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Statistical properties and attack tolerance of growing networks
with algebraic preferential attachment
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We consider growing networks with algebraic preferential attachment and address two questions:~1! what is
the effect of temporal fluctuations in the number of new links acquired by the network? and~2! what is the
network tolerance against random failures and intentional attacks? We find that the fluctuations generally have
little effect on the network properties, although they lead to a plateau behavior for small degrees in the
connectivity distribution. Formulas are derived for the evolution and distribution of the network connectivity,
which are tested by numerical simulations. Numerical study of the effect of failures and attacks suggests that
networks constructed under algebraic preferential attachment are more robust than scale-free networks.
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I. INTRODUCTION

There has been an increasing interest in large, evolv
complex networks@1# since the seminal papers on scale-fr
networks@2# and on small-world networks@3#. In general,
networks in nature may or may not possess an organ
structure in the following sense. There are networks wit
hierarchy of structures in that the number of links of vario
nodes follows a power-law~or an algebraic! probability dis-
tribution. These are called scale-free networks@2#. More spe-
cifically, let P(k) be the connectivity distribution, wherek is
the realization of a random variableK measuring the numbe
of links at a node. Scale-free networks are characterized

P~k!;k2g, ~1!

whereg.0 is the algebraic scaling exponent. Because of
algebraic distribution, typically there are nodes in the n
work with a relatively large numbers of links, and these c
be key to efficient functioning of the network. In rando
networks@4#, nodes are connected to each other in a co
pletely random fashion and as such there exists no appa
structure. The connectivity distribution for random networ
are typically exponential:P(k);exp(2ak), wherea.0 is a
constant. We note that the small-world concept describes
fact that the average path between any two nodes in a l
network can be relatively short. In the small-world netwo
model proposed by Watts and Strogatz@3#, P(k) is assumed
to be exponential. The small-world feature appears to be
versal for large, sparse networks, regardless of whether
have an underlying organized structure. In fact, the pione
ing study on random graphs by Erdo´s and Re´nyi already
indicated that the typical distance between any two no
scales logarithmically with the number of nodes@4# and
many apparently scale-free networks are small world,
@1#.

The mechanisms leading to the algebraic connectivity
tribution in scale-free networks are argued to be growth
preferential attachment@2,5#, where the former means tha
the size of the network keeps increasing with time and
1063-651X/2002/66~3!/036112~7!/$20.00 66 0361
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latter assumes that the relative probability for an alrea
heavily connected node to get new links is proportiona
large. In particular, at a given time the probabilityP i for a
node in the network withk links to acquire a new link is
assumed to be@2,5#

P i;k. ~2!

This form of preferential-attachment rule yields the univer
scaling exponentg53 @2,5#. @We note that for random net
works, P(k) is constant.# While many realistic networks in
nature are scale-free to some extent, the fitted algebraic s
ing exponents typically deviate from the ideal value of
@2,5#, which prompts the study of various related models
scale-free networks@6–16#. Another issue of concern is tha
there are examples where the distribution is neither po
law nor exponential, such as the scientific collaboration n
work @17#. These mean that, for a realistic network, the
tachment probabilityP(k) is neither linear~as in the case of
idealized scale-free networks! nor constant~as in random
networks!. A natural way to generalize is then to consider t
following form of algebraic preferential-attachment probab
ity @6,18#:

P i;ka, ~3!

where 0<a<1 is the algebraic exponent.
Network properties resulted from the attachment rule~3!

are the subject of this paper. Our motivations are two.
~a! In existing works with Eq.~3!, the effect of random

fluctuations has not been considered. For example, w
new nodes are added to the network at different times,
number of new links is generally not constant. A question
then how this type of fluctuations affect the network top
ogy as characterized by the connectivity distributionP(k).

~b! The issue of robustness against random failures
intentional attacks for networks described by the attachm
rule ~3! is important but, to our knowledge, it has not be
studied. In this regard, resilience of a network under failu
or attacks can be conveniently characterized by how the
©2002 The American Physical Society12-1
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ameter@19# of the network is changed@20,21#, which is the
average length of the shortest paths between any two n
in the network.

The principal results of this paper are as following:~1!
under random fluctuations the connectivity distributionP(k)
tends to develop a plateau for small values ofk, and ~2!
networks with algebraic attachment exponent around
value of 0.5 are relatively robust against intentional attac
while still possessing a significant component of organiz
structures. We derive theoretical formulas and provide
merical support to establish our results, which can be us
not only for better understanding of realistic complex n
works but also for designing secure, robust engineering
works.

In Sec. II, we derive the connectivity distributionP(k)
under algebraic attachment rule~3! in the presence of ran
dom link fluctuations and provide numerical support. In S
III, we address to what extent the network is affected
random failures and intentional attacks. A discussion is p
sented in Sec. IV.

II. CONNECTIVITY DISTRIBUTION AND EFFECT
OF LINK FLUCTUATIONS

Our model is described as follows. Starting with a sm
number (m0) of nodes, we add a new node withm edges~or
links! at each time step to the network. Since we allow
fluctuations inm, we writem(t). Each link is chosen accord
ing to the following attachment probabilityP i :

P i5
ki

a

(
j

kj
a

, ~4!

where the summation is over the whole network at a giv
instant,a is a constant in@0,1#, andm(t) is a random num-
ber chosen from$1,2, . . . ,2m̄21% with the average value
m̄. In the first m021 steps, we limitm(t)<m01t21 to
guarantee that the number of new links does not exceed
number of nodes in the network in this initial time interva
Our model reduces to that in Ref.@6# if m(t) is constant.
Figure 1 shows, schematically, the process of adding n
nodes to the network form053 andm̄53.

To derive the connectivity distributionP(k), we first con-
sider the case with no fluctuations wherem(t)5m̄ and use
the mean-field approach proposed in Ref.@2#. For a large
network, the random variableK is approximately continuous
and the attachment probabilityP i can be regarded as th
continuous rate of change ofki . We have

]ki

]t
5m̄P i~ki !5

m̄ki
a

(
j

kj
a

. ~5!

Because( j kj
05t and ( j kj

152m̄t, where t is the evolution
time, we have

(
j

kj
a5mt and 1,m,2m̄ for 0,a,1 ~6!
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because( j kj
0,( j kj

a,( j kj
1 . Substituting Eq.~6! into Eq.

~5! yields

]ki

]t
5

m̄ki
a

mt
. ~7!

Note that the above derivation does not yieldm, the time-
rate change of the quantity( j kj

a which, however, can be
computed numerically. Intuitively,m increases witha, as
shown in Fig. 2 form(t)5m̄55. The appendix lists our
procedure for computing them2a relation. The general ob
servation is thatm is a monotonically increasing function o
a.

Integrating Eq.~7! under the initial condition:ki(t i)5m̄,
we obtain

FIG. 1. Schematic illustration of how a network grows in alg
braic preferential-attachment model with link fluctuations form0

5m̄53. At t50 the system hasm053 isolated nodes. Att51 a
new node and two links are added. Att52 a new node and three
links are added. Att53 a new node and four links are added, a
so on.

FIG. 2. Numerically obtained time-rate changem of ( j kj
a ver-

susa for m(t)5m̄55.
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ki~ t !12a5m̄12a1 lnS t

t i
D (12a)(m̄/m)

;~12a!
m̄

m
ln t for 0<a,1. ~8!

For a50, a approaches 1, and Eq.~8! becomeski(t)

;m̄ln t and ki(t);At, respectively. Figure 3~a! shows the
results of numerical simulation, whereki(t) versus lnt is

plotted form̄5m055 andt i595. In the figure, the solid, the
dashed, and the dotted curves denote the cases wherea51
~scale-free network!, a50.5 ~mixed network!, and a50
~random network!, respectively. Fora50, ki(t) appears to
be proportional to lnt. A least-squares fit of thea50 line
gives the slope of 11.0~approximately!, which agrees very
well with the prediction~8!. For a51, ki(t) is algebraic, as
can be seen in the inset whereki(t) is plotted on a logarith-
mic scale. We find that the algebraic exponent is appro
mately 0.5, which was the case for scale-free networks w
linear preferential attachment@5#. For 0,a,1, Eq.~8! pre-
dicts thatki(t)

12a scales linearly with lnt with the slope
(12a)m̄/m @or with log10(t) with the slope reduced by
ln10] independent of the value oft i . Figure 3~b! shows, for
a50.5, ki(t)

12a versus log10 t for two nodes added to th
network at t i515 ~solid curve! and t i595 ~dashed curve!,
where the numerical slope of about 1.92 is approximately
same for both cases, which agrees with Eq.~8!.

The connectivity distribution can be derived from Eq.~8!.
The probability that a node has a connectivityki(t) smaller
thank, P(ki(t),k) can be written as

FIG. 3. Temporal evolution of the connectivityki(t) of a typical

node with m05m̄55 in the network for the specific casem(t)

5m̄. ~a! Cases of differenta where the solid, dashed, and dotte
curves are fora51, a50.5, anda50, respectively. The node i
added to the network att i595. The inset plots the same data but
a logarithmic scale.~b! Cases of different initial time witha
50.5, where the solid and dashed curves are for nodes added t
network att515 andt595, respectively.
03611
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P„ki~ t !,k…5PF t i.t expS 2
k12a2m̄12a

12a

m

m̄
D G . ~9!

Assuming that nodes are added to the network at equal
intervals, the probability density oft i is Pi(t i)51/(m01t).
Substituting this into Eq.~9! yields

PF t i.t expS 2
k12a2m̄12a

12a

m

m̄
D G

512PF t i<t expS 2
k12a2m̄12a

12a

m

m̄
D G

512
t

m01t
expS 2

k12a2m̄12a

12a

m

m̄
D . ~10!

The probability densityP(k) can be obtained using

P~k!5
]p„ki~ t !,k…

]k

5
t

m01t

m

m̄
k2a expS 2

k12a2m̄12a

12a

m

m̄
D . ~11!

We see thatP(k) is generally a mixture of both algebraic an
exponential distributions. Fora50, we have

P~k!;expS 2
k

m̄
D ,

which is exponential. Whena approaches unity, we have

lim
a→1

k12a2m̄12a

12a
5 ln k2 ln m,

which, by Eq.~11!, gives

P~k!5
2m̄2

m01t

1

k3
.

This is the connectivity distribution for idealized scale-fr
networks. Note that here, Eq.~11! is a general expression fo
all values ofa in @0,1), whereas Ref.@14# gives different
expressions for different values ofa.

Figure 4~a! shows the numerically computed connectivi
distributionP(k) with m(t)5m̄5m055 for differenta val-
ues, where the open circles, the stars, and the squares d
cases ofa51, a50.5, anda50, respectively. We see tha
the distributionn is clearly algebraic fora51, whereas a plot
on a semilogarithmic scale indicates that the distribution
a50 is exponential. The distribution fora50.5 lies some-
where in between these two cases, indicating a mixture
algebraic and exponential components inP(k). Figure 4~b!

shows fora50.5 the distributions for different values ofm̄
on a semilogarithmic scale, where the open circles, the s
and the squares denote the cases wherem̄5m053, m̄5m0

the
2-3
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55, andm̄5m057, respectively. All these distributions ar
neither completely algebraic nor exponential.

We now consider the case where there are fluctuation
m(t). For convenience, we writem(t) in terms of a new
random variablej(t),

m~ t !5m̄@11j~ t !#, ~12!

where m̄@11j(t)#5$1,2, . . . ,2m̄21% and ^j(t)&50. Fol-
lowing the steps leading toki(t) andP(k) for the constantm
case, we obtain

ki~ t !12a5m̄12a@11j~ t !#1 lnS t

t i
D (12a)(mt /m)

;~12a!
mt

m
ln t for 0<a,1, ~13!

and

P~k!5
t

m01t

m

mt
k2a expS 2

k12a2m̄12a@11j~ t !#

12a

m

mt
D ,

~14!

wheremt is a random number in between 1 and 2m̄21 and
is defined by

mt ln~ t !5E
t i

tm̄@11j~ t !#

t
dt.

As t→`, mt→m̄. This indicates that at large times,ki(t)
and P(k) should exhibit similar behaviors to those for th
constantm cases. Figure 5 shows the numerical results
ki(t), where the figure legends are the same as in Fig. 3.

FIG. 4. Connectivity distributionP(k) for the specific case

m(t)5m̄. ~a! Cases of differenta with m05m̄55, where the open
circles, stars, and squares denotea51, a50.5, anda50, respec-
tively. Fora51, the scaling is clearly a power law, with deviation

from it as a is decreased.~b! Cases of differentm̄ with a50.5,

where the open circles, the stars, and the squares denotem̄5m0

53, m̄5m055, andm̄5m057, respectively.
03611
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he

slopes of the linear fit in the inserts of Fig. 5~a! and of those
in Fig. 5~b! agree with the theoretical predictions very we
Figure 6 shows the connectivity distributionP(k), where the
legends are the same as those in Fig. 4. The behavior
P(k) for k.10 for different values ofa are similar to those
observed in the corresponding constantm cases, as predicte
by Eq. ~14!.

Comparing Figs. 5 and 6 with Figs. 3 and 4, respective
we observed that having fluctuations inm(t) only affects the
structure of the network for small values ofk. In particular,
there appears to be a plateau region inP(k) for k<10,
which can be understood heuristically as follows. For t
case wherem is constant, the distributionP(k) starts from a
minimum valuekmin5m. Whenm(t) fluctuates in the range
@1,mmax#, statisticallyP(k) can start for allk values in this
range with approximately equal probabilities, giving rise
the plateau behavior. We note that many realistic netwo
such as the world-wide-web@19#, the actor-collaboration net
work @2#, and the scientific-citation network@17# indeed ex-
hibit an approximate plateau region inP(k) for small k val-
ues.

III. ATTACK TOLERANCE

We now investigate the effect of random failure and
tentional attack on the general networks. Here failure me
random removal of a fraction of nodes and attack me
targeted destruction of some critical nodes such as
heavily connected ones in the network. The recent study
Albert et al. @20# indicates that the growing networks wit
exponentially distributed connectivity are robust against b
intentional attacks and random removals of a relatively sm
fraction of nodes. Scale-free networks, on the other ha
appear to be robust against random failures but are m
sensitive to intentional attacks. This is somewhat expec

FIG. 5. Evolution of the connectivityki(t) of a typical node in a

network with fluctuations inm, wherem05m̄55. ~a! ki(t) versus
log10 t for different values ofa. The node is added to the system
t595. The solid, the dashed, and the dotted curves are fora51,
a50.5, and a50, respectively. The inset is log10 ki(t) versus
log10t. ~b! For a50.5, ki

12a(t) versus log10 t for two nodes added
to the network att515 andt595, respectively.
2-4
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STATISTICAL PROPERTIES AND ATTACK TOLERANCE . . . PHYSICAL REVIEW E 66, 036112 ~2002!
because a scale-free network typically possesses a
heavily connected, or ‘‘center’’ nodes. Attack on these no
would have a significant impact on the performance of
network.

To quantify the robustness of a network against rand
failures or attacks, Albertet al.suggested@20# using the con-
cept ofdiameter@19#, which is the average number of link
between any two nodes in the network, a concept tha
similar to the average shortest path in the small-world ch
acterization of networks@3#. Computation of the diamete
requires searching through all pairs of nodes in the netw
which is numerically intensive when the size of the netwo
is large @17#. We have thus developed a simple method
compute the diameterD of a large network, which is numeri
cally efficient. Specifically, at a given time, we random
choosen nodes from the network so that an increase inn
does not result in appreciable variations inD. For each node
we regard it as a center and assign the number 1 to its ne
neighbor, 2 to its second nearest neighbors, and so on
all nodes are assigned a number. The average of all t
numbers give the distanced1 from the ‘‘center’’ node to an
arbitrary node. Choosing the center node in turn yields
additional (n21) distancesdi ( i 52, . . . ,n). The diameter
D is taken to be the average value of then distances.

Figure 7 shows, for a network constructed according
the algebraic preferential-attachment rule~4! at a time when
there are 104 nodes, the diameterD versus the algebraic pa
rametera, where the solid and the dashed curves corresp
to cases of constant and fluctuatingm, respectively. There is
little difference between the two curves, indicating that flu
tuations in the number of links have negligible effect on t
efficiency of the network. Asa is increased from zero,D

FIG. 6. The connectivity distributionP(k) for a network with
fluctuations inm. ~a! P(k) versusK on a logarithmic scale, where
the open circles, the stars, and the squares denote the casesa
51, a50.5, anda50, respectively. Other network parameters a

m05m̄55. For a51, the scaling is algebraic fork*10. For a
50, the scaling appears to be exponential fork*10. ~b! For a
50.5, P(k) versusk on a semilogarithmic scale, where the op

circles, the stars, and the squares denote cases ofm̄5m053, m̄

5m055, andm̄5m057, respectively.
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tends to decrease, indicating that with respect to ‘‘commu
cation,’’ networks with heavier scale-free components
slightly more efficient as compared with a random networ
Overall, the value ofD remains small for 0<a<1, suggest-
ing that networks developed according to Eq.~4! are all
small world, regardless of whether they are random or sc
free, or a mixture of both.

We now present results concerning the effect of rand
failures and attacks. Figure 8 shows, for a network consis
of 104 nodes grown fromm̄5m053, its diameter versus the
fraction f of the randomly failing nodes, where Figs. 8~a! and
8~b! are for constant and fluctuatingm, respectively, and
open circles, stars, and squares denote networks wita
51, a50.5, anda50, respectively. Apparently, asf is in-
creased, the diameters increase in a similar manner fo
networks considered, regardless of whether they are ran
or scale-free, with or without fluctuations inm. Note that for
all cases, the diameter is increased about 4% even w
10% of the nodes in the network fail. This indicates th
random failures have similar but small effect on the class
growing networks developed according to the algebraic
tachment rule~4!. Note, however, that the absolute values
the diameter for a random network are larger than those
scale-free and mixed networks.

For intentional attacks, the situation changes complet
Figure 9 shows, for the same network as in Fig. 8, the dia
eter versus the fractionf of intentionally removed nodes with
largest numbers of links, where panels Figs. 9~a! and 9~b! are
for constant and fluctuatingm, respectively. The open circles
the stars, and the open squares denote thea51 ~scale-free!,
a50.5 ~mixed!, anda50 ~random! cases, respectively. W
observe that networks grown with different values ofa ex-
hibit distinct behaviors. In particular, the diameter for sca
free networks~open circles! increases more rapidly asf is
increased, compared with mixed~stars! and random~open
squares! networks, indicating that scale-free networks a
more vulnerable under attacks. For a mixed network, un

f
FIG. 7. Diameter versus the parametera with m05m̄53,

where the solid and dashed lines denote the constant and fluctu
m cases, respectively.
2-5
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ZONGHUA LIU, YING-CHENG LAI, AND NONG YE PHYSICAL REVIEW E 66, 036112 ~2002!
attacks its diameter increases only slightly more as comp
with a random network. Again, whether there are fluctuatio
in m as the network grows has little effect on its performan
under attacks.

The practical implications of these results are the follo
ing. Suppose one wishes to design a network with organ
structures such as a set of ‘‘center’’ nodes, which should a
be robust against attacks. The network cannot be ran
because of the structure requirement, but scale-free netw
is not desirable either, because of its vulnerability under

FIG. 8. Changes in the diameterD as a function of the fraction

f of randomly removed nodes withm05m̄53, where~a! and ~b!
are for constant and fluctuatingm, respectively. The open circles
the stars, and the open squares denote thea51, a50.5, anda
50 cases, respectively.

FIG. 9. Changes in the diameterD as a function of the fraction
f of removed nodes with largest numbers of links in the netw

~attacks!. The link parameter ism05m̄53. ~a! and~b! are for con-
stant and fluctuatingm, respectively. The open circles, the stars, a
the open squares denote thea51 ~scale-free!, a50.5 ~mixed!, and
a50 ~random! cases, respectively. Apparently, scale-free netwo
are vulnerable under attacks, because the corresponding dia
increases most rapidly asf is increased.
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tacks. Figure 9 suggests that mixed network witha around
the value of 0.5 may be desirable because it allows fo
significant proportion of organized structures at the sa
time, and is relatively robust against attacks.

IV. CONCLUSIONS

We have investigated a class of general growing netwo
with algebraic preferential-attachment rule. We focus on
evolution and statistical distribution of the connectivity, th
effect of random fluctuations in the growing links, and t
efficiency of the network under random failures and inte
tional attacks. Our conclusions are~i! random fluctuations in
the links can cause a plateau behavior in the connecti
distribution P(k) for small values ofk, but otherwise they
have little effect on the statistical properties of the netwo
~ii ! mixed networks tend to be more robust against attack
compared with scale-free networks. Since mixed netwo
still allow for a significant component of organized structur
~versus random networks that do not!, our conclusion~ii !
may be important for the practical design of large scale n
works that require structures such as ‘‘command’’ cent
with relatively large numbers of links.
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APPENDIX

To obtain the relationship between the parametersm and
a, we use the method of master equation. Assuming that
average number of nodes withk links is Nk(t), the master
equation is

dNk

dt
5

m̄

(
j >m̄

j aNj

@~k21!aNk212kaNk#1dkm̄ , ~A1!

where( j >m̄j aNj5mt, the first term and second terms in th
square bracket, and thed-function term on the right-hand
side of the equation represent the increase from the no
originally with k21 links, decrease from nodes original wit
k links, and increase due to new nodes, respectively. W
Nk5tnk @14#, we obtain

nk5
m̄

m
@~k21!ank212kank#. ~A2!

Solving Eq.~A2! and summing all thenk yield

1

m̄
(
k5m̄

`

)
j 5m̄

k S 11
m

m̄j aD 21

51. ~A3!

This equation can be used to numerically determine the
lationship betweenm anda, as shown in Fig. 2.
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