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Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors
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Chaotic attractors arising in physical systems are often nonhyperbolic. We compare two sources of nonhy-
perbolicity: (1) tangencies between stable and unstable manifolds(Znthstable dimension variability. We
study the effects of noise on chaotic attractors with these nonhyperbolic behaviors by investigating the scaling
laws for the Hausdorff distance between the noisy and the deterministic attractors. Whereas in the presence of
tangencies, interactive noise yields attractor deformations, attractors with only dimension variability are robust,
despite the fact that shadowing is grossly violated.
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[. INTRODUCTION tions are typically nonhyperbolic. Two distinct types of non-
hyperbolicity are frequently observedi) tangencies be-

In the study and applications of the ergodic theory oftween stable and unstable manifolds an@) unstable
chaotic attractors in deterministic dynamical systems, the efdimension variability. In the former case, there exists a dense
fect of noise is an issue of paramount importance. In laboraset of points in the phase space at which the stable and un-
tory experiments and in numerical simulations of chaoticstable eigendirections are indistinguishatangencies
systems, the deterministic time evolution is rarely observedince the shadowing of a noisy trajectory relies on the exis-
in the deterministic sense, because of the presence of inewvience of distinct stable and unstable directipfistangencies
table environmental noise or computer round off and theitbetween the stable and unstable manifolds render impossible
interplay with the underlying dynamical process. Whereasndefinite shadowing. However, shadowing of noisy trajecto-
computer round off yields a perturbed deterministic dynam+ies for a finite amount of time can still be expected insofar
ics, experimental systems must be consideredi@adinear as the trajectory stays away from any tangency point. For
stochastic processesvith however small is the stochastic low-dimensional chaotic systentsystems with only one un-
component in comparison with the other factors governingstable directionthat have quadratic tangencies, the shadow-
the time evolution of the system. Thilynamicalor interac-  ing timeT(e) scales algebraically with the noise amplitude
tive noise interferes with the deterministic part of the dynam-asT(e) ~ e~ Y2[1]. Thus, if the noise level is small, shadow-
ics and, as many studies shd®;2], this type of noise can ing can still be expected for a reasonable amount of time.
have considerable effects that are much more severe than jushe problem of shadowing for systems with unstable dimen-
reducing the information about the current state of the syssion variability[5] can, however, be extremely sev¢f7].
tems as in the case ofheasuremenor observational noise For such a system, there is no continuous splitting of the
[3]. Because of the sensitivity on initial conditions exhibited stable and unstable directions along a trajectory. As a result,
by chaotic systems, which causes an exponential divergendbe shadowing times can be very shigff. Despite this fun-
of nearby trajectories, the correlation between the noisy tradamental difficulty in shadowing, it was recently pointed out
jectory and the deterministic one having the same initial conthat for certain chaotic systems, apparently statistical quanti-
ditions decay generally rapidly in time. ties such as various dynamical invariants can still be ob-

However, in hyperbolic chaotic systems, in which thetained through physical or numerical experiments of such
phase space is locally spanned by a fixed numbelistinct  systemd8].
stable and unstable directions that are transported consis- While the issue of shadowing is concerned with indi-
tently under the dynamics, the effect of noise is not so severeidual trajectories, it is often more relevant to study the de-
in the following sense. While a noisy trajectory diverges ex-pendence of the invariant measure and of the set in phase
ponentially from the true one with the same initial condition, space supporting this measure on the noise level. The effect
typically there exists a true trajectory, with a slightly differ- of noise on the global structures of nonhyperbolic attractors
ent initial condition, that stays close to the noisy one. That iswith tangencies has recently been investig@®#]. The aim
for a hyperbolic system, an experimentally or numericallyof this paper is to address how noise affects chaotic attractors
obtained trajectory is typically shadowed, within a small dis-with either or both sources of nonhyperbolicity. In particular,
tance in the phase space, by a true trajectory of the ideaih order to measure how a chaotic attractor is geometrically
physical system, a desirable fact that is mathematically guadeformed by noise, we utilize the Hausdorff distarizebe
anteed by the shadowing lemma due to Anosov and Bowedefined in Sec. )Ibetween attractors with and without noise
[4]. [10], and investigate how the distance scales with the noise

Nonetheless, chaotic attractors arising in physical situaamplitude. Our principal and very surprising result is that,
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while noise can significantly influence the global structuresany experimental trajectory,qis. are typically found at a
of nonhyperbolic attractors with tangenciébe Hausdorff  distancee away from all true trajectories. When the trajec-
distance increases algebraically with the noise level with aory visits the neighborhood of the second fixed point with
large constant of proportionalityits effect on attractors with  two unstable directions, the small distance betwegp.and
unstable dimension variability seems to be negligible in they|| true trajectories increases exponentially along tiesv
sense that it is as weak as on hyperbolic attractors. We shalihstable direction at a rate determined by the average ex-
present general arguments and detailed numerical results fganding eigenvalue associated with this direction. Thus,
two systems with unstable dimension variability. In chaoticwhenever this happens, the noisy trajectory immediately di-
systems with both tangencies and unstable dimension vanrerges exponentially from the true ones. For a chaotic set
ability, the attractor deformation due tangencies is the domiwith unstable dimension variability, this is by no means a
nating effect. rare phenomenon. In fact, each single set of unstable periodic
The remainder of the paper is organized as follows. Inoints with given numbers of unstable directions is believed
Sec. II, we describe unstable dimension variability, define théo bedensen the chaotic set, substantially reducing the time
Hausdorff distance, and discuss how it should scale for difa noisy trajectory can be expected to remain close to any true
ferent types of nonhyperbolic attractors. In Sec. lll, we con-rajectory of the system.
struct a class of numerical systems to address the scaling To characterize the effect of noise on nonhyperbolic cha-
issue. A discussion including reference to the mathematicadtic attractors, we utilize the concept of Hausdorff distance
literature is presented in Sec. IV. that measures the distance between two sets Al denote
the noisy attractor ang be the noiseless attractor. The dis-
tance between a pointe X’ and the noiseless attractor is

II. UNSTABLE DIMENSION VARIABILITY AND NOISE defined to be:

SCALING OF THE HAUSDORFF DISTANCE

Consider arN-dimensional mapx, . ;=F(x,,p), where dmin(X, ) = min{[[x—y],y € I}, (1)
x,e RN andp is a system parameter. We focus on paramete
regimes in which the ergodic invariant set is a chaotic attrac:
tor. The set is hyperbolic if the following three conditions are
met[11) o _ Ahausd X, ) =max{dpin( X, 1) x € A 2

(1) At each point in the set, the tangent space can be split
into an expanding subspace and a contracting subspace. DiEhe Hausdorff distance between the two sets is defined as
tances in the expandingontracting subspace growshrink)
exponentially in time on average. D =max dyausd X, 1), Adausd X, I)}-

(2) The angle between the stable and the unstable sub- . —
spaces is bounded away from zero. t?n the following, we will discuss set&’ that are blown up

(3) The expanding subspace evolves into the expandmversmns of the set¥. Hence the distand@ will be given by

one along a typical trajectory and the same is true for th € value Ofdyausd X,)), SINCe diaysd V) =0 in these
contracting subspace. cases. . _ . L
Violation of condition(2) leads to nonhyperbolicity with tan- In order to be useful, this definition contains the implicit
gencies, which occurs commonly in low-dimensional chaotic. assumption that the largest valdg;, is finite. In a situation
systems with only one unstable direction. Nonhyperbollcny'nvo'\"ng Gaussian noise, this is not guaranteed. But even if

with unstable dimension variability is caused by the vioIationdHaUSdIS finite, the actual value afHausdcomputeq on dinite
of condition (3), which can occur in chaotic systems with sample of the set’ depends strongly on the realization of the

more than one unstable or more than one stable direction. | ample, since it is solely determined by the sampling of the

high dimensions, commonly there are systems that violate all” of the distribution of dw;,. Hence, in order to derive
both conditions(2) and (3). Statistically robust numbers for finite samples, we define
For nonhyperbolic systems with tangencies, the shadowdausaby the smallest value such that not more thapoints
ing time can still be large in the presence of small noisepf the finite sett have a distancd,,, larger thand,sq(this
because of the algebraic scaling of the tifi¢ For nonhy- is a biased but consistent estimator of the Hausdorff distance
perbolic systems with unstable dimension variability, thewith a reasonably small variance flr= 10).
shadowing time can be oppressively snidl. This can be For nonhyperbolic chaotic attractors with tangencies, a
understood by considering a simple ergodic invariant setrajectory typically wanders in hyperbolic regions until a ho-
containing two unstable fixed points: one with a single localmoclinic tangency is encountered. If one considers an en-
unstable direction and one with two local unstable directionsemble of noisy trajectories, they are systematically driven
[12]. Trajectories wandering in the invariant set can spendut of the neighborhood of the attractonly at the ho-
arbitrarily long times near each point. Imagine a ball of ini- moclinic tangencies. At a tangency, a prolongation of the
tial conditions starting near the fixed point with the single structure of the attractor can be observed, which depends on
unstable direction. Under the dynamics, the complement othe noise level and the local expansion rate near the tangency
the unstable direction is contracting, so the ball of true tra{2]. When the noisy trajectory is located in the hyperbolic
jectories will be squeezed into a very thin line along theregion of the attractor, it is generally pushed back to the
unstable direction. Due to noise of amplitudepoints on  attractor. Quantitatively, the Hausdorff distance was pro-

{vhere||- -|| is the Euclidean distance between the poinésd
y. We call a Hausdorff pseudodistance from &g&to set)
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posed in Ref.[9] to scale with the noise amplitude as where linear stability analysis governs the growth of pertur-
dhausd €) ~ €P1, whereD is the information dimension. In  bations. Although nowhere any direction transverse to the
contradiction to this scaling law, Ref2] and the numerics attractor is linearly expanding, due to the degeneracy of the

presented below suggest the simpler scaling law manifolds at tangency points, one tangent space direction is
not governed by linear stability analysis at all. Nonlinear
dyausd €)=Ce, (3)  effects are then dominant already for vanishing noise levels

and lead to noise amplification.

which also holds trivially for hyperbolic systems. Compare If the direction responsible for unstable dimension vari-

also Sec. IV for a mathematical assertion for the genera"f‘b'“ty g.arrnzs. a posm\ll_le Lyapurr:ov exponent, 'ft 'rs] a'globz_;llly
validity of Eq. (3). expanding direction. Hence, the projection of the invariant

The important finding of Ref[2] is that the factor of measure onto this direction is continuous and insensitive to

proportionality ¢ in Eq. (3) can be huge, as will also be ">
confirmed in Sec. Ill. Since the main contribution to the, " all cases, dynamical noise makes attractors slightly

Hausdorff distance comes from the primary tangency pointéuzzy’ i.e., fractal structure and attractor boundaries are

(tangencies with the smallest curvatuead their immediate slightly blurred. This effect exists also for strictly hyperbolic

. : . o .~ .~ systems and is comparable to measurement noise. It intro-
images, for a noisy trajectory of finite Iengmthe scaling 'S duces a Hausdorff distance between the noise free and the
observable fore=e.~1/T%, wherea~2 if the tangency is

quadratic. For two-dimensional maps, such as thedre noisy attractor that is proportional to the noise level as in Eq.

manb with neaative Jacobian. the primary tangenc ointéS)’ but with a factor of proportionalitg, which is less than
P 9 ’ P Y gency p unity and that is determined by the weakest contracting di-

typically are located at the outmost boundary of the Closurerection that is not filled continuouslyi.e., the one in the
of the attractor.

For attractors with unstable dimension variability as theKaplan Yorke formula that contributes as a fracliomhis

sole source of nonhyperbolicity, the shadowability of nois should be contrasted with a hugesalue in the case of ho-
. S YPErLOTIcity, . y Ymoclinic tangencies. For nonhyperbolic attractors with both
trajectories is severely limited. One might hence expect to . . o .
; . u?stable dimension variability and tangencies, we thus ex-
see also considerable differences between the attractors 0

noise-free systems and noise-driven systems. However pect the effect of tangencies to dominate in the sense that the

closer investigation of the structure of the stable and unstabl?ﬁ#sst:ﬁ;ﬁo?';:gggﬁiggglﬁl the scaling in E8). with a large

manifolds suggests that the global features of the attractor The finiteness of the sample representing the noise-free

remain almost _unaffected_ by noise. The he_urlstlg argumentgttractor introduces a minimal Hausdorff distance. This can
In support (.)f this will be_g|ven below, and will b_e |||u_strated be obtained numerically by the computation of the distance
in detail using a dynamical system introduced in this paperb{atween two different noise-free samples of the same attrac-

noi';gr J\?eeh(zi/rgigag;gtri]notﬁgﬁ #;ﬁep::iﬁg tr\?v?)ucsgs]gzsina\?v?]lirc] or. Only if the noise induced effects are larger than this finite
' 9 sample effect, the scaling laws can be seen.

the direction corresponding to the fluctuating Lyapunov ex- Hence, in the numerics presented below, two scaling re-

onent is either expanding on average or contracting on av-. . . . ;
P P 9 9 9 gimes arise. At small noise levels, the Hausdorff distance is

erage. In the latter case, i.e., if the Lyapunov exponent; . “—. d d At | e level b
whose finite time average has fluctuating sigih (which is hoise independent. At large noise levels, we expect to ob-
serve the scaling of Ed3) for the system with homoclinic

responsible for the unstable dimension variabjlitg nega- tangencies. For hyperbolic systems or systems with unstable

tive, t_he periodic points with more than the average unStabI(lniiimension variability, we expect also a crossover to a regime
directions are typically embedded deep inside in the closure

! ; Where the Hausdorff distance is proportional to the noise

of the attractor. The set of points forming the attractor : .
L level, but only at much larger noise levels corresponding to
boundary has no more unstable directions than there arg
I smallc.

positive Lyapunov exponents. If the converse were true, thé
boundary could not be a boundary of an attradtbcould
only, e.g., be the boundary of a repelléffo recall, the natu- Iil. MODEL SYSTEMS AND NUMERICAL RESULTS
ral invariant measures on attractors are such that the expand- A  Model systems with unstable dimension variability
ing directions are filled in a continuous way, hence, all direc-
tions transverse to the attractor boundary have to be linearly. o
attracting. As a consequence, low amplitude noise canncton variability,
take a trajectory away from the attractor. This argument also

holds for attractors with homoclinic tangencies everywhere

As a first model system, we introduce a model for dimen-
namely,

Xn+1= 2Xp+3y,mod(1),

Yn+1=3Xp+5y,mod1),

This argument does not apply if the chaotic attractor is confined >
to an invariant s_ubspace. For such situations_ noise effects k_ngw_n as zn+1=—arctar{ E[Zn+sin( 2mx,— 27yt (4
“attractor bubbling”[15] can occur, where noisy and deterministic T 2
attractors can be very different. However, symmetry and invariance
of subspaces are structually unstable phenomena that we excludewhere Xx=(x,y) obeys the hyperbolic two-dimensional cat
our discussion. map, andea is a parameter that can be adjusted to produce
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FIG. 2. Attractor(doty of Eq. (4) projected into théx-2) plane
FIG. 1. Bifurcation diagram of coordinates of Eq(4) of the ~ for a=2. The fixed points are shown by filled circle®).

two fixed points with thex,y) coordinates2/5,1/5, (3/5,4/5. Thez
coordinates of the two other fixed points are obtained+sy—z. to the singly unstable orbits, trecomponent of whose tan-

gent space being stable. Thecoordinatezy of the doubly
unstable dimension variability. The cat map has five saddleinstable orbit fulfills z_<z4<z,. Moreover, a one-
fixed points: xo=(0,0), x,=(2/5,1/5), x,=(3/5,4/5), X3  dimensional subspace of the unstable manifold of the doubly
=(1/5,3/5), andk,= (4/5,2/5) with eigenvalues of the Jaco- unstable orbit is identical with one direction of the stable
bians (7+34/5)/2. Each of them gives rise to at least onemanifold of the singly unstable orbits, and this homoclinic
and at most three fixed points of the full three-dimensionabrbit is given by the corresponding line connecting the two
system. Fora<<1, a single fixed point with two stable and types of orbits. This proves, for this particular system, how
one unstable direction is created from every saddle point othe second unstable direction can be such that on the average
the cat map, as can be easily verified. &t 1, the fixed the corresponding Lyapunov exponent is negative, and how
point (0,0,0 undergoes a pitchfork bifurcation, where the the attractor boundary can be in fact linearly attracting.
point (0,0,0 gains a second unstable direction, and whereHence, no noise amplification mechanism outside the attrac-
two new fixed points (0,@y) and (0,0;-z,) are born, both tor is present. Internally, however, the doubly unstable peri-
with one unstable and two stable directions.a&t1.45 and  odic orbits form a kind of local separatrix, since initial con-
a~2.25, also the first and the second, respectively, pair oflitions with identical(x,y) coordinates converge to either the
the remaining four fixed points undergo subcritical tangentz,. or thez_ orbit, depending on whether the initialvalue
bifurcations, i.e., in addition to the existing singly unstablewas larger or smaller than the correspondigg This is rel-
fixed point, a pair of one singly and one doubly unstableevant for the understanding of the lack of shadowing in this
fixed point is formed(see Fig. 1L Hence, fora>2.25, the = map, which will be discussed elsewhere in detail. The gen-
full three-dimensional system, E), has 15 fixed points. eral lack of shadowability of systems with dimension vari-
Their locations X, ,Y, ,Z,) in the phase space, whezg is  ability was studied in Ref.7].

the solution of 2z, =2/7arctafan/2z, +sin(2mx, Another, physically motivated, system that is known to
—2my,)]}, depend orx, , y, , anda. The eigenvalues of the possess dimension variability is the double rotor nh@p
Jacobians of each fixed point arex3+/5)/2 and This is a four-dimensional invertible map. For our numerical

simulations below, we employ the parameter settings of Ref.
2 [13] with f=8 (see also Ref.8]).

+1

aT .
a/ ([7[2* +sin(2mX, — 27y, )]
B. Systems with homoclinic tangencies

These 12 fixed points, together with the projection of the The Heon map is a paradigm of a system with ho-

chaotic attractor in thex,2) plane, are shown in Fig. 2. moclinic tangencies, which was used to investigate many of
In a similar way, every period orbit of the cat map gives  ihe particularities that depend on this fact, such as the cre-

rise to either a single perioal orbit of the full system, or to  ation of a generating partition and the effects of ngisé 2]
a triple of periodp orbits, one of which is doubly unstable,

the two others being singly unstable. The larger the param- (Xn+1,Yn+1)=(a—X§+ by,,x,) with a=1.4, b=0.3.
eter « is, the larger is the number of orbits that have bifur- (5)
cated. It seems that there are no other bifurcations than these,

such that in the limit of very large, the system has a triplet

of orbits for every orbit of the cat map. The feature that is The Ikeda majj16]

relevant for the understanding of the robustness of the attrac-

tor against noise is the following: for every periodic point . . 6i
(x,y) of the cat map, the points of the orbits of the full system ~ n+1~ 1+0.92,exp 0.4 1+|z,]?)" ZniZni1€C
with largest g, ) and with smallesz component£_) belong (6)
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FIG. 4. Minimum distance® between a chaotic trajectory of
lengthN of Eq. (7) and the fixed point®, (long-dashed ling P,
(solid line), and P5 (dotted ling on a logarithmic scale. A linear
regression gives the following pointwise dimensiofi¥;~1.62,
2.90, and 1.66 foP,, P,, andP3, respectively.

The Henon map has two fixed points, one of thexg,=y,

=(b—1+(b—1)?+4a)/2a, is on the chaotic attractor.

S The z dynamics, Eq(7), possesses, far<1, the only fixed
T e (b) . pointz, =0. At =1 it undergoes a pitchfork bifurcation, so

05 o 1 - that for a>1 the following three fixed points exist?;

. ' =X Yx 7 2Zi), P2=(Xy,Y4,0), and P3=(X, Y4 ,Z4),

wherez, denotes the nonzero solutions of

N ofFf ® _
- 2 ¢ aT
z,=—arctan —-z, |.
-0.5 - N L - o 2
i i RIS All these fixed points possess the following two common
7Lea7s 88388 058398 eigenvalues:\q, A\,=—X,=* \/x*2 .+0.3, with _magnltudes .
X larger and less than one, respectively. The third eigenvalue is

FIG. 3. (a) Attractor of Eg. (7) for «=3 in the three- o
dimensional phase spacg) Projection of the attractor into thg,2 )\3:[(a7rz /2)2+1)] , for P, and Pj, (8
plane. The three fixed points are shown by filled cir¢@®s. *

- . . Nz=«a, for P,.
possesses homoclinic tangencies as W&ll Since both 3T 2

maps are two-dimensional and invertible, dimension varitn,s fora>1. we havelhg|>1 for P, and\s<1 for P,

ability is trivially excluded. and P;. That is, the fixed point$,; and P; have one un-
stable direction whild®, has two. Figure @) and 3b) show
C. System with both types of nonhyperbolicity the chaotic attractor, together with the locations of the three

Finally, we construct a system that has both types of viofixed points, in the three-dimensional phase space and in the

lation of hyperbolicity, homoclinic tangencies, and dimen- (%2 Plane, respectively. In order to be confident that the
sion variability. Although it seems that this is the generaltr€€ fixed points are embedded in the chaotic attractor, we
case for hyperchaotic maps and flows, we verify this for oulcOMPUte 6, the smallest distance between a trajectory of
model system. We replace the cat-map dynamics in(&q. length N and the fixed points. If a fixed poirR is indeed

by the Haon map. For additional simplicity, we can relax embedded in the attractor, then the distance decreases alge-
the invariance condition of the dynamics inx—y—x—y  Praically asN is increased, as followsL7]:

+1 and hence arrive at the system: 5~N—1ou(P), ©)

Xns1=1—axi+by,, _ o _ _ _
whereD ,(P) is the pointwise dimension of the fixed point.

Figure 4 shows the scaling &f with N for the three fixed

Yn+1=Xn, points. A linear regression giveés,~1.62, 2.90, and 1.66 for
P., P,, andP3, respectively. The apparent algebraic scaling
, =Earcta ﬂ(z_ ﬂ) 7) behavior indicates that the fixed points are embedded in the
1T g 2 2 /) attractor. Moreover, the values of the pointwise dimension
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FIG. 5. (a) Lyapunov spectrum of Eq7) vs the parametex. (b) min
The variances in the secorigolid line) and the third(dotted ling FIG. 6. Distribution ofd, . for (a) Eq. (7) for a=3, and(b) for
Lyapunov exponents. The variances are computed from 20 traje%q. (4) with a=2. The solriT&nand dotted lines corre’spond t0 noise
tories of length 5<10° each.(c) The minimum distances between amplitude ofe=10"* and 4x 102, respectively. The distributions

a chaotic trajectc_)ry of length f0with the f|>_<ed pointsP; (solid are obtained by accumulating®l1@alues ofd y;, from 1 points on

line), P (dotted ling, andPs (long dashed line the noisy attractor and each value ayf;, is computed using F0
points on the noiseless attractor.

suggest that the attractor is one-dimensionally unstable near

P, and P5; and it is two-dimensionally unstable neBs. tween a point on the noisy attractor and a long trajectory in
Since unstable dimension variability occurs throughout thehe noiseless attractor, as shown in Figs) @nd b) for Eq.
attractor, generally we expect periodic orbits of higher peri<(7) and Eq.(4), respectively.
ods to exhibit a similar behavior. Figure 7 shows, on a logarithmic scale, the Hausdorff

To better assess the degree of unstable dimension variabilistanced,,,sqVs € for all the models introduced before. For
ity, we investigate the fluctuations of the finite-time each value ofe, dyausqiS Obtained by utilizing at least 10
Lyapunov exponent$5]. Figure %a) shows the Lyapunov points representing the noise-free attractor and at ledst 10
spectrum of Eq(7) as a function ofa. Apparently, the two points for the noisy trajectoryfor some of the three- and
exponents from the H®n map remain constant, and only four-dimensional systems, up to ®lpoints were used For
one Lyapunov exponent, originated from thequation, var-  all systems, the: dependence is absent if the noise-induced
ies with a. Figure 8b) shows the variance of the second distance is smaller than the distance between two indepen-
(solid line) and the third dotted ling Lyapunov exponents vs dent finite samples of the noise-free attractor, as explained
« computed from 20 trajectories of length®0° each. Fig-  before. This value is system specific and depends on the
ure 5c) shows the minimum distances between a trajectorydynamical range of the variables, on the dimensionality of
of length 16 and the three fixed points v In the param- the attractor, and on th@r)regularity of the invariant mea-
eter range: 28 a=<6.3 where §~0 and, apparently, all sure, since it is dominated by the largest interpoint distances
three fixed points are embedded in the attractor, there is an the sparsely populated regions of the attractor.
appreciable fluctuation of the second Lyapunov exponent. Apparently, with only unstable dimension variabil(tq.
Thus, in this parameter interval, there is a suggestion of per4) and the double rotor mapoutside this plateaudya,sq
sistent unstable dimension variability. ~ce with a factorc bounded by unity. The same holds, as
expected, for the hyperbolic case of Ed), when for «
=0.9 thez direction is contracting everywhere. For Hd)
and «=3 one observex~0.01, whereas fora=0.9 ¢

We can now study the scaling of the Hausdorff distance=0.05. This is consistent with the fact that both the
with noise. To simulate noise, we add a random variable with_yapunov exponent corresponding to thdirection, as also
a uniform distribution i —e, €] to every dynamical variable the local expansion rates on the attractor boundary, are much
before every iteration of the maps. Thus, we expect to obsmaller fora=3 than for«=0.9, despite the presence or
serve a wide distribution od,;,, the minimum distance be- lack of dimension variabilitythe second Lyapunov exponent

D. Scaling of the Hausdorff distance
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.l ' T ' ' ' i dimension variability. The latter are as robust against noise
s as hyperbolic sets.

*7
.

0.1 ¢ IV. DISCUSSION

An important topic in the study of chaotic systems is
whether numerical trajectories generated by computers can
p be shadowed by true ongs,6,7]. The focus of this paper is
0.001 ¢ /" Eq. (4), 0=0.9 —— 1 on the behavior of trajectories of nonhyperbolic chaotic sys-
(a) g qu. (t4), a=3 e tems under experimentally relevant noise levels, rather than

ouble rotor ma@ _______ just numerical round-off errors. At these noise levels the cal-
0'000110-5 10'_5 10’:4 1(‘)_3 1(‘)_2 1(')_1 1 culation of shadowing lengths and distance is cumbersome
[1]. We investigate how thentire noisy attractor is modified
€ compared to the deterministic one. Specifically, we address
how the Hausdorff distance between the noisy attractor and
p the deterministic one behaves when the sources of nonhyper-
(b) A bolicity are unstable dimension variability, homoclinic tan-
01 L P ] gencies, and both.
ol While nonhyperbolic systems with unstable dimension
4 variability are strongly not shadowable, paradoxically the
noisy attractor tends to stay close to the deterministic one in
the sense that the Hausdorff distance grows linearly with the
noise level with a noise amplification factor smaller than
~ S /’,'_":ﬁgﬁ mgg Eg: gg; ] unity. In contrast to that, systems with homoclinic tangencies
fosenesemseensl new map Eq. (7) - with much less severe lack of shadowability have noise am-
0.0001 , S , LB plification factors much larger than unity. When a nonhyper-
108 105 104 10°% 102 107 1 bolic system has both unstable dimension variability and tan-

g gencies, the effect of tangencies is dominant. These results
imply that although unstable dimension variability has a sig-
nificantly detrimental effect on shadowing, its presence
causes the minimal possible effect on the global structure of
the attractor under noise.

Similar issues as discussed here have also been addressed
in the mathematical literature. For the case of mere round-off
errors(i.e., modified deterministic dynamigshe Hausdorff
assumes the values,= —1.25 (@=3) and\,=—0.84 («  distance has been shown to grow linearlyeims stated by
=0.9)]. Eq. (3), wheree here is related to the magnitude of the per-

The Systems W|th 0n|y homoc”nic tangencieS, SUCh as thélrbation Of the SyStem introduced by the discretiazation. To
Henon map and the Ikeda map, differ from these in thatderive these results, essentially the global attractiveness of
homoclinic tangencies give rise to a noise amplificationthe attractor has been used, and the internal strudfore
mechanism, which leads to factarsf c~25 for the Hmon ~ particular, whether the attractor is a hyperbolic set o) feot
map and ofc~5-10 for the Ikeda map. In the latter case, irrelevant for the proof. Hence, the essential prefactat
the Hausdorff distance does not fully catch the effect ofiS in the focus of our interest is not investigated. Recent
noise. The attractor is elongated at the homoclinic tangenc§Xtensions reported in Reffl9] seem to indicate that these
points with much larger noise amplification factors than 5,/esults also hold for stochastic perturbations. The conditions
but due to the curvature of these attractor arms, they remai9 be fulfilled by the dynamics such that the results of Refs.
in the neighborhood of the noise-free attractor. A side remark18l, [19] hold are restrictive and examples are yet missing,
is that despite extensive numerical simulations, the scalin§® that altogether there is still a huge gap in between our
regimed,,s¢ €*P1 postulated in Ref{9] was not reproduc- essentially numerical and the mathematically rigourous re-

ible in our experiments. sults.
It is clearly seen that when both unstable dimension vari-
ability and tangencies are presdi), the tangency effects
are the dominant ones. The Hausdorff distances have to be ACKNOWLEDGMENTS
compared to those of the cat-map drivedynamics, Eq(4).
In summary, Fig. 7 presents a very surprising result: Nonhy- A.P. and Y.C.L. were supported by AFOSR under Grant
perbolic attractors with homoclinic tangencies are tremenNo. F49620-98-1-0400. C.G. was supported by CNPq and
dously more sensitive against noise than attractors with onlfFAPESP.

0.01

dHausdorf'f

0.01 |

<jHausdorf'f

0.001 |

FIG. 7. Hausdorff distanced,,sq VS the noise amplitude.
Panel(a) hyperbolic systems and systems with only dimension vari-
ability, Eq. (4) with «=0.9 and witha=3, and the double rotor
map. Panel(b) systems with homoclinic tangencies, the nda
map, the lkeda map, and E() with «=3. The dashed lines indi-
catedysq € in both panels.
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