mapl) with A=4.0, in the interval
[Xg.Xo+1077]. (8) »=0,%,=0.577 005 0. The inlet corresponds to
the initially exponential decayb) »=0.001,x,=0.576 000 6.

015205-3



RAPID COMMUNICATIONS

ADILSON E. MOTTER AND YING-CHENG LAl PHYSICAL REVIEW E65 015205R)

high periods either have small basins of attraction or exist irexponential-decay law in the metamorphic sense that the
small intervals in the parameter space. Since periodic attra@onversion can be induced by arbitrarily small amount of
tors result from the stabilization of periodic orbits in KAM dissipation. A consequence of such a metamorphosis is that
islands, the parameter regions in which these attractors exigife previously claimed6] unity of the fractal dimension of
are approximately the same as those of the correspondingie set of singularities in scattering functions may not be
islands. In addition, the sizes of the basins are of the Samﬁhysicany meaningful_ To our know|edge1 there has been no
order of the sizes of the original islands in the phase spacgrevious attempt to address the effect of dissipation in open

[12]. _ o _ . Hamiltonian systems, but this is a physically important issue
_In summary, our qualitative and quantitative examinationsyf nonlinear dynamics that deserves further attention.
indicate that weak dissipation, no matter how small, can fun-

damentally alter the nature and dynamics of nonhyperbolic This work was supported by AFOSR under Grant No.
chaotic scattering. The algebraic-decay law, commonly beF49620-98-1-0400. A.E.M. acknowledges financial support
lieved to hold in such a case, is typically converted into anfrom FAPESP.
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