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Active synchronization in nonhyperbolic hyperchaotic systems
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We propose a methodology to address the outstanding problem of synchronization in nonhyperbolic hyper-
chaotic physical systems. Our approach makes use of a controlling-chaos strategy that accomplishes the task by
transmittingonly one scalar signal even in the presence of noise.
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The inherent sensitive dependence on initial conditio
implies that two trajectories starting from slightly differe
initial conditions diverge exponentially in time on the ave
age. Despite that, it has been known that two chaotic syst
can be synchronized@1#. Later on, Pecora and Carrol@2#
gave a condition for the synchronization of two nearly ide
tical chaotic systems: Using appropriately chosen state v
ables of a chaotic system~the driver! as input to a replica of
the original system, the replica subsystem~the slave! might
synchronize with the original system if its Lyapunov exp
nents are all negative. Since that work, synchronization
chaotic systems has become an area of intense activity@4,3#.

In this report, we address the important problem of s
chronization of nonhyperbolic hyperchaotic systems~sys-
tems with more than one positive Lyapunov exponent!. De-
spite the success of a previous method@5# for synchronizing
certain hyperchaotic systems, so far, to our knowledge,
physically relevant issue of nonhyperbolicity, which is typ
cally represented by unstable dimension variability and
be extremely severe from the standpoint of shadowing@6,7#,
has not been addressed. We present ageneral approach,
based on the idea of controlling chaos@8#, to synchronize
nonhyperbolic chaotic systems in high dimensions by uti
ing only one scalartransmitted signal. In particular, we ap
ply small perturbations to some parameter of the slave
tem to synchronize it with the driver system. In the sla
system, the current state of the driver system is obtai
from the scalar transmitted signal by using the extended K
man filter @9#. We call this approach theactive synchroniza-
tion to emphasize its main difference in relation to the mo
traditional passive synchronization process in which s
chronization happens as a consequence of a proper cou
scheme@1–5#. To show that our ideas make sense, we
the pole-placement method@10# conveniently adapted to
achieve robust active synchronization for the situations
strongly nonhyperbolic chaotic systems with more than o
positive Lyapunov exponents and in the presence of no
We mention that the concept of utilizing the principle
controlling chaos to achieve synchronization is, in fact,
new. It was suggested in Ref.@11#. However, the strategy
proposed there is applicable to low-dimensional syste
only and requires the transmission of all the state variable
the system from the driver to the slave. In contrast, the st
egy proposed in this report allows for the synchronization
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high-dimensional, nonhyperbolicchaotic systems with the
transmission of asingle scalarsignal.

Intuitively, to achieve synchronization on hyperchao
systems, the number of variables to be transmitted shoul
equal to that of positive Lyapunov exponents in order
account for the same number of unstable directions along
chaotic trajectory@12#. It was shown in Ref.@5# and in sub-
sequent works introducing various improvements@3,13,14#
that, this belief is incorrect. In general, all those propos
approaches use feedback strategies whose parameter
fixed and are calculated using empirical strategies or opti
zation algorithms. As a consequence, none of those strate
can be considered to work for sure with any hyperchao
system.

In all the ideas previously discussed, the requirement o
hyperbolic structure for the systems to be synchronized
implicit @15#. By its turn, nonhyperbolic systems can be cla
sified into two types. For the first type, the splitting of th
phase space into expanding and contracting subspaces
variant along a trajectory except at the tangencies of
stable and unstable manifolds, where the angles betw
subspaces are zero@16#. The second type of nonhyperbolicit
in hyperchaotic systems is due to unstable dimension v
ability @7#. It is related to the presence of unstable perio
orbits with different numbers of unstable directions embe
ded within the chaotic attractor. As a consequence, a typ
trajectory experiences different numbers of unstable
stable directions as it evolves. Thus, the continuous split
of the phase space into expanding and contracting subsp
is no longer valid.

Because of the global sensitivity, synchronization of ch
otic systems having unstable dimension variability in t
presence of noise or even small parameter mismatche
extremely difficult, if not impossible, to achieve. As synchr
nized trajectories move from one neighborhood to anot
having unstable periodic orbits with different number of e
panding directions, they tend to separate exponentially fr
each other. What makes the situation hard for this type
nonhyperbolicity is the fact that the sets of periodic orb
with a different number of expanding directions are dens
mixed @7#. Thus, regions where synchronization is high
susceptible to being destroyed due to the presence of n
extend over most of the attractor. As a result, previous me
ods@5,14# cannot be expected to work for hyperchaotic sy
©2002 The American Physical Society02-1
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tems with unstable dimension variability, especially for e
perimental implementation where noise is always presen
general, the densely mixed sets of periodic orbits with d
ferent numbers of expanding directions prevent the suc
of any passive feedback strategies of synchronization
which parameters of the systems are fixed.

A synchronization strategy will work for nonhyperbol
hyperchaotic systems only if it is capable of continuou
keeping track of the local changes of the system as the
jectory evolves through the sets of periodic orbits with d
ferent numbers of expanding directions and changes its
rameters accordingly. Thus,the main point here is to have
synchronization procedure with a built-in adjustment mec
nism which monitors the system local dynamics and ad
its coefficients to keep the systems synchronized. In the re-
mainder of this report, we detail our control strategy th
implements exactly this principle.

A schematic illustration of our method to actively sy
chronize two chaotic systems is shown in Fig. 1. We exte
the pole placement control of chaos strategy@10# to stabilize
a chaotic trajectory of one system~SystemB! about a chaotic
orbit of the other system~SystemA! to achieve synchroniza
tion. We assume that some parameter of the system ca
externally adjusted, and that we have complete access to
state variables of the slave system~SystemB!. The extended
Kalman filter allows us to estimate the current state of
driver system with the transmitted scalar signal. For c
creteness, we consider two almost identical chaotic syst

FIG. 1. Schematic illustration of our strategy of active synch
nization.
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described by the following maps on the Poincare´ surface of
section,A: Y i 115F(Y i ,p̄) and B: X i 115F(X i ,p), where
X i , Y iPRn, F is a smooth function in its variables,p̄ for
systemA is a fixed parameter value, andp for systemB is an
externally adjustable parameter whose value is restricte
lie in some small interval:up2 p̄u,d lm , aboutp̄, whered is
a small number defining the range of parameter variati
Suppose that the two systems start with different initial co
ditions. The resulting chaotic trajectories are completely
correlated. Due to ergodicity, the two trajectories can
arbitrarily close to each other at a later time, sayi. The dif-
ference between the trajectories in the next iteration
X i 112Y i 115F(X i ,p)2F(Y i ,p̄). For values ofp close to
p̄, and asX i falls in a small neighborhood ofY i , this equa-
tion can be linearily approximated in the neighborhood
Y i , as follows:

X i 112Y i 11
p̄ 5A i@X i2Y i

p̄#1Bi~pi2 p̄!, ~1!

where A i is an n3n Jacobian matrix andBi is an
n-dimensional column vector:A i5DZF(Z,p)uZ5Y

i
p̄ ,p5 p̄ and

Bi5DpF(Z,p)uZ5Y
i
p̄ ,p5 p̄ . Because of unstable dimensio

variability, the numbers of stable and unstable directions
the tangent space at each point of the trajectory change a
trajectory wanders on the chaotic invariant set. Lets be the
smaller of the number of stable directions for points of t
set. Thus, a trajectory point ofA has at leasts stable direc-
tions in its tangent bundle. We arbitrarily chooses vectors
$vi 1u,1 ,vi 1u,2 ,...,vi 1u,s% which span a subspace of dime
sions of the linearized stable manifold at the pointY i 1u

p̄ . We
define the matrix: F i , j5A i 1u21A i 1u22¯A i 1 j 11A i 1 j
for j 51,2,...,(u21). To derive the control action to b
applied to the parameterp of systemB at each iteration, we
iterate Eq. ~1! u times to obtain: X i 1u2Y i 1u

p̄

5F i ,0@X i2Y i
p̄#1F i ,1Bi(pi2 p̄)1F i ,2Bi 11(pi 112 p̄)1¯

1Bi 1u21(pi 1u212 p̄). To make systemB synchronize with
systemA, X i 1u must land on the subspace of dimensions of
the linearized stable manifold of systemA’s trajectory at the
point Y i 1u

p̄ . Thus, parameterp must be chosen such tha
there existss coefficients a1 ,a2 ,...,as such that, X i 1u

2Y i 1u
p̄ 5a1vi 1u,11a2vi 1u,21¯1asvi 1u,s . As a result, we

obtain a system ofu1s equations withu1s unknown vari-
ables: pi ,pi 11 ,...,pi 1u21 ,a1 ,a2 ,...,as . This system can
be solved for pi : pi2 p̄52K i

t@X i2Y i
p̄#, where K i

t

5LC i
21F i ,0 , L5@2100̄ 0#, and Ci5@2F i ,1Bi ,...,

2Bi 1u21 ,vi 1u,1 ,...,vi 1u,s#. This results in the values of pa
rameterp that must be applied to systemB at each iteration
for the synchronization of the two systems, i.e.,uX j2Y j

p̄u
→0 for j . i .

The state variables of systemA can be estimated by usin
the extended Kalman filter@9#, as follows. Assume that the
transmitted signal can be described by the following m
zi5H(X i ,v i), where the random variablev i represents a
white noise in the communication channel with normal pro
ability distribution. We defineX̂ i

2 to be a priori state esti-
mate at stepi given the knowledge of the system prior to st
i, andX̂ i a posterioristate estimate at stepi given the trans-

-
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FIG. 2. Results of the use of our strategy
synchronize two double-rotor systems~SystemA
and SystemB! at f 58.0 ~severe unstable dimen
sion variability! when noise is present~see text
for details!: ~a! time series of the difference be
tween thex1 phase variables of the systems,~b!
Phase space evolution forx1 and x2 phase vari-
ables of SystemB; and ~c! Time series of the
euclidian distance between the phase variables
the systems. For graphics~a! and~c! k stands for
the number of iterations. The transmitted sign
used isx1

A1x2
A1x3

A1x4
A1v, wherev is a white

noise with normal probability distribution and
signal-to-noise ratio equal to 70dB. Initially, the
systems are far apart by an ecludian distance
one unit.
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mitted signalzi . Our goal is to find an equation that com
putes ana posterioristate estimateX̂ i as a combination of an
a priori estimateX̂ i

2 and a weighted difference between
actual measurementzi and a measurement predictio
H(X̂ i

2,0), as follows: X̂ i5X̂ i
21K i@zi2H(X̂ i

2,0)#, where

X̂ i
25F(X̂ i 21 ,p̄). The gain K i at each iteration, is

calculated by using the following set of equations, whi
minimizes thea posterioriestimate error covariance

Pk5E@~X i2X̂ i !~X i2X̂ i !
T#:Pi

25A i 21Pi 21A i 21
T ,

K i5Pi
2Ci

T~CiPi
2Ci

T1DiRDi
T!21,

andPi5(I2K iCi)Pi
2 , whereCi5DZH(Z,v)uZ5Xi ,v50 and

Di5DvH(Z,v)uZ5Xi ,v50 .
We now apply our ideas to a physical system: the dou

rotor map@17,10#, which is a four-dimensional map describ
ing the time evolution of a mechanical system consisting
two connected massless rods. This system is modeled b
following four-dimensional map, which describes the d
namics of the rotor relating the state of the system imme
ately after consecutive kicks

Qi 115MFi1Qi ,

Fi 115LFi1G~Qi 11!, ~2!

where QT5@x(1),x(2)#T, FT5@x(3),x(4)#T, and G(Q)T

5@c1 sinx(1),c2 sinx(2)#T, ~QPS13S1, andFPRe3Re!. In
Eq. ~2!, x(1,2) are the angular positions of the rotors at t
instant of thei th kick, whilex(3,4) are the angular velocitie
of the rotors,L and M are 232 constant matrices whos
elements depend on the physical parameters of the rotorc1
andc2 are two parameters that are proportional to the ki
ing strengthf, which we choose to be the externally adju
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able control parameter. We choose parameters such thac1

5c25 f . For L and M , we use the setting values from
Ref. @10#.

For the double-rotor map, numerical experiments@10#
show that the system goes through a cascade of per
doubling bifurcations forf , f 1.6.75 and becomes chaoti
with one positive Lyapunov exponent atf 1 . For values off
nearf 58.0, there is a transition from one positive Lyapun
exponent to two positive ones and, about this param
value, it exhibits fluctuations between one and two posit
exponents in any finite times. These fluctuations reflect
presence of unstable dimension variability for this syste
For values off much above the transition point, as is the ca
for f 59.0, the second Lyapunov exponent becomes so p
tive that finite-time fluctuations of this exponent will onl
have a negligible tail on the negative side. Thus, forf near
8.0, the chaotic attractor of the double rotor map is non
perbolic with severe unstable dimension variability, while f
f about 9.0, the attractor has two positive Lyapunov ex
nents and exhibits essentially nonhyperbolic tangencies
the stable and the unstable manifolds. Figure 2 shows
results of applying our control strategy to synchronize t
double-rotor systems forf 58.0. The transmitted signal use
is zi5H(X i ,v i)5x(1)1x(2)1x(3)1x(4)1v, wherev is
a white noise with normal probability distribution and th
signal-to-noise ratio is 70dB. This result does not chang
even if each individual parameter of the model forSystem B
are changed up to 1%. Thus, we observe that, even in
presence of noise or parameter mismatch, small control
turbations applied toB result in robust synchronization@18#.
For f 59.0, the results are similar.The remarkable result is
that our active approach works equally well for nonhype
bolic hyperchaotic systems having unstable dimension v
ability or tangencies of stable and unstable manifolds. In
contrast, for the nonhyperbolic case off 58.0, the previous
methodology@5,14# fails, as we have tested.
2-3
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In summary, we have proposed a general active met
for achieving synchronization in nonhyperbolic hyperchao
physical systems. Our strategy employs a built-in adjustm
mechanism that monitors the system’s local dynamics
perturbs the system to maintain robust synchronization,
gardless of whether the nonhyperbolic hyperchaotic syst
exhibit unstable dimension variability or tangencies of ma
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folds. We expect our methodology to be practically appeal
for experimental implementation of chaos synchronism
high dimensions.
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