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Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors
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Chaotic attractors arising in physical systems are often nonhyperbolic. We compare two sources of nonhy-
perbolicity: ~1! tangencies between stable and unstable manifolds, and~2! unstable dimension variability. We
study the effects of noise on chaotic attractors with these nonhyperbolic behaviors by investigating the scaling
laws for the Hausdorff distance between the noisy and the deterministic attractors. Whereas in the presence of
tangencies, interactive noise yields attractor deformations, attractors with only dimension variability are robust,
despite the fact that shadowing is grossly violated.
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I. INTRODUCTION

In the study and applications of the ergodic theory
chaotic attractors in deterministic dynamical systems, the
fect of noise is an issue of paramount importance. In labo
tory experiments and in numerical simulations of chao
systems, the deterministic time evolution is rarely obser
in the deterministic sense, because of the presence of in
table environmental noise or computer round off and th
interplay with the underlying dynamical process. Where
computer round off yields a perturbed deterministic dyna
ics, experimental systems must be considered asnonlinear
stochastic processes, with however small is the stochast
component in comparison with the other factors govern
the time evolution of the system. Thedynamicalor interac-
tive noise interferes with the deterministic part of the dyna
ics and, as many studies show@1,2#, this type of noise can
have considerable effects that are much more severe than
reducing the information about the current state of the s
tems as in the case ofmeasurementor observational noise
@3#. Because of the sensitivity on initial conditions exhibit
by chaotic systems, which causes an exponential diverge
of nearby trajectories, the correlation between the noisy
jectory and the deterministic one having the same initial c
ditions decay generally rapidly in time.

However, in hyperbolic chaotic systems, in which t
phase space is locally spanned by a fixed number ofdistinct
stable and unstable directions that are transported co
tently under the dynamics, the effect of noise is not so sev
in the following sense. While a noisy trajectory diverges e
ponentially from the true one with the same initial conditio
typically there exists a true trajectory, with a slightly diffe
ent initial condition, that stays close to the noisy one. Tha
for a hyperbolic system, an experimentally or numerica
obtained trajectory is typically shadowed, within a small d
tance in the phase space, by a true trajectory of the id
physical system, a desirable fact that is mathematically g
anteed by the shadowing lemma due to Anosov and Bo
@4#.

Nonetheless, chaotic attractors arising in physical sit
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tions are typically nonhyperbolic. Two distinct types of no
hyperbolicity are frequently observed:~1! tangencies be-
tween stable and unstable manifolds and,~2! unstable
dimension variability. In the former case, there exists a de
set of points in the phase space at which the stable and
stable eigendirections are indistinguishable~tangencies!.
Since the shadowing of a noisy trajectory relies on the e
tence of distinct stable and unstable directions@4#, tangencies
between the stable and unstable manifolds render impos
indefinite shadowing. However, shadowing of noisy trajec
ries for a finite amount of time can still be expected inso
as the trajectory stays away from any tangency point.
low-dimensional chaotic systems~systems with only one un
stable direction! that have quadratic tangencies, the shado
ing timeT(e) scales algebraically with the noise amplitudee
asT(e);e21/2 @1#. Thus, if the noise level is small, shadow
ing can still be expected for a reasonable amount of tim
The problem of shadowing for systems with unstable dim
sion variability @5# can, however, be extremely severe@6,7#.
For such a system, there is no continuous splitting of
stable and unstable directions along a trajectory. As a re
the shadowing times can be very short@7#. Despite this fun-
damental difficulty in shadowing, it was recently pointed o
that for certain chaotic systems, apparently statistical qua
ties such as various dynamical invariants can still be
tained through physical or numerical experiments of su
systems@8#.

While the issue of shadowing is concerned with ind
vidual trajectories, it is often more relevant to study the d
pendence of the invariant measure and of the set in ph
space supporting this measure on the noise level. The e
of noise on the global structures of nonhyperbolic attract
with tangencies has recently been investigated@2,9#. The aim
of this paper is to address how noise affects chaotic attrac
with either or both sources of nonhyperbolicity. In particul
in order to measure how a chaotic attractor is geometric
deformed by noise, we utilize the Hausdorff distance~to be
defined in Sec. II! between attractors with and without nois
@10#, and investigate how the distance scales with the no
amplitude. Our principal and very surprising result is th
©2002 The American Physical Society09-1
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KANTZ, GREBOGI, PRASAD, LAI, AND SINDE PHYSICAL REVIEW E65 026209
while noise can significantly influence the global structu
of nonhyperbolic attractors with tangencies~the Hausdorff
distance increases algebraically with the noise level wit
large constant of proportionality!, its effect on attractors with
unstable dimension variability seems to be negligible in
sense that it is as weak as on hyperbolic attractors. We s
present general arguments and detailed numerical result
two systems with unstable dimension variability. In chao
systems with both tangencies and unstable dimension v
ability, the attractor deformation due tangencies is the do
nating effect.

The remainder of the paper is organized as follows.
Sec. II, we describe unstable dimension variability, define
Hausdorff distance, and discuss how it should scale for
ferent types of nonhyperbolic attractors. In Sec. III, we co
struct a class of numerical systems to address the sca
issue. A discussion including reference to the mathemat
literature is presented in Sec. IV.

II. UNSTABLE DIMENSION VARIABILITY AND NOISE
SCALING OF THE HAUSDORFF DISTANCE

Consider anN-dimensional map:xn115F(xn ,p), where
xnPRN andp is a system parameter. We focus on parame
regimes in which the ergodic invariant set is a chaotic attr
tor. The set is hyperbolic if the following three conditions a
met @11#:

~1! At each point in the set, the tangent space can be s
into an expanding subspace and a contracting subspace.
tances in the expanding~contracting! subspace grow~shrink!
exponentially in time on average.

~2! The angle between the stable and the unstable
spaces is bounded away from zero.

~3! The expanding subspace evolves into the expand
one along a typical trajectory and the same is true for
contracting subspace.
Violation of condition~2! leads to nonhyperbolicity with tan
gencies, which occurs commonly in low-dimensional chao
systems with only one unstable direction. Nonhyperbolic
with unstable dimension variability is caused by the violati
of condition ~3!, which can occur in chaotic systems wi
more than one unstable or more than one stable direction
high dimensions, commonly there are systems that vio
both conditions~2! and ~3!.

For nonhyperbolic systems with tangencies, the shad
ing time can still be large in the presence of small noi
because of the algebraic scaling of the time@1#. For nonhy-
perbolic systems with unstable dimension variability, t
shadowing time can be oppressively small@7#. This can be
understood by considering a simple ergodic invariant
containing two unstable fixed points: one with a single lo
unstable direction and one with two local unstable directio
@12#. Trajectories wandering in the invariant set can spe
arbitrarily long times near each point. Imagine a ball of in
tial conditions starting near the fixed point with the sing
unstable direction. Under the dynamics, the complemen
the unstable direction is contracting, so the ball of true t
jectories will be squeezed into a very thin line along t
unstable direction. Due to noise of amplitudee, points on
02620
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any experimental trajectoryxnoise are typically found at a
distancee away from all true trajectories. When the traje
tory visits the neighborhood of the second fixed point w
two unstable directions, the small distance betweenxnoiseand
all true trajectories increases exponentially along thenew
unstable direction at a rate determined by the average
panding eigenvalue associated with this direction. Th
whenever this happens, the noisy trajectory immediately
verges exponentially from the true ones. For a chaotic
with unstable dimension variability, this is by no means
rare phenomenon. In fact, each single set of unstable peri
points with given numbers of unstable directions is believ
to bedensein the chaotic set, substantially reducing the tim
a noisy trajectory can be expected to remain close to any
trajectory of the system.

To characterize the effect of noise on nonhyperbolic c
otic attractors, we utilize the concept of Hausdorff distan
that measures the distance between two sets. LetX denote
the noisy attractor andY be the noiseless attractor. The di
tance between a pointxPX and the noiseless attractor
defined to be:

dmin~x,Y!5min$ix2yi ,yPY%, ~1!

wherei••i is the Euclidean distance between the pointsx and
y. We call a Hausdorff pseudodistance from setX to setY

dHausd~X,Y!5max$dmin~X,Y!,xPX%. ~2!

The Hausdorff distance between the two sets is defined

D5max$dHausd~X,Y!,ddausd~X,Y!%.

In the following, we will discuss setsX that are blown up
versions of the setsY. Hence the distanceD will be given by
the value of dHausd(X,Y), since dHausd(Y,X)50 in these
cases.

In order to be useful, this definition contains the implic
assumption that the largest valuedmin is finite. In a situation
involving Gaussian noise, this is not guaranteed. But eve
dHausdis finite, the actual value ofdHausdcomputed on afinite
sample of the setX depends strongly on the realization of th
sample, since it is solely determined by the sampling of
‘‘tail’’ of the distribution of dmin . Hence, in order to derive
statistically robust numbers for finite samples, we defi
d̂Hausdby the smallest value such that not more thank points
of the finite setX have a distancedmin larger thand̂Hausd~this
is a biased but consistent estimator of the Hausdorff dista
with a reasonably small variance fork510!.

For nonhyperbolic chaotic attractors with tangencies
trajectory typically wanders in hyperbolic regions until a h
moclinic tangency is encountered. If one considers an
semble of noisy trajectories, they are systematically driv
out of the neighborhood of the attractoronly at the ho-
moclinic tangencies. At a tangency, a prolongation of
structure of the attractor can be observed, which depend
the noise level and the local expansion rate near the tang
@2#. When the noisy trajectory is located in the hyperbo
region of the attractor, it is generally pushed back to
attractor. Quantitatively, the Hausdorff distance was p
9-2
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UNEXPECTED ROBUSTNESS AGAINST NOISE OF A . . . PHYSICAL REVIEW E65 026209
posed in Ref.@9# to scale with the noise amplitude a
dHausd(e);e1/D1, whereD1 is the information dimension. In
contradiction to this scaling law, Ref.@2# and the numerics
presented below suggest the simpler scaling law

dHausd~e!'ce, ~3!

which also holds trivially for hyperbolic systems. Compa
also Sec. IV for a mathematical assertion for the gene
validity of Eq. ~3!.

The important finding of Ref.@2# is that the factor of
proportionality c in Eq. ~3! can be huge, as will also b
confirmed in Sec. III. Since the main contribution to t
Hausdorff distance comes from the primary tangency po
~tangencies with the smallest curvature! and their immediate
images, for a noisy trajectory of finite lengthT, the scaling is
observable fore*ec;1/Ta, wherea'2 if the tangency is
quadratic. For two-dimensional maps, such as the He´non
map with negative Jacobian, the primary tangency po
typically are located at the outmost boundary of the clos
of the attractor.

For attractors with unstable dimension variability as t
sole source of nonhyperbolicity, the shadowability of no
trajectories is severely limited. One might hence expec
see also considerable differences between the attracto
noise-free systems and noise-driven systems. Howeve
closer investigation of the structure of the stable and unst
manifolds suggests that the global features of the attra
remain almost unaffected by noise. The heuristic argume
in support of this will be given below, and will be illustrate
in detail using a dynamical system introduced in this pap

For the explanation of the unexpected robustness aga
noise, we have to distinguish between the two cases in w
the direction corresponding to the fluctuating Lyapunov
ponent is either expanding on average or contracting on
erage. In the latter case, i.e., if the Lyapunov expone
whose finite time average has fluctuating sign@6# ~which is
responsible for the unstable dimension variability!, is nega-
tive, the periodic points with more than the average unsta
directions are typically embedded deep inside in the clos
of the attractor. The set of points forming the attrac
boundary has no more unstable directions than there
positive Lyapunov exponents. If the converse were true,
boundary could not be a boundary of an attractor~it could
only, e.g., be the boundary of a repeller!.1 To recall, the natu-
ral invariant measures on attractors are such that the exp
ing directions are filled in a continuous way, hence, all dir
tions transverse to the attractor boundary have to be line
attracting. As a consequence, low amplitude noise can
take a trajectory away from the attractor. This argument a
holds for attractors with homoclinic tangencies everywh

1This argument does not apply if the chaotic attractor is confi
to an invariant subspace. For such situations noise effects know
‘‘attractor bubbling’’ @15# can occur, where noisy and determinist
attractors can be very different. However, symmetry and invaria
of subspaces are structually unstable phenomena that we exclu
our discussion.
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where linear stability analysis governs the growth of pert
bations. Although nowhere any direction transverse to
attractor is linearly expanding, due to the degeneracy of
manifolds at tangency points, one tangent space directio
not governed by linear stability analysis at all. Nonline
effects are then dominant already for vanishing noise lev
and lead to noise amplification.

If the direction responsible for unstable dimension va
ability carries a positive Lyapunov exponent, it is a globa
expanding direction. Hence, the projection of the invaria
measure onto this direction is continuous and insensitive
noise.

In all cases, dynamical noise makes attractors sligh
fuzzy, i.e., fractal structure and attractor boundaries
slightly blurred. This effect exists also for strictly hyperbol
systems and is comparable to measurement noise. It in
duces a Hausdorff distance between the noise free and
noisy attractor that is proportional to the noise level as in E
~3!, but with a factor of proportionalityc, which is less than
unity and that is determined by the weakest contracting
rection that is not filled continuously~i.e., the one in the
Kaplan Yorke formula that contributes as a fraction!. This
should be contrasted with a hugec value in the case of ho
moclinic tangencies. For nonhyperbolic attractors with bo
unstable dimension variability and tangencies, we thus
pect the effect of tangencies to dominate in the sense tha
Hausdorff distance obeys the scaling in Eq.~3! with a large
constant of proportionality.

The finiteness of the sample representing the noise-
attractor introduces a minimal Hausdorff distance. This c
be obtained numerically by the computation of the distan
between two different noise-free samples of the same att
tor. Only if the noise induced effects are larger than this fin
sample effect, the scaling laws can be seen.

Hence, in the numerics presented below, two scaling
gimes arise. At small noise levels, the Hausdorff distanc
noise independent. At large noise levels, we expect to
serve the scaling of Eq.~3! for the system with homoclinic
tangencies. For hyperbolic systems or systems with unst
dimension variability, we expect also a crossover to a reg
where the Hausdorff distance is proportional to the no
level, but only at much larger noise levels corresponding
small c.

III. MODEL SYSTEMS AND NUMERICAL RESULTS

A. Model systems with unstable dimension variability

As a first model system, we introduce a model for dime
sion variability, namely,

xn1152xn13ynmod~1!,

yn1153xn15ynmod~1!,

zn115
2

p
arctanH ap

2
@zn1sin~2pxn22pyn!#J , ~4!

where x[(x,y) obeys the hyperbolic two-dimensional c
map, anda is a parameter that can be adjusted to prod

d
as

e
in
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KANTZ, GREBOGI, PRASAD, LAI, AND SINDE PHYSICAL REVIEW E65 026209
unstable dimension variability. The cat map has five sad
fixed points: x05(0,0), x15(2/5,1/5), x25(3/5,4/5), x3
5(1/5,3/5), andx45(4/5,2/5) with eigenvalues of the Jaco
bians (763A5)/2. Each of them gives rise to at least o
and at most three fixed points of the full three-dimensio
system. Fora,1, a single fixed point with two stable an
one unstable direction is created from every saddle poin
the cat map, as can be easily verified. Ata51, the fixed
point ~0,0,0! undergoes a pitchfork bifurcation, where th
point ~0,0,0! gains a second unstable direction, and wh
two new fixed points (0,0,z0) and (0,0,2z0) are born, both
with one unstable and two stable directions. Ata'1.45 and
a'2.25, also the first and the second, respectively, pai
the remaining four fixed points undergo subcritical tang
bifurcations, i.e., in addition to the existing singly unstab
fixed point, a pair of one singly and one doubly unsta
fixed point is formed~see Fig. 1!. Hence, fora.2.25, the
full three-dimensional system, Eq.~4!, has 15 fixed points
Their locations (x* ,y* ,z* ) in the phase space, wherez* is
the solution of z* 52/p arctan$ap/2@z* 1sin(2px*
22py* )#%, depend onx* , y* , anda. The eigenvalues of the
Jacobians of each fixed point are (763A5)/2 and

aY XH ap

2
@z* 1sin~2px* 22py* !#J 2

11C.
These 12 fixed points, together with the projection of t
chaotic attractor in the~x,z! plane, are shown in Fig. 2.

In a similar way, every periodp orbit of the cat map gives
rise to either a single periodp orbit of the full system, or to
a triple of periodp orbits, one of which is doubly unstable
the two others being singly unstable. The larger the par
etera is, the larger is the number of orbits that have bifu
cated. It seems that there are no other bifurcations than th
such that in the limit of very largea, the system has a triple
of orbits for every orbit of the cat map. The feature that
relevant for the understanding of the robustness of the att
tor against noise is the following: for every periodic poi
~x,y! of the cat map, the points of the orbits of the full syste
with largest (z1) and with smallestz component (z2) belong

FIG. 1. Bifurcation diagram ofz coordinates of Eq.~4! of the
two fixed points with the~x,y! coordinates~2/5,1/5!, ~3/5,4/5!. Thez
coordinates of the two other fixed points are obtained byz°2z.
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to the singly unstable orbits, thez component of whose tan
gent space being stable. Thez coordinatezd of the doubly
unstable orbit fulfills z2,zd,z1 . Moreover, a one-
dimensional subspace of the unstable manifold of the dou
unstable orbit is identical with one direction of the stab
manifold of the singly unstable orbits, and this homoclin
orbit is given by the corresponding line connecting the t
types of orbits. This proves, for this particular system, h
the second unstable direction can be such that on the ave
the corresponding Lyapunov exponent is negative, and h
the attractor boundary can be in fact linearly attractin
Hence, no noise amplification mechanism outside the att
tor is present. Internally, however, the doubly unstable p
odic orbits form a kind of local separatrix, since initial co
ditions with identical~x,y! coordinates converge to either th
z1 or thez2 orbit, depending on whether the initialz value
was larger or smaller than the correspondingzd . This is rel-
evant for the understanding of the lack of shadowing in t
map, which will be discussed elsewhere in detail. The g
eral lack of shadowability of systems with dimension va
ability was studied in Ref.@7#.

Another, physically motivated, system that is known
possess dimension variability is the double rotor map@7#.
This is a four-dimensional invertible map. For our numeric
simulations below, we employ the parameter settings of R
@13# with f 58 ~see also Ref.@8#!.

B. Systems with homoclinic tangencies

The Hénon map is a paradigm of a system with h
moclinic tangencies, which was used to investigate many
the particularities that depend on this fact, such as the
ation of a generating partition and the effects of noise@14,2#

~xn11 ,yn11!5~a2xn
21byn ,xn! with a51.4, b50.3.

~5!

The Ikeda map@16#

zn115110.9zn expS 0.4i 2
6i

11uznu2D , zn ,zn11PC

~6!

FIG. 2. Attractor~dots! of Eq. ~4! projected into the~x-z! plane
for a52. The fixed points are shown by filled circles~d!.
9-4
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UNEXPECTED ROBUSTNESS AGAINST NOISE OF A . . . PHYSICAL REVIEW E65 026209
possesses homoclinic tangencies as well@2#. Since both
maps are two-dimensional and invertible, dimension va
ability is trivially excluded.

C. System with both types of nonhyperbolicity

Finally, we construct a system that has both types of v
lation of hyperbolicity, homoclinic tangencies, and dime
sion variability. Although it seems that this is the gene
case for hyperchaotic maps and flows, we verify this for o
model system. We replace the cat-map dynamics in Eq.~4!
by the Hénon map. For additional simplicity, we can rela
the invariance condition of thez dynamics inx2y→x2y
61 and hence arrive at the system:

xn11512axn
21byn ,

yn115xn ,

zn115
2

p
arctanFap

2 S z2
x2y

2 D G . ~7!

FIG. 3. ~a! Attractor of Eq. ~7! for a53 in the three-
dimensional phase space.~b! Projection of the attractor into the~x,z!
plane. The three fixed points are shown by filled circles~d!.
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The Hénon map has two fixed points, one of them,x* 5y*
5(b211A(b21)214a)/2a, is on the chaotic attractor
The z dynamics, Eq.~7!, possesses, fora,1, the only fixed
point z* 50. At a51 it undergoes a pitchfork bifurcation, s
that for a.1 the following three fixed points exist:P1
5(x* ,y* ,2z* ), P25(x* ,y* ,0), and P35(x* ,y* ,z* ),
wherez* denotes the nonzero solutions of

z* 5
2

p
arctanS ap

2
z* D .

All these fixed points possess the following two comm
eigenvalues:l1 , l252x* 6Ax

*
2 10.3, with magnitudes

larger and less than one, respectively. The third eigenvalu

l35
a

@~apz* /2!211!]
, for P1 and P3 , ~8!

l35a, for P2 .

Thus, fora.1, we haveul3u.1 for P2 and l3,1 for P1
and P3 . That is, the fixed pointsP1 and P3 have one un-
stable direction whileP2 has two. Figure 3~a! and 3~b! show
the chaotic attractor, together with the locations of the th
fixed points, in the three-dimensional phase space and in
~x,z! plane, respectively. In order to be confident that t
three fixed points are embedded in the chaotic attractor,
computed, the smallest distance between a trajectory
length N and the fixed points. If a fixed pointP is indeed
embedded in the attractor, then the distance decreases
braically asN is increased, as follows@17#:

d;N21/Dp~P!, ~9!

whereDp(P) is the pointwise dimension of the fixed poin
Figure 4 shows the scaling ofd with N for the three fixed
points. A linear regression givesDp'1.62, 2.90, and 1.66 for
P1 , P2 , andP3 , respectively. The apparent algebraic scali
behavior indicates that the fixed points are embedded in
attractor. Moreover, the values of the pointwise dimens

FIG. 4. Minimum distancesd between a chaotic trajectory o
lengthN of Eq. ~7! and the fixed pointsP1 ~long-dashed line!, P2

~solid line!, and P3 ~dotted line! on a logarithmic scale. A linear
regression gives the following pointwise dimensions:D1'1.62,
2.90, and 1.66 forP1 , P2 , andP3 , respectively.
9-5
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KANTZ, GREBOGI, PRASAD, LAI, AND SINDE PHYSICAL REVIEW E65 026209
suggest that the attractor is one-dimensionally unstable
P1 and P3 and it is two-dimensionally unstable nearP2 .
Since unstable dimension variability occurs throughout
attractor, generally we expect periodic orbits of higher pe
ods to exhibit a similar behavior.

To better assess the degree of unstable dimension vari
ity, we investigate the fluctuations of the finite-tim
Lyapunov exponents@5#. Figure 5~a! shows the Lyapunov
spectrum of Eq.~7! as a function ofa. Apparently, the two
exponents from the He´non map remain constant, and on
one Lyapunov exponent, originated from thez equation, var-
ies with a. Figure 5~b! shows the variance of the secon
~solid line! and the third~dotted line! Lyapunov exponents vs
a computed from 20 trajectories of length 53106 each. Fig-
ure 5~c! shows the minimum distances between a traject
of length 108 and the three fixed points vsa. In the param-
eter range: 2.6&a&6.3 where d'0 and, apparently, al
three fixed points are embedded in the attractor, there i
appreciable fluctuation of the second Lyapunov expon
Thus, in this parameter interval, there is a suggestion of
sistent unstable dimension variability.

D. Scaling of the Hausdorff distance

We can now study the scaling of the Hausdorff distan
with noise. To simulate noise, we add a random variable w
a uniform distribution in@2e, e# to every dynamical variable
before every iteration of the maps. Thus, we expect to
serve a wide distribution ofdmin , the minimum distance be

FIG. 5. ~a! Lyapunov spectrum of Eq.~7! vs the parametera. ~b!
The variances in the second~solid line! and the third~dotted line!
Lyapunov exponents. The variances are computed from 20 tra
tories of length 53106 each.~c! The minimum distancesd between
a chaotic trajectory of length 108 with the fixed pointsP1 ~solid
line!, P2 ~dotted line!, andP3 ~long dashed line!.
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tween a point on the noisy attractor and a long trajectory
the noiseless attractor, as shown in Figs. 6~a! and 6~b! for Eq.
~7! and Eq.~4!, respectively.

Figure 7 shows, on a logarithmic scale, the Hausdo
distancedHausdvs e for all the models introduced before. Fo
each value ofe, dHausd is obtained by utilizing at least 107

points representing the noise-free attractor and at least6

points for the noisy trajectory~for some of the three- and
four-dimensional systems, up to 108 points were used!. For
all systems, thee dependence is absent if the noise-induc
distance is smaller than the distance between two indep
dent finite samples of the noise-free attractor, as explai
before. This value is system specific and depends on
dynamical range of the variables, on the dimensionality
the attractor, and on the~ir!regularity of the invariant mea
sure, since it is dominated by the largest interpoint distan
in the sparsely populated regions of the attractor.

Apparently, with only unstable dimension variability@Eq.
~4! and the double rotor map#, outside this plateau,dHausd
'ce with a factorc bounded by unity. The same holds,
expected, for the hyperbolic case of Eq.~4!, when for a
50.9 thez direction is contracting everywhere. For Eq.~4!
and a53 one observesc'0.01, whereas fora50.9 c
'0.05. This is consistent with the fact that both t
Lyapunov exponent corresponding to thez direction, as also
the local expansion rates on the attractor boundary, are m
smaller for a53 than for a50.9, despite the presence o
lack of dimension variability@the second Lyapunov exponen

c-
FIG. 6. Distribution ofdmin for ~a! Eq. ~7! for a53, and~b! for

Eq. ~4! with a52. The solid and dotted lines correspond to no
amplitude ofe51024 and 431023, respectively. The distributions
are obtained by accumulating 105 values ofdmin from 105 points on
the noisy attractor and each value ofdmin is computed using 105

points on the noiseless attractor.
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UNEXPECTED ROBUSTNESS AGAINST NOISE OF A . . . PHYSICAL REVIEW E65 026209
assumes the valuesl2521.25 (a53) andl2520.84 (a
50.9)#.

The systems with only homoclinic tangencies, such as
Hénon map and the Ikeda map, differ from these in th
homoclinic tangencies give rise to a noise amplificat
mechanism, which leads to factorsc of c'25 for the Hénon
map and ofc'5 – 10 for the Ikeda map. In the latter cas
the Hausdorff distance does not fully catch the effect
noise. The attractor is elongated at the homoclinic tange
points with much larger noise amplification factors than
but due to the curvature of these attractor arms, they rem
in the neighborhood of the noise-free attractor. A side rem
is that despite extensive numerical simulations, the sca
regimedhausd}e1/D1 postulated in Ref.@9# was not reproduc-
ible in our experiments.

It is clearly seen that when both unstable dimension v
ability and tangencies are present~7!, the tangency effects
are the dominant ones. The Hausdorff distances have t
compared to those of the cat-map drivenz dynamics, Eq.~4!.
In summary, Fig. 7 presents a very surprising result: Non
perbolic attractors with homoclinic tangencies are trem
dously more sensitive against noise than attractors with o

FIG. 7. Hausdorff distancesdHausd vs the noise amplitudee.
Panel~a! hyperbolic systems and systems with only dimension v
ability, Eq. ~4! with a50.9 and witha53, and the double rotor
map. Panel~b! systems with homoclinic tangencies, the He´non
map, the Ikeda map, and Eq.~7! with a53. The dashed lines indi
catedHausd5e in both panels.
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dimension variability. The latter are as robust against no
as hyperbolic sets.

IV. DISCUSSION

An important topic in the study of chaotic systems
whether numerical trajectories generated by computers
be shadowed by true ones@1,6,7#. The focus of this paper is
on the behavior of trajectories of nonhyperbolic chaotic s
tems under experimentally relevant noise levels, rather t
just numerical round-off errors. At these noise levels the c
culation of shadowing lengths and distance is cumberso
@1#. We investigate how theentirenoisy attractor is modified
compared to the deterministic one. Specifically, we addr
how the Hausdorff distance between the noisy attractor
the deterministic one behaves when the sources of nonhy
bolicity are unstable dimension variability, homoclinic ta
gencies, and both.

While nonhyperbolic systems with unstable dimensi
variability are strongly not shadowable, paradoxically t
noisy attractor tends to stay close to the deterministic on
the sense that the Hausdorff distance grows linearly with
noise level with a noise amplification factor smaller th
unity. In contrast to that, systems with homoclinic tangenc
with much less severe lack of shadowability have noise a
plification factors much larger than unity. When a nonhyp
bolic system has both unstable dimension variability and t
gencies, the effect of tangencies is dominant. These res
imply that although unstable dimension variability has a s
nificantly detrimental effect on shadowing, its presen
causes the minimal possible effect on the global structure
the attractor under noise.

Similar issues as discussed here have also been addr
in the mathematical literature. For the case of mere round
errors~i.e., modified deterministic dynamics!, the Hausdorff
distance has been shown to grow linearly ine as stated by
Eq. ~3!, wheree here is related to the magnitude of the pe
turbation of the system introduced by the discretiazation.
derive these results, essentially the global attractivenes
the attractor has been used, and the internal structure~in
particular, whether the attractor is a hyperbolic set or not! is
irrelevant for the proof. Hence, the essential prefactorc that
is in the focus of our interest is not investigated. Rec
extensions reported in Ref.@19# seem to indicate that thes
results also hold for stochastic perturbations. The conditi
to be fulfilled by the dynamics such that the results of Re
@18#, @19# hold are restrictive and examples are yet missi
so that altogether there is still a huge gap in between
essentially numerical and the mathematically rigourous
sults.
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