RAPID COMMUNICATIONS

Experimental observation of generalized time-lagged chaotic synchronization

PHYSICAL REVIEW E, VOLUME 64, 045208R)

Ligiang Zhu' and Ying-Cheng L&i?
1Department of Electrical Engineering, Center for Systems Science and Engineering Research, Arizona State University,
Tempe, Arizona 85287
’Departments of Mathematics and Physics, Arizona State University, Tempe, Arizona 85287
(Received 11 June 2001; published 26 September)2001

We investigate, experimentally, synchronization in coupled chaotic oscillators in the presence of large
parameter mismatches and identify a different phenomenon: generalized time-lagged synchronization. Specifi-
cally, we find that there can be a functional relation between time-lagged dynamical variables of the coupled
oscillators in wide parameter regimes.
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Synchronization in chaotic systems was first described in  To motivate our experimental investigation, we briefly de-
Ref.[1], but the phenomenon did not attract much attentiorscribe the mechanism of time-lagged chaotic synchronization
until the pioneering work by Pecora and Carroll in 1920 in coupled, slightly nonidentical chaotic oscillat¢eg. Con-
Chaotic systems are characterized by a sensitive dependensider the following system of two coupled &der[10] os-
on initial conditions, and indeed, synchronization betweertillators utilized in Ref.[5] to first report chaotic lag syn-
even identical chaotic systems is an intriguing problem. Forchronization: dxyo/dt=— w1 Y12~ 21 2+ €(X21— X1 9,

a system of two coupled chaotic oscillatodx/dt="f(x,y) dy; /dt=w; X; ,+0.165/; 5, and dz; ,/dt=0.2+2; (X, ,
anddy/dt=g(x,y), wherex andy are phase-space variables —10.0), wherew;# w, but w;~w,~1.0. Each oscillator

of the two systems, respectively, ahéndg are the corre- produces a single-scroll chaotic attractor with a unique center
sponding nonlinear velocity fields, synchronization in a di-of rotation, due to a well defined rotational structure embed-
rect sense means the followin{x(t)—y(t)|—0 ast—c~. ded in the attractor, which is generated by a harmonic oscil-
Typically, synchronization can occur in the followiggner-  |ator: dx/dt=— wy and dy/dt=wx, wherex andy corre-
alized sense[3]: y(t)=h[x(t)], whereh represents a func- spond to the position and velocity of the oscillator,
tional relation betweex andy. When the coupled chaotic respectively, and is the frequency of rotation in the(y)
oscillators are only slightly nonidentical, i.é5-g, phenom-  plane. The cylindrical coordinate (6,z) can then be utilized
ena can arise such as phase synchronization in which thg petter characterize the chaotic rotation associated with the
chaotic rotations of the coupled oscillators tend to followigeal harmonic oscillator embedded in they() equations.
each other, and time-lagged synchronizatid(b] in which  |n general, for chaotic rotations, one can writg Jt)
dynamical variables of the oscillators evolve in an approxi-= ()t + ¢, t), where ¢, (t)'s represent chaotic fluctua-
mately identical manner but with a fixed time delay. tions and a:re “slow” phaée Variabldﬁ]e<w>t term repre-

The focus of this paper is on time-lagged chaotic synchrogents the “fast” phase variable Averaging out the fast
nization. Existing works in this direction have been exclu-phase variables in the, , equations, one obtains the follow-
sively on coupled, nearly identical nonlinear oscillators thating equation for A¢E’¢l_ b, [5]: dA@ldt~(w;— w,)
generate simple, single-scroll type of chaotic attractors for—(e/2)(r2/r1+rllrz)sin(q’)l—(bz). The phase-locking con-

which proper rotations can be defined in the phase spacgtion dA ¢/dt=0 thus yields the following relation:
[5-8]. In such a setting, time-lagged synchronization occurs

in a direct sense, as followsy(t)~x(t+ 7), wherer#0 is

the lag time. The purpose of this paper is to address, experi- d1— po~sin 1 TR
mentally, the question of whether time-lagged synchroniza- e(rit+ry)
tion can occur when there is a large parameter mismatch and ) ) .
when the structure of the chaotic attractor is more compliASSuming constant slow phases in the andz, , equations
cated (e.g., double-scroll chaotic oscillajorWe utilize ~ and performing averaging, one obtains four differential equa-
coupled chaotic electronic circuits with significant parametettions in (r1,z;) and (,z,) that represent a system of two

mismatch and find lag synchronization in the following gen-coupled, periodically driven oscillators, with the following
eralized sense: driving terms for oscillators 1 and 2, respectively; t)

~cos{w)t+ ¢, ). If the phase difference of these driving
y(t)~H[x(t+7)], (1) termsis neglected, the equations m (z;) and (»,2;) rep-
resent a system of two coupled, identical chaotic oscillators.
whereH is a function(not necessarily smoothThis resultis It is shown in Ref.[5] that the effect of the nonidentical
different in the sense that it extends and generalizes the ngliving termsF, (t) is equivalent to a fixed time lag be-
tion of chaotic time-lagged synchronization, which can befween the two oscillators in the sense that, if time-lagged
potentially useful for applications such as anticipation ofvariables are introduced, sayj(t)=r,(t+7) and z,(t)
chaotic synchronizatiof9], and consequently, forecasts of =z,(t+ 7), wherer=(¢,— ¢,)/{w), then the equations in
chaotic states. (rq,z1) and (,,z,) describe the dynamics of two coupled,

2(w;— wy)rqr;
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L wherex, y, andz are proportional to the voltages across the
10mH . capacitorsC, andC,, and the current through the inductor
= L, respectively. The parameters in E8) are related to those

in the circuit, as followsG=1/R, Ri=R,+*R,, R,=R_,
FIG. 1. Schematic diagram of the system of pair of unidirection-and f(x) is a piecewise linear functiorfi(x)=Gyx+ (G,
ally coupled Chua’s circuits, wheR,, can be adjusted to introduce —G,)(|x+ E|—|x—E|)/2, which is implemented by using
substantial mismatch between the circuits. two operational amplifier§_M387, Harrig and six resistors
[12]. The one-way coupling from circuit 1 to 2 is realized by
identical oscillators driven by the same force. Time-laggedan operational amplifieLM741, Harrig and a resistoR,,
synchronizationr ;(t)=T,(t) and z,(t)~z,(t), is thus ex- whereR; controls the coupling strength. All parameters in
pected. For small parameter mismatch, E2). yields ¢, the two circuits, excepR,,, are set approximately at equal
— ¢p,~constant- (w;— w,), So that an approximately con- values. Nonidentity between two circuits is stipulated by uti-
stant lag timer is expected. lizing a nonzero resistanck,,, resulting in a controllable
The above heuristic analysi§] for chaotic time-lagged mismatch betweerR; and R, in Eq. (3). The circuits are
synchronization is valid under the following two assump-assembled on a high-quality printed-circuit board, and the
tions: (1) the chaotic oscillator is of the Reler-type, which whole system is enclosed in an electromagnetic shielding
possesses a well defined structure of rotatem that a cy- box in order to minimize the influence of environmental
lindrical coordinate can be employed for theoretically pre-noise. The entire system is powered by a low-ripple and
dicting time-lagged synchronizatipnand (2) the mismatch low-noise power supplyHPE3631, HP. The voltage signals
between the oscillators is small so that a constant lag timére recorded by using a 12-bit data acquisition board
can be ensured. In situations where these two conditions afPCI3110, Keitley with a sampling rate two orders of
violated, it is not clear whether time-lagged synchronizationmagnitude higher than the bandwidth of the signals.
can be theoretically predicted and analyzed. In what follows We first consider the situation where both circuits, when
we address this issue experimentally. uncoupled, generate Bsler-type of attractors. This can be
Our experimental system consists of two unidirectionallyachived by tuning the resistoRsin both the driving and the
coupled Chua’s circuitgl1], as shown schematically in Fig. response circuits. Settirl§,,=35 () results in a substantial
1. The differential equations that describe the circuits are mismatch(about 64%) between the parametBisandR; in
Eqg. (3). Figures 2a) and Zb) show such attractors, in the
dx; 1 (x,y) plane, from the driving and the response circuits, re-
rTE C—b[G(Y1—X1)—f(X1)], spectively. The attractors are apparently distinct due to the
large parameter mismatch. A typical example of lag synchro-
nization is shown in Fig. @) wherey,(t) versusy,(t) is

ax _ i[G(YZ—Xz)—f(Xz)H Xl_XZ’ plotted. The ellipselike shape of the plot suggests a time-
dt C, R. lagged relation betweem;(t) and y,(t) [6]. Figure Zd)
showsy,(t— 7in) Versusy,(t), where 7, is the time lag
dy; » determined by examining a similarity functi¢f] (to be de-

1
at C—[G(Xl,z—yl,z)-i-zl,ﬂ. scribed below. We observe that the trace lies in the vicinity

a of the diagonal line in thg¢y(t— mmin),Y2(t)] plane, indi-
cating time-lagged synchronization. The “fattening” of the
trace is caused by a systematic difference in the amplitudes
of the chaotic rotations of the two attractors, which is due to

dz , 1
T E(Y1,2+ Ry 2212, (©))
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FIG. 3. S,in and 7, versus coupling resistandg, for R where 7,;,=10 wus. All measurements are in volts.
=1.689 K) andR,=35 Q.
with a slope slightly different from unity, which suggests the
the large parameter mismatch between the two circuits, anfbllowing generalized relationy,(t)=h[y(t— 7min) ], the
by uncontrollable noise in the laboratory. scalar version of Eq.l). We then define the following mea-
To quantify the experimentally observed lag synchronizasure ofgeneralized similarityfunction:
tion, we make use of the following similarity functids]:

t+ ) —ya.(1)]2 (1) = {yo(t)—hly,(t— 1 1}?)
<[[)</32/(2(t)>T<)y2(ytl)(>])1]’2>' @ [(yZ(D)(y5(t)]"?
1 2

Performing a simple linear regression betwegift) and
where(®) denotes time average andis the lag time. Let vy, (t—7,,,), we obtainy,(t)=h[y;(t— 7min) ]=0.890/,(t
Tmin D€ the value ofr for which S(7) is minimum and let  —7,;,)+0.043, which, when substituted in E¢p), yields
Smin=S(7min). Time-lagged synchronization is character- S¢. ~0.076, which is substantially smaller than the value
ized by the following conditionSy,;,~0 but 7,;,#0. To  obtained from the “direct” similarity measure in Eq4).
estimate S, and 7, from experimental time series, One can also test high-order polynomial fittings. For in-
we use the method described in RéV], which is to stance, a quadratic regression y|e|%(t)~0033/%(t

®)
S(r)=

examine the ’following cross-spectral densitly15(w) — Tmin) +0.890/; (t— 7min) +0.039,  resuling in SC..
=[Ry(t")e~ 't dt’, where Ry(t")=(yi(t)yo(t+t")) is  ~0.071, which is even smaller than that obtained from a
the  cross-correlation  function.  Writing Pqy(w) linear regression. At present there exists no systematic ap-

=A(w)exdjP(w)], we see that if time-lagged synchroni- proach for predicting a precise mathematical relation be-
zation occurs, i.e.y;(t— myin) =Y2(t), then we haver,;, tween the corresponding time-lagged variables in coupled,
=0, (w)/w. The lag time is therefore approximately the nonidentical chaotic oscillators. Nonetheless, our simple
slope of a linear regression of the plot®f,(w) versusw in computations suggest the existence g#neralized time-
the low-frequency regimg13]. For the circuit setting of lagged synchronizatignwhich to our knowldege, has not
Rossler-like attractorsS,,;, and 7,i, versus the coupling re- been reported previously.
sistanceR, are shown in Figs. &) and 3b), respectively. As our second set of experiments, we consider chaotic
We see that foR.=<1200 (), the value ofS,,;, plateaus at attractors that are geometrically and topologically more com-
about 0.178, which is the minimally achievable one in ex-plicated than the Rssler-type ones, in the sense that the
periments when the similarity measure utilized is definedattractors possess multiple centers of rotations. In particular,
with respect to “direct” time-lagged synchronization be- we adjust one of the key circuit parametefs, from R
tween the two coupled circuits, as in E@). In this pla- =1.689 K) in the previous setting tB=1.608 K}, so that
teaued parameter region, the valuergf,, keeps decreasing, each circuit, when uncoupled, exhibits a double-scroll attrac-
indicating that the lag times are larger than the minimaltor, as shown in Figs.(4) and 4b) for the driving and the
value that can be resolved in our experiments. Thus, it can beesponse circuits, respectively. The parameter mismatch is
concluded that we have observed time-lagged synchronizastill about 64%. Because of the double-scroll structure of the
tion, though imperfect, for & R.=1200 () for our coupled chaotic attractor, the plot of,(t) versusy,(t) consists of,
chaotic circuits with over 60% of parameter mismatch. approximately, two overlapped ellipses, as shown in Fig.
The remarkable finding is that the synchronization exem+4(c) for R.=544 (). The plot of time-lag adjusted voltages
plified by Figs. 2a)—-2(d) can actually be considered as a y;(t— 7min) versusy,(t) exhibits two approximate line seg-
generalizedype of time-lagged synchronization, in the sensements in the vicinity of the diagonal, as shown in Figd4
of Eg. (1). Notice from Fig. 2d) that the plot ofy,(t = where the estimated value of the lag timerjg,~10 us.
— Tmin) VErsusy,(t) appears to lie along an off-diagonal line We have thus observed, again, time-lagged synchronization
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in a generalized form. In this case, however, the functionakation, e.g., from the standpoint of the synchronization mani-
relation between the time-lagged dynamical variables is unfold [14,15. Our experimental investigation suggests,
known. Extensive measurements similar to those in Figsnonetheless, that generalized time-lagged chaotic synchroni-
3(a) and 3b) indicate that generalized time-lagged synchro-zation can be common in coupled, nonidentical chaotic sys-
nization occurs when the coupling resistance is below aboutems.
1 kQ for the parameter setting in Figs(a—4(d).

In summary, we have presented evidence that, when
coupled chaotic oscillators do not possess a proper rotational We thank A. Raghu for assistance in the assembly of the
structure and when the parameter mismatch between them é@upled circuit system in the initial phase of the project. This
substantial, time-lagged synchronization can still occur, butvork has been supported by AFOSR under Grant No.
more likely in a generalized form. It remains as an interest+49620-98-1-0400, by NSF under Grant No. PHY-9996454,
ing question to theoretically analyze this type of synchroni-and by Arizona State University.
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