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We consider growing networks with algebraic preferential attachment and address two québtiwhst is
the effect of temporal fluctuations in the number of new links acquired by the network@pndhat is the
network tolerance against random failures and intentional attacks? We find that the fluctuations generally have
little effect on the network properties, although they lead to a plateau behavior for small degrees in the
connectivity distribution. Formulas are derived for the evolution and distribution of the network connectivity,
which are tested by numerical simulations. Numerical study of the effect of failures and attacks suggests that
networks constructed under algebraic preferential attachment are more robust than scale-free networks.
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[. INTRODUCTION latter assumes that the relative probability for an already
heavily connected node to get new links is proportionally
There has been an increasing interest in large, evolvintarge. In particular, at a given time the probabilliy for a
complex network$1] since the seminal papers on scale-freenode in the network withk links to acquire a new link is
networks[2] and on small-world networkg3]. In general, assumed to bg2,5]
networks in nature may or may not possess an organized
structure in the following sense. There are networks with a IT,~k. (2
hierarchy of structures in that the number of links of various
nodes follows a power-laor an algebraicprobability dis-  This form of preferential-attachment rule yields the universal
tribution. These are called scale-free netwdiXs More spe-  scaling exponeny=3 [2,5]. [We note that for random net-
cifically, let P(k) be the connectivity distribution, whekeis ~ works, I1(k) is constani. While many realistic networks in
the realization of a random variablemeasuring the number nature are scale-free to some extent, the fitted algebraic scal-
of links at a node. Scale-free networks are characterized byng exponents typically deviate from the ideal value of 3
[2,5], which prompts the study of various related models for
P(k)~k™?, (1) scale-free network6—16]. Another issue of concern is that
there are examples where the distribution is neither power
wherey>0 is the algebraic scaling exponent. Because of théaw nor exponential, such as the scientific collaboration net-
algebraic distribution, typically there are nodes in the network [17]. These mean that, for a realistic network, the at-
work with a relatively large numbers of links, and these cantachment probabilitfI(k) is neither linearas in the case of
be key to efficient functioning of the network. In random idealized scale-free network®ior constant(as in random
networks[4], nodes are connected to each other in a comnetworks. A natural way to generalize is then to consider the
pletely random fashion and as such there exists no apparefutliowing form of algebraic preferential-attachment probabil-
structure. The connectivity distribution for random networksity [6,18]:
are typically exponentialP (k) ~exp(—ak), wherea>0 is a
constant. We note that the small-world concept describes the IT,~ k<, 3
fact that the average path between any two nodes in a large
network can be relatively short. In the small-world networkwhere O<s o<1 is the algebraic exponent.
model proposed by Watts and Strogg®?, P(k) is assumed Network properties resulted from the attachment (3
to be exponential. The small-world feature appears to be unire the subject of this paper. Our motivations are two.
versal for large, sparse networks, regardless of whether they (a) In existing works with Eq.(3), the effect of random
have an underlying organized structure. In fact, the pioneefluctuations has not been considered. For example, when
ing study on random graphs by Esl@and Rayi already new nodes are added to the network at different times, the
indicated that the typical distance between any two nodesumber of new links is generally not constant. A question is
scales logarithmically with the number of nodg$] and then how this type of fluctuations affect the network topol-
many apparently scale-free networks are small world, tomgy as characterized by the connectivity distributigk).
[1]. (b) The issue of robustness against random failures or
The mechanisms leading to the algebraic connectivity disintentional attacks for networks described by the attachment
tribution in scale-free networks are argued to be growth andule (3) is important but, to our knowledge, it has not been
preferential attachmen®,5], where the former means that studied. In this regard, resilience of a network under failures
the size of the network keeps increasing with time and ther attacks can be conveniently characterized by how the di-
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ameter[19] of the network is changel®0,21], which is the @ ®)
average length of the shortest paths between any two nodes

in the network. o
The principal results of this paper are as followirid) © \3
under random fluctuations the connectivity distribut®gk) O O
tends to develop a plateau for small valueskpfand (2) =0 =1
networks with algebraic attachment exponent around the
value of 0.5 are relatively robust against intentional attacks,
while still possessing a significant component of organized (©) d)
structures. We derive theoretical formulas and provide nu- O\
merical support to establish our results, which can be useful
not only for better understanding of realistic complex net- o
works but also for designing secure, robust engineering net-
works. =2 t=3
In Sec. Il, we derive the connectivity distributidd(k)
under algebraic attachment rui@) in the presence of ran- FIG. 1. Schematic illustration of how a network grows in alge-

dom link fluctuations and provide numerical support. In Secyaic preferential-attachment model with link fluctuations fog
[, we address to what extent the network is affected by_ —

random failures and intentional attacks. A discussion is pre- m=3. Att=0 the system ham,=3 isolated nodes. AL=1 a
sented in Sec. IV ’ P new node and two links are added. &t 2 a new node and three

links are added. At=3 a new node and four links are added, and

Il. CONNECTIVITY DISTRIBUTION AND EFFECT So on.
OF LINK FLUCTUATIONS

_ _ _ _ becauseS k<= k<X k. Substituting Eq.6) into Eq.
Our model is described as follows. Starting with a smaII(S) yields

number (ny) of nodes, we add a new node withedges(or
links) at each time step to the network. Since we allow for

fluctuations inm, we writem(t). Each link is chosen accord- ki Ekia
ing to the following attachment probability; : E ut @
K&
=— (4 Note that the above derivation does not yigldthe time-
> ke rate change of the quantity;ki* which, however, can be

j computed numerically. Intuitivelyu increases witha, as

where the summation is over the whole network at a givershown in Fig. 2 form(t)=m=5. The appendix lists our
instant,« is a constant ifi0,1], andm(t) is a random num- procedure for computing the — « relation. The general ob-
ber chosen from{1,2 n— 1} with the average value servation is thaj is a monotonically increasing function of

m. In the firstmy—1 steps, we limitm(t)=mg+t—1 to ' . . . —
guarantee that the number of new links does not exceed the Integrating Eq.(7) under the initial conditionk;(t;) =m,
number of nodes in the network in this initial time interval. We obtain

Our model reduces to that in Rg6] if m(t) is constant.

Figure 1 shows, schematically, the process of adding new 10
nodes to the network famg=3 andm=3.

To derive the connectivity distributioR(k), we first con-
sider the case with no fluctuations wherét)=m and use 8-
the mean-field approach proposed in Ref|. For a large
network, the random variabl¢ is approximately continuous
and the attachment probabilitM; can be regarded as the

9_

continuous rate of change &f. We have - i
R 5_
ok, — i“
Wzml'[i(ki)= (5) 4r
3 |
J— 2-
BecauseEjkjo=t and E,—kjl=2mt, wheret is the evolution . . . .
time, we have 0 0.2 0.4 0.6 0.8 1
o
2 kj‘“:,ut and 1<,u<25 for O<a<1 (6) FIG. 2. Numerically obtained time-rate changeof ki ver-
i

susa for m(t)=m=5.
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FIG. 3. Temporal evolution of the connectiviky(t) of a typical N _ _ _
node withmy=m=5 in the network for the specific casa(t) The probability density?(k) can be obtained using
=m. (a) Cases of differentx where the solid, dashed, and dotted ap(k (1) <K)
curves are fow=1, «=0.5, anda=0, respectively. The node is P(k)= p'—
added to the network at=95. The inset plots the same data but on ak
a logarithmic scale(b) Cases of different initial time witha g —-a
=0.5, where the solid and dashed curves are for nodes added to the _ t ﬁ ~a gy — k —m M (11)
network att=15 andt= 295, respectively. mg+t E 11—« o~
(1—a) (i) We see thaP (k) is generally a mixture of both algebraic and
k.(t)lfazalfa_,’_ln £) exponential distributions. Fag=0, we have
|
t
_ k
m P(k)~exp — =],
~(1—a);|ntf0r O=sa<l. (8) m
which is exponential. When approaches unity, we have
For =0, a approaches 1, and Ed8) becomesk;(t) C Klte—mlte
~mint and k;(t)~t, respectively. Figure @ shows the l'inl 1-a =Ink=Inm,

results of numerical simulation, whetg(t) versus Irt is

plotted form=my=5 andt;=95. In the figure, the solid, the Which, by Eq.(11), gives
dashed, and the dotted curves denote the cases w#ele —
(scale-free netwodk a=0.5 (mixed network, and a=0 (k)= 2m” 1
(random network respectively. Fom=0, k;(t) appears to Mo+t k3
be proportional to In. A least-squares fit of thee=0 line
gives the slope of 11.0approximately, which agrees very This is the connectivity distribution for idealized scale-free
well with the prediction(8). For @=1, k;(t) is algebraic, as networks. Note that here, E€L1) is a general expression for
can be seen in the inset whetgt) is plotted on a logarith- @l values ofa in [0,1), whereas Ref.14] gives different
mic scale. We find that the algebraic exponent is approxi€XPressions for different values af o
mately 0.5, which was the case for scale-free networks with Figure 4&) shows the numerically computed connectivity
linear preferential attachmef]. For 0<a<1, Eq.(8) pre-  distributionP(k) with m(t) =m=my=5 for differenta val-
dicts thatk;(t)*~ ¢ scales linearly with In with the slope ues, where the open circles, the stars, and the squares denote
(1—a)m/x [or with log;o(t) with the slope reduced by Cases Oiz=1, a=0.5, anda=0, respectively. We see that
In10] independent of the value &f. Figure 3b) shows, for the distributionn is clearly algebraic far=1, whereas a plot
a=0.5, k(1)1 versus logot for two nodes added to the on a semilogarithmic scale indicates that the distribution for
.5, k

network att, =15 (solid curve andt;=95 (dashed curve a=0 is exponential. The distribution far=0.5 lies some-

where the numerical slope of about 1.92 is approximately th&/N€re in between these two cases, indicating a mixture of

same for both cases, which agrees with ). algebraic and exponential componentsFi(k). Figure 4b_)
The connectivity distribution can be derived from E8). shows fora=0.5 the distributions for different values of
The probability that a node has a connectivifyt) smaller ~ on a semilogarithmic scale, where the open circles, the stars,

thank, P(k;(t)<k) can be written as and the squares denote the cases thm:GnOZS, m=mg
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FIG. 4. Connectivity distributionP(k) for the specific case

m(t)= m. (a) Cases of different with my=m=5, where the open
circles, stars, and squares denate 1, «=0.5, anda=0, respec-
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FIG. 5. Evolution of the connectivitl;(t) of a typical node in a

network with fluctuations imm, Wherem0=ﬁ=5. (@ k;(t) versus
log,ot for different values ofx. The node is added to the system at

tively. For =1, the scaling is clearly a power law, with deviations t=95. The solid, the dashed, and the dotted curves are:fot,

from it as « is decreased(b) Cases of differentn with a=0.5,
where the open circles, the stars, and the squares demeta,
=3, m=my=>5, andm=my=7, respectively.

=5, andm= my=7, respectively. All these distributions are

neither completely algebraic nor exponential.

a=0.5, anda=0, respectively. The inset is lggk;(t) versus
logyot. (b) For @=0.5, ki ~%(t) versus log, t for two nodes added
to the network at=15 andt=95, respectively.

slopes of the linear fit in the inserts of Figaband of those
in Fig. 5b) agree with the theoretical predictions very well.
Figure 6 shows the connectivity distributi®{k), where the

We now consider the case where there are fluctuations i[égends are the same as those in Fig. 4. The behaviors of

m(t). For convenience, we writen(t) in terms of a new
random variable(t),

m(t)=m[ 1+ &(t)], (12)

wherem[1+£(t)]={1,2, ...,2n—1} and (£(t))=0. Fol-
lowing the steps leading tq(t) andP (k) for the constanin
case, we obtain

t)(l—a)(mt )

ki(t)l-azal-a[ug(t)]+|n(t—_

m
~(1—a);tlnt for O<a<l1, (13)
and
ol B K e—m' 1+ &) u)
= ortm < &R~ 1-a m)"

(14)

wherem, is a random number in between 1 anth21 and
is defined by

m; In(t)= f:wdt.

As t—oo, mt—>ﬁ This indicates that at large timek;(t)

P(k) for k> 10 for different values otr are similar to those
observed in the corresponding constantases, as predicted
by Eq.(14).

Comparing Figs. 5 and 6 with Figs. 3 and 4, respectively,
we observed that having fluctuationsmi{t) only affects the
structure of the network for small values kfIn particular,
there appears to be a plateau regionFA(k) for k=10,
which can be understood heuristically as follows. For the
case wheren is constant, the distributioR(k) starts from a
minimum valuek,;,=m. Whenm(t) fluctuates in the range
[1,mnax, statisticallyP(k) can start for alk values in this
range with approximately equal probabilities, giving rise to
the plateau behavior. We note that many realistic networks
such as the world-wide-wgli 9], the actor-collaboration net-
work [2], and the scientific-citation netwofl 7] indeed ex-
hibit an approximate plateau region (k) for smallk val-
ues.

Ill. ATTACK TOLERANCE

We now investigate the effect of random failure and in-
tentional attack on the general networks. Here failure means
random removal of a fraction of nodes and attack means
targeted destruction of some critical nodes such as the
heavily connected ones in the network. The recent study by
Albert et al. [20] indicates that the growing networks with
exponentially distributed connectivity are robust against both
intentional attacks and random removals of a relatively small

and P(k) should exhibit similar behaviors to those for the fraction of nodes. Scale-free networks, on the other hand,
constantm cases. Figure 5 shows the numerical results ofappear to be robust against random failures but are more
k;(t), where the figure legends are the same as in Fig. 3. Theensitive to intentional attacks. This is somewhat expected
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FIG. 6. The connectivity distributio®(k) for a network with .
fluctuations inm. (a) P(k) versusK on a logarithmic scale, where FIG. 7. Diameter versus the parameterwith mp=m=3,
the open circles, the stars, and the squares denote the caaes ofwhere the solid and dashed lines denote the constant and fluctuating
=1, a=0.5, ande=0, respectively. Other network parameters arem cases, respectively.
my=m=5. For «=1, the scaling is algebraic fdt=10. For «
=0, the scaling appears to be exponential ker10. (b) For «
=0.5, P(k) versusk on a semilogarithmic scale, where the open
circles, the stars, and the squares denote cases=ah,=3, m

tends to decrease, indicating that with respect to “communi-
cation,” networks with heavier scale-free components are
i slightly more efficient as compared with a random networks.
=my=5, andm=my=7, respectively. Overall, the value oD remains small for & «<1, suggest-
ing that networks developed according to Ed) are all
because a scale-free network typically possesses a fe@mall world,.regardless of whether they are random or scale-
heavily connected, or “center” nodes. Attack on these nodedree, or a mixture of both. _
would have a significant impact on the performance of the We now present results concerning the effect of random
network. failures and attacks. Figure 8 shows, for a network consisting
To quantify the robustness of a network against randonof 10* nodes grown fromm=my=3, its diameter versus the
failures or attacks, Albert al. suggestei20] using the con-  fractionf of the randomly failing nodes, where FiggaBand
cept ofdiameter[19], which is the average number of links 8(b) are for constant and fluctuating, respectively, and
between any two nodes in the network, a concept that ispen circles, stars, and squares denote networks with
similar to the average shortest path in the small-world char=1, «=0.5, anda=0, respectively. Apparently, dsis in-
acterization of network$3]. Computation of the diameter creased, the diameters increase in a similar manner for all
requires searching through all pairs of nodes in the networknpetworks considered, regardless of whether they are random
which is numerically intensive when the size of the networkor scale-free, with or without fluctuations m. Note that for
is large[17]. We have thus developed a simple method toall cases, the diameter is increased about 4% even when
compute the diameté of a large network, which is numeri- 10% of the nodes in the network fail. This indicates that
cally efficient. Specifically, at a given time, we randomly random failures have similar but small effect on the class of
choosen nodes from the network so that an increasenin growing networks developed according to the algebraic at-
does not result in appreciable variationdnFor each node, tachment rulg4). Note, however, that the absolute values of
we regard it as a center and assign the number 1 to its nearabe diameter for a random network are larger than those of
neighbor, 2 to its second nearest neighbors, and so on unskale-free and mixed networks.
all nodes are assigned a number. The average of all these For intentional attacks, the situation changes completely.
numbers give the distanah from the “center” node to an Figure 9 shows, for the same network as in Fig. 8, the diam-
arbitrary node. Choosing the center node in turn yields armter versus the fractiohof intentionally removed nodes with
additional —1) distanced; (i=2,...n). The diameter largest numbers of links, where panels Figs) @nd 9b) are
D is taken to be the average value of thdistances. for constant and fluctuating, respectively. The open circles,
Figure 7 shows, for a network constructed according tathe stars, and the open squares denotexthd (scale-freg,
the algebraic preferential-attachment r(d¢ at a time when  «=0.5 (mixed), anda=0 (randon) cases, respectively. We
there are 1Hnodes, the diametdd versus the algebraic pa- observe that networks grown with different valuescogx-
rametera, where the solid and the dashed curves correspontibit distinct behaviors. In particular, the diameter for scale-
to cases of constant and fluctuatimg respectively. There is free networks(open circleg increases more rapidly dsis
little difference between the two curves, indicating that fluc-increased, compared with mixddtars3 and random(open
tuations in the number of links have negligible effect on thesquareps networks, indicating that scale-free networks are
efficiency of the network. Asy is increased from zerd)  more vulnerable under attacks. For a mixed network, under
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5.6 - 5.6 - tacks. Figure 9 suggests that mixed network witlaround
(@ (b) the value of 0.5 may be desirable because it allows for a
5.4; 5.4} =] s_ignificant_ propo_rtion of organiz_ed structures at the same
- o nm“ﬁiwlﬂﬂ% time, and is relatively robust against attacks.
52| st 5.2(5,%% 1
ol | W*ﬂn& IV. CONCLUSIONS
o) O e We have investigated a class of general growing networks
4.8 ] a8l ] with algebraic preferential-attachment rule. We focus on the
evolution and statistical distribution of the connectivity, the
4.6 ] 46 | effect of random fluctuations in the growing links, and the
o efficiency of the network under random failures and inten-
4.4 A 4.4} e tional attacks. Our conclusions afig¢ random fluctuations in
QWQ@@%% W%%% the links can cause a plateau behavior in the connectivity
42 n 4.2 , distribution P(k) for small values ofk, but otherwise they
0 0'?5 01 0 °'f°5 01 have little effect on the statistical properties of the network;

(i) mixed networks tend to be more robust against attacks as
FIG. 8. Changes in the diametBras a function of the fraction compared with scale-free networks. Since mixed networks
f of randomly removed nodes witin,=m=3, where(a) and (b) still allow for a significant component of organized structures
are for constant and fluctuating, respectively. The open circles, (versus random networks that do poour conclusion(ii)
the stars, and the open squares denoteathel, a=0.5, ande may be important for the practical design of large scale net-
=0 cases, respectively. works that require structures such as “command” centers
with relatively large numbers of links.

attacks its diameter increases only slightly more as compared

with a random network. Again, whether there are fluctuations ACKNOWLEDGMENT
in mas the network grows has little effect on its performance .
under attacks 9 P This work was supported by AFOSR under Grant No.

The practical implications of these results are the follow-F49620-01-1-0317.
ing. Suppose one wishes to design a network with organized
structures such as a set of “center” nodes, which should also APPENDIX
Ee robust fat?]ams{t a’itacks. The netvzlok;ktcanl?otf be rart1don|1( To obtain the relationship between the paramete@nd
ecause of Ine structure requirement, but scale-iree ne wora, we use the method of master equation. Assuming that the

is not desirable either, because of its vulnerability under atéverage number of nodes withlinks is N,(t), the master

equation is
Q)
9_(a) 9%%_ g_(b) -
) o) dN m
; & k o @ _
& R gt = = [k=D N1 =k*N+ S, (AD)
PR & 3 i
%5’ j=m
N ;‘-f I whereX ;- j “N; = ut, the first term and second terms in the
fw 1 Q7 dgéﬂ x square bracket, and th&function term on the right-hand
5 ¢ P side of the equation represent the increase from the nodes
e originally with k—1 links, decrease from nodes original with
| 6 &wh k links, and increase due to new nodes, respectively. Write
N,=tn, [14], we obtain
50d ] .
‘ . m
0 o?s 0.1 0 o.?s 0.1 nk=;[(k—1)“nk,l—k“nk]. (A2)

FIG. 9. Changes in the diametBras a function of the fraction ~Solving Eq.(A2) and summing all the, yield
f of removed nodes with largest numbers of links in the network

(attacks. The link parameter imo:H:& (a) and(b) are for con- 1 = k -1
stant and fluctuatingn, respectively. The open circles, the stars, and — E H 1+ — =1. (A3)
the open squares denote the 1 (scale-freg a= 0.5 (mixed), and Mk=mj=m mj ¢

a=0 (randon) cases, respectively. Apparently, scale-free networks
are vulnerable under attacks, because the corresponding diametBRis equation can be used to numerically determine the re-
increases most rapidly dds increased. lationship between. and «, as shown in Fig. 2.
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