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Correlation-dimension and autocorrelation fluctuations in epileptic seizure dynamics
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We focus on an anomalous scaling region in correlation intd@ék) | analysis of electrocorticogram in
epilepsy patients. We find that epileptic seizures typically are accompanied by wide fluctuations in the slope of
this scaling region. An explanation, based on analyzing the interplay between the autocorrela@y&)gnsl
provided for these fluctuations. This anomalous slope appears to be a sensitive measure for (tratkiog
predicting seizures.

DOI: 10.1103/PhysReVvE.65.031921 PACS nuner87.19.La, 05.45-a

An outstanding problem in biomedical sciences is to deKhintchine theorem[16]. Prediction of seizures based on
vise techniques to understand and, more importantly, to preeEG/ECoG signals thus remains an open problem.
dict in advance of clinical onset, epileptic seizures that affect In this paper, we focus on the correlation intedi@(e) ],
about 1% of the population in industrialized countries. Epi-a measure originally proposed by Grassberger and Procaccia
leptic seizures are characterized electrographically by sudddA 7], which has become one of the most popular nonlinear
simultaneous changes in power spectral density and irdynamics based tools in the analysis of EEG/ECoG data. A
creases in wave rhythmicity. These changes in brain activityprevious study{8] has demonstrated that decrease€ (i)
whether local or global, can be monitored via electrodes omre predictive of seizure onset. The driving force behind a
the scalp (electroencephalogram, EBEGor intracranially large number of studies on dimension analysis of EEG/ECoG
(electrocorticogram, ECoG These recordings provide a [1-3,7,9 is that epileptic seizures are regarded as emergent
window, perhaps the only practically accessible window aistates with reduced dimensionality compared to nonepileptic
present, through which the dynamics of epilepsy can be inactivity. This concept finds support in the observatigh8]
vestigated. Analysis of EEG/ECoG has thus become the sulthat neuronal hypersynchrony underlies seizures, a phenom-
ject of renewed interest in this field. enon during which the number of independent variables re-

An approach that is gaining increasing attention is thequired to describe the system is smaller than at other times.
application to this problem of techniques from nonlinear dy-Thus, measures that detect reduced dimensionality of EEG/
namics and chaos, originally developed for the study of lowEC0G may allow for the prediction of seizures. However,
dimensional, nonlinear, deterministic systefds-11]. Pre- recent results have suggested that these decreases in the
liminary results suggest that EEG/ECoG signals during théC(e) merely may reflect sudden increases in signal ampli-
seizure state can be described by low-dimensional dynamic&lide[19], which by themselves are nonspecific indicators of
systemg 1-3|. If this were true, there would be hope that seizure onsets that can be more easily tracked through other
detection or even prevention of epileptic seizures is withinavailable approaches. Our main result is tGd€) has sei-
reach, because predictiori2] and control[13] of low-  zure discriminating (but not predictivé power in an
dimensional chaotic systems are achievable. However, reexmplitude-normalized signal, and that this information is
amination of these early claims indicates a lack of low-contained in the scaling o€(e) with an intrinsic length
dimensional dynamical structure in the EEG/EC[i4,15. scale €). Specifically, during seizure, the slope of a linear
Despite this finding, measures that are useful for charactescaling region is observed to undergo relatively large fluc-
izing low-dimensional chaotic systems, such as the correlatuations compared to the preseizure and postseizure states.
tion dimension and the Lyapunov exponents, have been and/e focus on these fluctuations and give an argument for their
continue to be used to study the EEG/ECoG signalglynamical origin based on monitoring the corresponding
[4,5,7,8,1], resulting in various claims that epileptic sei- temporal variation in the autocorrelation of the data. We
zures can be predicted up to several minutes or hours beforaention that there are existing works on comparing linear
their clinical manifestationg4,7,8,11. In this paper, we and nonlinear data-analysis techniques applied to EEG sig-
make a reasonable assumption that EEG/EC0oG has a signifials[20]. The unique feature of our work is the identification
cant stochastic componefivith infinite dimensionality in  and analysis of the anomalous scaling region in the correla-
both the seizure and nonseizure stpt@ghich should pre- tion integral from ECoG signals.
clude detection of a dimension drop at seizure onset. In light We begin by briefly reviewing the basic concepts in di-
of this, our position is that at the present, it is uncertainmension analysis of nonlinear time series. Given a signal, we
whether techniques based on nonlinear dynamics would peuse the standard technique of delay-coordinate embedding
form better than conventional Fourier-based methods such §&1] to reconstruct, with appropriate choice of the delay time
the autocorrelation function, which is the inverse Fourier{22], an m-dimensional phase space. An often computed di-
transform of the energy spectral density by the Wienermension in nonlinear time series analysis is the correlation
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FIG. 1. lllustration of the anomalous scaling region in a typical ‘o 100 200 300 400 500 600
plot of the correlation integral from a segment of ECoG time series. () t
The commonly used base of the logarithm is 2.
|
. . . | |
dimensionD,. Grassberger and Procaccia shdw] thatD, | |
can be evaluated using the correlation intedBgk) ~ °2, | |
where C(¢€) is the probability that a pair of points, chosen : :
randomly in the reconstructed phase space, is separated by a 0 100 200 300 400 500 600
distance less thaa Letx(t) represent the reconstructed vec- t

tor time series of lengtiN. The correlation integral can be
approximated by the following correlation sur@N(m,e.) time-dependent value of the anomalous slope averaged over the
=[2IN(N=1)]=N SN . 0(e—|x—x;|), where ®(-) is o e -

L j=1%i=j+1 i A embedding dimensions in the range<lfi=< 20, (c) time-dependent
the Heaviside function given by®(x)=1 for x=0 and 0 autocorrelation in edc2 s vindow of the ECoG segment shown in
otherwise, andix; — ;| stands for the distance between points ).
x; andx;. For N large, we haveCy(m,e)~C(e). The cor-
relation dimensiorD, is usually estimated by examining the

FIG. 2. (a) Original ECoG time series containing a seizui®,

: X the plot in the anomalous scaling region is not dependent on
slope of the linear portion of the plot of \(m.e) Versus o empedding dimension, and as such it does not reflect on
In e for a series of increasing values ot For m<D,, the  ha stochastic nature of the underlying process.

dimension of the reconstructed phase space is not high g, instance, we show, in Fig. 1, a typical plot on a loga-
enough to resolve the structure of the dynamical state andiiymic scale ofC(m, €) obtained from a preictal segment of
hence, the slope approximates the embedding dimension. A% £coG time series. We notice three distinct regions with
m increases, the resolution of the dynamical state in the reg proximately linear scaling: regions | and Il with a higher
constructed phase space improves. For a low-dimensiongfone than that of a third region in-between them. In the
dynamical system, the slope in the plot ofdf(m.e) Versus 5565 that we have studied, the slopes extracted in regions |

In e increases withm until it reaches a plateau; its value at 54 |1 are close to that of the embedding dimensiorindi-
the plateau is then taken as the estimat®ef{17,23. For  c4ting that in these scales ef the ECoG time series are

stochastic dynamics, the slope increases withever reach-  giochastic. The region of smallest slope reflects an appre-
ing a plateau. o ciable amount of autocorrelation in the data: it is the anoma-
Theiler points ouf22] that for afl_nlte,. autocorrelated d_a'ga lous scaling region. As we will show, the value of the slope
set, the plot ofC(m,e€) on a logarithmic scale can exhibit i, this region remains relatively constant in the preictal and
approximately linear regions with distinct slopes that do notysgtictal phases, but typically exhibits large fluctuations in
increase withm. Assuming that we have a window of data ine ictal phase.
{x;}}_1, the autocorrelation of the data;, is computed Our data have been collected from patients who under-
through the following average:a=(1/M)Z{" ()™,  went evaluation for epilepsy surgery at the University of
where we useM=6 in our computation andey  Kansas Comprehensive Epilepsy Center, and is recorded via
=<x,—xj+k>/(xj2>. Theiler considers a Gaussian stochasticdepth electrodegAd-Tech, implanted stereotaxically into
time series consisting dfl data points with autocorrelation each amygdalo-hippocampal region. Signals are filtered
0<a=1 and argues that N is large enough, or i& is small ~ (0.5-70 Hz, amplified, and digitized240 Hz; 10 bits pre-
enough(near zer, then the effect of autocorrelation is neg- cision) using a commercially available devicéNicolet,
ligible. However, ifN is not sufficiently larggas in the case Madison, W). All recordings have been deemed of good
of ECoG analysis where a temporally moving window is slidtechnical quality and suitable for analysis. Each data set con-
through the time serig¢sand/or if @ is not close to zero, the tains a number of seizures, captured over several days of
effect of autocorrelation becomes noticeable, leading to agontinuous recordingmean duration of 100 )h Given a
anomalous scaling region in the plot@©{m, €). The slope of single ECoG time series, we utilize a moving window of
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FIG. 4. A 65 s segment of data in the preictal phase:the

original ECoG time series an) the surrogate time series.

gral as a function of timéchosen to be the right-hand side of
the window. The computation is performed for embedding
dimension in the range $m=<25. The computation of
C(m,e) is made efficient by assigning a number of bins in
the counter, each corresponding to a specific distance range.
The delay time is chosen to ke=1/12(s), which is a frac-
tion of a typical oscillating period of the ECoG time series.
A typical ECoG time series containing a seizure is shown
in Fig. 2(a). Our main result is represented by FigbR
which shows the time evolution of the anomalous slope av-
eraged over a range of values of the embedding dimension
(10=m=20). Figure 2c) shows the autocorrelation for the
same segment of ECoG. Some representative plots of the
correlation integralC(m, ) are shown in Figs. (&)—3(c) for
the preictal, ictal, and postictal phases, respectively. We ob-
serve the following(1) in almost all analyzed data windows
(whether preictal, ictal, or posticialan anomalous scaling
region exists, which allows for the mean slope to be esti-
mated,(2) in both the preictal and postictal phases, the plots
in the anomalous scaling regime at different times tend to be
parallel to each other, indicating that the slopes remain
roughly constantbut with small fluctuations with the plots
in the preictal phase being steeper than the postictal phase,
and (3) in the ictal phase, there is an apparent lack of an
approximately “constant” slope in the anomalous scaling re-
gime [as illustrated by the lack of parallelism in the lines in
Fig. 3(b)], indicating that the value of the anomalous slope
tends to fluctuate significantly. These behaviors can be un-
derstood through examination of the interplay between the
autocorrelation of the ECoG time series and the correlation
integral. It has been know[22] that, for a Gaussian random
process, the “flathess” of the plot of le@(m,e) versus
log, € in the anomalous scaling regime depends on the value
of the autocorrelatiom. In particular, a closer-to-unity auto-
correlation tends to generate smaller slopes in the anomalous
scaling regime, than when the autocorrelation is farther away
from 1. We have observed the following from numerical

20(s). Nearby windows are overlapped with a time separaexperiments(1) in the preictal phase, the autocorrelation is
tion of 2(s). Thus, if the first window spans the time interval relatively low, thereby generating relatively large values of

[0,20(s), then the second window is [2,22](s), and so on.

the anomalous slopfabout 2.8, as in Fig.(®)]; (2) in the

We then compute the amplitude-normalized correlation intepostictal phase, the values afare closer to 1, as compared
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FIG. 5. A 65 s segment of data in the ictal phasgthe original
ECoG time series antb) the surrogate time series.

with those in the preictal phase, leading to a drop in the mean
value of the anomalous slope; af®) in the ictal phase, the
autocorrelation varies widely in the range betwegnand 1
(ap<1), hence the significant fluctuatiofiz4] in the slope

of the plot of the correlation integral in the anomalous scal-
ing regime. While the specific interplay between and
anomalous slop8, varies interindividually, all analyzed sei-
zures(16 from four patientshave been characterized by sig-
nificant fluctuations in the anomalous slo®5).

To be more confident that the anomalous scaling region is
due to autocorrelations in the time series, we compute the  -20
correlation integrals for surrogate data derived from the
ECoG time series. Figures 4, 5, and 6 show a segment of
EcoG data of 65 $a) and the corresponding surrogate one
(b) for preictal, ictal, and postictal phases, respectively. The
surrogate data are obtained via the standard procg@6ie
i.e., by Fourier transforming the data, randomizing the
phases of the Fourier components, and then performing in-
verse Fourier transform. Figuregal—7(c) show the correla-
tion integrals for eight windows of 20 s from the surrogate
date in the preictal, ictal, and postictal phases, respectively,
where the parameters ane=15 andr=1/12 s. The exis-

(a)
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(a) Pre-ictal, surrogate, m = 15
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L
. ‘ ‘ FIG. 7. For surrogate datay=15, and eight time windows in
-02 420 440 460 the preictal(a), ictal (b), and postictalc) phases, the plots of the
®) correlation integral on a logarithmic scale. The existence of the
0.2 ' ' ' anomalous scaling region is evident.
) . L L
50 tence of the anomalous scaling region in the correlation in-
w” tegral from the surrogate date is evident. Due to the random-
izing effect in the surrogate procedure, the fluctuations in the
0.2 420 {40 460 slope of the linear fit between lg@(m,e) and log € in the

anomalous scaling region are much smaller than those from
FIG. 6. A 65 s segment of data in the postictal phasgthe  the original data, which is apparent particularly for the ictal

original ECoG time series an(h) the surrogate time series. phase.
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Our detailed and systematic analysis of the scaling with to those of the autocorrelation, a more computationally effi-
of the correlation integral, a concept from nonlinear dynam-cient measure for seizure tracking. Thus, it is questionable
ics that has been applied most commonly in the area of EEG#hether any correlation integral based techniques can be
ECoG analysis, further suggests that the underlying dynamimore effective at predicting seizures than traditional signal
cal process contains a significant stochastic componenprocessing methods. This is apparently in sharp contrast to
Though epileptic seizures are characterized by fluctuations ithe recent claims that such techniques are powerful for pre-

the value of the anomalous slope, the fluctuations correspordiction of seizure$7,8].
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