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Experimental observation of generalized time-lagged chaotic synchronization
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We investigate, experimentally, synchronization in coupled chaotic oscillators in the presence of large
parameter mismatches and identify a different phenomenon: generalized time-lagged synchronization. Specifi-
cally, we find that there can be a functional relation between time-lagged dynamical variables of the coupled
oscillators in wide parameter regimes.
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Synchronization in chaotic systems was first described
Ref. @1#, but the phenomenon did not attract much attenti
until the pioneering work by Pecora and Carroll in 1990@2#.
Chaotic systems are characterized by a sensitive depend
on initial conditions, and indeed, synchronization betwe
even identical chaotic systems is an intriguing problem. F
a system of two coupled chaotic oscillators:dx/dt5f(x,y)
anddy/dt5g(x,y), wherex andy are phase-space variable
of the two systems, respectively, andf andg are the corre-
sponding nonlinear velocity fields, synchronization in a d
rect sense means the following:ux(t)2y(t)u→0 as t→`.
Typically, synchronization can occur in the followinggener-
alized sense@3#: y(t)5h@x(t)#, whereh represents a func-
tional relation betweenx and y. When the coupled chaotic
oscillators are only slightly nonidentical, i.e.,f'g, phenom-
ena can arise such as phase synchronization in which
chaotic rotations of the coupled oscillators tend to follo
each other, and time-lagged synchronization@4,5# in which
dynamical variables of the oscillators evolve in an appro
mately identical manner but with a fixed time delay.

The focus of this paper is on time-lagged chaotic synch
nization. Existing works in this direction have been excl
sively on coupled, nearly identical nonlinear oscillators th
generate simple, single-scroll type of chaotic attractors
which proper rotations can be defined in the phase sp
@5–8#. In such a setting, time-lagged synchronization occ
in a direct sense, as follows:y(t)'x(t1t), wheretÞ0 is
the lag time. The purpose of this paper is to address, exp
mentally, the question of whether time-lagged synchroni
tion can occur when there is a large parameter mismatch
when the structure of the chaotic attractor is more comp
cated ~e.g., double-scroll chaotic oscillator!. We utilize
coupled chaotic electronic circuits with significant parame
mismatch and find lag synchronization in the following ge
eralized sense:

y~ t !'H@x~ t1t!#, ~1!

whereH is a function~not necessarily smooth!. This result is
different in the sense that it extends and generalizes the
tion of chaotic time-lagged synchronization, which can
potentially useful for applications such as anticipation
chaotic synchronization@9#, and consequently, forecasts o
chaotic states.
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To motivate our experimental investigation, we briefly de
scribe the mechanism of time-lagged chaotic synchronizati
in coupled, slightly nonidentical chaotic oscillators@5#. Con-
sider the following system of two coupled Ro¨ssler@10# os-
cillators utilized in Ref.@5# to first report chaotic lag syn-
chronization: dx1,2/dt52v1,2y1,22z1,21e(x2,12x1,2),
dy1,2/dt5v1,2x1,210.165y1,2, and dz1,2/dt50.21z1,2(x1,2
210.0), wherev1Þv2 but v1'v2'1.0. Each oscillator
produces a single-scroll chaotic attractor with a unique cen
of rotation, due to a well defined rotational structure embe
ded in the attractor, which is generated by a harmonic osc
lator: dx̂/dt52v ŷ and dŷ/dt5v x̂, where x̂ and ŷ corre-
spond to the position and velocity of the oscillator
respectively, andv is the frequency of rotation in the (x,y)
plane. The cylindrical coordinate (r ,u,z) can then be utilized
to better characterize the chaotic rotation associated with
ideal harmonic oscillator embedded in the (x,y) equations.
In general, for chaotic rotations, one can writeu1,2(t)
5^v&t1f1,2(t), wheref1,2(t)’s represent chaotic fluctua-
tions and are ‘‘slow’’ phase variables~the ^v&t term repre-
sents the ‘‘fast’’ phase variable!. Averaging out the fast
phase variables in theu1,2 equations, one obtains the follow-
ing equation for Df[f12f2 @5#: dDf/dt'(v12v2)
2(e/2)(r 2 /r 11r 1 /r 2)sin(f12f2). The phase-locking con-
dition dDf/dt50 thus yields the following relation:

f12f2'sin21
2~v12v2!r 1r 2

e~r 1
21r 2

2!
. ~2!

Assuming constant slow phases in ther 1,2 andz1,2 equations
and performing averaging, one obtains four differential equ
tions in (r 1 ,z1) and (r 2 ,z2) that represent a system of two
coupled, periodically driven oscillators, with the following
driving terms for oscillators 1 and 2, respectively:F1,2(t)
;cos(̂v&t1f1,2). If the phase difference of these driving
terms is neglected, the equations in (r 1 ,z1) and (r 2 ,z2) rep-
resent a system of two coupled, identical chaotic oscillato
It is shown in Ref.@5# that the effect of the nonidentical
driving termsF1,2(t) is equivalent to a fixed time lag be-
tween the two oscillators in the sense that, if time-lagge
variables are introduced, say:r̃ 2(t)5r 2(t1t) and z̃2(t)
5z2(t1t), wheret5(f12f2)/^v&, then the equations in
(r 1 ,z1) and (r 2 ,z2) describe the dynamics of two coupled
©2001 The American Physical Society05-1
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identical oscillators driven by the same force. Time-lagg
synchronizationr 1(t)' r̃ 2(t) and z1(t)' z̃2(t), is thus ex-
pected. For small parameter mismatch, Eq.~2! yields f1
2f2'constant;(v12v2), so that an approximately con
stant lag timet is expected.

The above heuristic analysis@5# for chaotic time-lagged
synchronization is valid under the following two assum
tions: ~1! the chaotic oscillator is of the Ro¨ssler-type, which
possesses a well defined structure of rotation~so that a cy-
lindrical coordinate can be employed for theoretically pr
dicting time-lagged synchronization!, and ~2! the mismatch
between the oscillators is small so that a constant lag t
can be ensured. In situations where these two conditions
violated, it is not clear whether time-lagged synchronizati
can be theoretically predicted and analyzed. In what follo
we address this issue experimentally.

Our experimental system consists of two unidirectiona
coupled Chua’s circuits@11#, as shown schematically in Fig
1. The differential equations that describe the circuits are

dx1

dt
5

1

Cb
@G~y12x1!2 f ~x1!#,

dx2

dt
5

1

Cb
@G~y22x2!2 f ~x2!#1

x12x2

Rc
,

dy1,2

dt
5

1

Ca
@G~x1,22y1,2!1z1,2#,

dz1,2

dt
52

1

L
~y1,21R1,2z1,2!, ~3!

FIG. 1. Schematic diagram of the system of pair of unidirectio
ally coupled Chua’s circuits, whereRm can be adjusted to introduce
substantial mismatch between the circuits.
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wherex, y, andz are proportional to the voltages across t
capacitorsCb andCa , and the current through the inducto
L, respectively. The parameters in Eq.~3! are related to those
in the circuit, as follows:G51/R, R15Rm1RL , R25RL ,
and f (x) is a piecewise linear functionf (x)5Gbx1(Ga
2Gb)(ux1Eu2ux2Eu)/2, which is implemented by using
two operational amplifiers~LM387, Harris! and six resistors
@12#. The one-way coupling from circuit 1 to 2 is realized b
an operational amplifier~LM741, Harris! and a resistorRc ,
whereRc controls the coupling strength. All parameters
the two circuits, exceptRm , are set approximately at equa
values. Nonidentity between two circuits is stipulated by u
lizing a nonzero resistanceRm , resulting in a controllable
mismatch betweenR1 and R2 in Eq. ~3!. The circuits are
assembled on a high-quality printed-circuit board, and
whole system is enclosed in an electromagnetic shield
box in order to minimize the influence of environment
noise. The entire system is powered by a low-ripple a
low-noise power supply~HPE3631, HP!. The voltage signals
are recorded by using a 12-bit data acquisition bo
~KPCI3110, Keitley! with a sampling rate two orders o
magnitude higher than the bandwidth of the signals.

We first consider the situation where both circuits, wh
uncoupled, generate Ro¨ssler-type of attractors. This can b
achived by tuning the resistorsR in both the driving and the
response circuits. SettingRm535 V results in a substantia
mismatch~about 64%) between the parametersR1 andR2 in
Eq. ~3!. Figures 2~a! and 2~b! show such attractors, in the
(x,y) plane, from the driving and the response circuits,
spectively. The attractors are apparently distinct due to
large parameter mismatch. A typical example of lag synch
nization is shown in Fig. 2~c! where y1(t) versusy2(t) is
plotted. The ellipselike shape of the plot suggests a tim
lagged relation betweeny1(t) and y2(t) @6#. Figure 2~d!
showsy1(t2tmin) versusy2(t), wheretmin is the time lag
determined by examining a similarity function@5# ~to be de-
scribed below!. We observe that the trace lies in the vicini
of the diagonal line in the@y1(t2tmin),y2(t)# plane, indi-
cating time-lagged synchronization. The ‘‘fattening’’ of th
trace is caused by a systematic difference in the amplitu
of the chaotic rotations of the two attractors, which is due

-

FIG. 2. Rössler-type attractors from the driver~a! and response
~b! circuits for R51.689 kV, Rc5544 V, and Rm535V. ~c!
y1(t) versus y2(t); ~d! y1(t2tmin) versus y2(t), where tmin

511 ms. All measurements are in volts.
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the large parameter mismatch between the two circuits,
by uncontrollable noise in the laboratory.

To quantify the experimentally observed lag synchroni
tion, we make use of the following similarity function@5#:

S~t!5A^@y2~ t1t!2y1~ t !#2&

@^y1
2~ t !&^y2

2~ t !&#1/2
, ~4!

where^d& denotes time average andt is the lag time. Let
tmin be the value oft for which S(t) is minimum and let
Smin[S(tmin). Time-lagged synchronization is characte
ized by the following condition:Smin'0 but tminÞ0. To
estimate Smin and tmin from experimental time series
we use the method described in Ref.@7#, which is to
examine the following cross-spectral densityP12(v)
5*R12(t8)e

2 ivt8dt8, where R12(t8)5^y1(t)y2(t1t8)& is
the cross-correlation function. Writing P12(v)
5A(v)exp@ jF12(v)#, we see that if time-lagged synchron
zation occurs, i.e.,y1(t2tmin)5y2(t), then we have:tmin
5F12(v)/v. The lag time is therefore approximately th
slope of a linear regression of the plot ofF12(v) versusv in
the low-frequency regime@13#. For the circuit setting of
Rössler-like attractors,Smin andtmin versus the coupling re
sistanceRc are shown in Figs. 3~a! and 3~b!, respectively.
We see that forRc&1200 V, the value ofSmin plateaus at
about 0.178, which is the minimally achievable one in e
periments when the similarity measure utilized is defin
with respect to ‘‘direct’’ time-lagged synchronization be
tween the two coupled circuits, as in Eq.~4!. In this pla-
teaued parameter region, the value oftmin keeps decreasing
indicating that the lag times are larger than the minim
value that can be resolved in our experiments. Thus, it can
concluded that we have observed time-lagged synchron
tion, though imperfect, for 0,Rc&1200 V for our coupled
chaotic circuits with over 60% of parameter mismatch.

The remarkable finding is that the synchronization exe
plified by Figs. 2~a!–2~d! can actually be considered as
generalizedtype of time-lagged synchronization, in the sen
of Eq. ~1!. Notice from Fig. 2~d! that the plot of y1(t
2tmin) versusy2(t) appears to lie along an off-diagonal lin

FIG. 3. Smin and tmin versus coupling resistanceRc for R
51.689 kV andRm535 V.
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with a slope slightly different from unity, which suggests th
following generalized relation:y2(t)5h@y1(t2tmin)#, the
scalar version of Eq.~1!. We then define the following mea
sure ofgeneralized similarityfunction:

SG~t!5A^$y2~ t !2h@y1~ t2t!#%2&

@^y1
2~ t !&^y2

2~ t !&#1/2
. ~5!

Performing a simple linear regression betweeny2(t) and
y1(t2tmin), we obtain y2(t)5h@y1(t2tmin)#'0.890y1(t
2tmin)10.043, which, when substituted in Eq.~5!, yields
Smin

G '0.076, which is substantially smaller than the val
obtained from the ‘‘direct’’ similarity measure in Eq.~4!.
One can also test high-order polynomial fittings. For i
stance, a quadratic regression yieldsy2(t)'0.033y1

2(t
2tmin)10.890y1(t2tmin)10.039, resulting in Smin

G

'0.071, which is even smaller than that obtained from
linear regression. At present there exists no systematic
proach for predicting a precise mathematical relation
tween the corresponding time-lagged variables in coup
nonidentical chaotic oscillators. Nonetheless, our sim
computations suggest the existence ofgeneralized time-
lagged synchronization, which to our knowldege, has no
been reported previously.

As our second set of experiments, we consider cha
attractors that are geometrically and topologically more co
plicated than the Ro¨ssler-type ones, in the sense that t
attractors possess multiple centers of rotations. In particu
we adjust one of the key circuit parameters,R, from R
51.689 kV in the previous setting toR51.608 kV, so that
each circuit, when uncoupled, exhibits a double-scroll attr
tor, as shown in Figs. 4~a! and 4~b! for the driving and the
response circuits, respectively. The parameter mismatc
still about 64%. Because of the double-scroll structure of
chaotic attractor, the plot ofy1(t) versusy2(t) consists of,
approximately, two overlapped ellipses, as shown in F
4~c! for Rc5544 V. The plot of time-lag adjusted voltage
y1(t2tmin) versusy2(t) exhibits two approximate line seg
ments in the vicinity of the diagonal, as shown in Fig. 4~d!,
where the estimated value of the lag time istmin'10 ms.
We have thus observed, again, time-lagged synchroniza

FIG. 4. Double-scroll attractors from the driving~a! and re-
sponse ~b! circuits for R51.608 kV, Rc5544 V, and Rm

535 V. ~c! y1(t) versus y2(t); ~d! y1(t2tmin) versus y2(t),
wheretmin510 ms. All measurements are in volts.
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in a generalized form. In this case, however, the functio
relation between the time-lagged dynamical variables is
known. Extensive measurements similar to those in F
3~a! and 3~b! indicate that generalized time-lagged synch
nization occurs when the coupling resistance is below ab
1 kV for the parameter setting in Figs. 4~a!–4~d!.

In summary, we have presented evidence that, w
coupled chaotic oscillators do not possess a proper rotati
structure and when the parameter mismatch between the
substantial, time-lagged synchronization can still occur,
more likely in a generalized form. It remains as an intere
ing question to theoretically analyze this type of synchro
-
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zation, e.g., from the standpoint of the synchronization ma
fold @14,15#. Our experimental investigation suggest
nonetheless, that generalized time-lagged chaotic synchr
zation can be common in coupled, nonidentical chaotic s
tems.
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