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Perturbed on-off intermittency
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A basic requirement for on-off intermittency to occur is that the system possesses an invariant subspace. We
address how on-off intermittency manifests itself when a perturbation destroys the invariant subspace. In
particular, we distinguish between situations where the threshold for measuring the on-off intermittency in
numerical or physical experiments is much larger than or is comparable to the size of the perturbation. Our
principal result is that, as the perturbation parameter increases from zero, a metamorphosis in on-off intermit-
tency occurs in the sense that scaling laws associated with physically measurable quantities change abruptly. A
geometric analysis, a random-walk model, and numerical computations support the result.
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I. INTRODUCTION

The phenomenon of on-off intermittency in nonlinear sy
tems has been an area of continuing interest@1–4#. Phenom-
enologically, a system in on-off intermittency exhibits tw
distinct states in the course of time evolution. One is
‘‘off’’ state, where the dynamical variables remain approx
mately constant in various time intervals. The other is
‘‘on’’ state, which corresponds to intermittent ‘‘bursts’’ o
the dynamical variables away from their approximately co
stant values in the ‘‘off’’ state. The characterization of on-o
intermittency and the dynamical mechanisms@5# responsible
for it have been investigated actively@1–4#, due in part to
their relevance to chaos synchronization@6,7#.

A basic dynamical requirement for on-off intermittency
occur is that the underlying system possess an invariant
spaceM. Consider the situation where there is a chaotic
in the invariant subspace. A typical trajectory on the chao
set is unstable inM, but in the subspaceT transverse toM,
the trajectory can be either stable or unstable. If there is
other attracting set in the phase space, on-off intermitte
can occur when the trajectory is slightly unstable inT @1–4#.
The timeQ that a trajectory spends in the ‘‘off’’ state, als
called thelaminar phase, has been shown to obey the fo
lowing algebraic probability distribution at the onset of o
off intermittency @3#: F(Q);Q23/2. Subsequently, it has
been shown@4# that at the onset, the time trace of an on-o
intermittent variable is a fractal time series with bo
counting dimensionD051/2. We note that the existence o
an invariant subspace, which is usually due to a simple s
metry of the system, appears essential for on-off interm
tency to occur.

In this paper we investigate how on-off intermittency
affected when there is a perturbation so that the invar
subspace no longer exists. If the unperturbed system
sesses a symmetry, then the perturbation is equivalent
symmetry breaking. We expect such perturbations to be
evitable, say, in laboratory experiments. Symmetry break
also arises naturally in the context of synchronization
tween nonindentical chaotic oscillators@8#. When such a per-
turbation is present, we find in numerical experiments t
1063-651X/2001/64~1!/016220~9!/$20.00 64 0162
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behavior akin to on-off intermittency still can be observ
readily.

There are two important scales in the problem@9#. The
first scale is the thresholdyth of a variabley transverse to the
invariant manifold. The system is said to be in theoff state
wheny,yth . The second scale is the perturbation parame
h that characterizes the extent of the symmetry break
Loosely speaking,yth represents a numerical accuracy or
experimental measurement scale. There are then two di
ent regimes of dynamical interest: one for whichyth'h and
another one for whichyth@h. These regimes correspon
respectively, to a situation where the symmetry breaking
readily discernible and to a situation where it is not. We fi
that a qualitative change in the characteristics of on-off
termittency occurs immediately ash is increased from zero
in both cases.

Our principal results are the following.~1! There is a
natural way to define a laminar phase whenyth'h.0. ~2!
There is a crossover in the probability distribution of t
laminar phases from algebraic to exponential ash increases
from 0 in both cases, no matter how smallh may be.~3! If
yth@h then the fractal dimension of the on-off intermitte
time series changes discontinuously from 1/2 to 1 ash in-
creases from zero.~4! The mean length of the laminar phas
becomes very short foryth'h.

An implication of our results is that while on-off intermit
tency can indeed be observed easily in many practical si
tions, care should be exercised when interpreting the sta
tical properties of the on-off intermittent time series. F
instance, it may be natural for an experimentalist to rep
the observation of on-off intermittency, together with an a
proximate power-law probability distribution of the lamina
phase. But if there is a small amount of symmetry breaki
then such a distribution may be better described by an ex
nential distribution. A measurement of the fractal dimens
of the on-off intermittent time series may also be a go
indicator of whether there is a symmetry breaking in t
system.

The rest of the paper is organized as follows. Section
analyzes the caseyth'h by geometric arguments. Section I
discusses the case whereyth@h by analyzing a biased ran
©2001 The American Physical Society20-1
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dom walk model. A summary discussion is presented in S
IV.

II. MEASURABLE SYMMETRY BREAKING

We motivate our analysis by studying a class of tw
dimensional maps introduced by Heagyet al. @3#, with modi-
fications to include the effect of a perturbation that destr
the invariant subspace. We confine our attention to map
the form

xn115 f ~xn!, ~1!

yn115axnyn~12yn!1h,

where f yields a chaotic process on the unit interval,x
P@ 0,1# is a driving variable,a is a parameter, andh is the
perturbation parameter. In this family of maps,y corresponds
to an on-off intermittent variable whenh50, because there
is an invariant subspace, namely the liney50. The onset of
on-off intermittency is determined by the condition:ln ax
[*@ln(ax)#r(x) dx50, wherer(x) is the probability density
function of the chaotic variablex. In the simplest case wher
r is the uniform density~e.g., whenf is the tent map!, on-off
intermittency occurs whena>ac5e. For a*ac , the prob-
ability distribution of the laminar phases follows the unive
sal algebraic scaling law with exponent23/2, which has
been supported by numerical experiments using a variet
chaotic driving dynamics@10#.

A. Perturbed ‘‘off’’ state

Figure 1 shows two representative time series gener
by Eq. ~1! for a52.8. Figure 1~a! corresponds to a perfectl
symmetric system (h50) and Fig. 1~b! corresponds to a
system with symmetry breaking (h51023), where f pro-

FIG. 1. Intermittent time series foryn from Eq. ~1! with a
52.8 for ~a! h50; ~b! h51023.
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duces a uniform distribution forx P@0,1#. The initial condi-
tions are the same for each case. Using visual accuracy a
threshold, Fig. 1~b! represents the case whereyth'h. The
time series in Fig. 1~a! displays the hallmark of on-off inter
mittent behavior: long periods of nearly constant sign
~laminar phases! interrupted by short-lived, large-amplitud
bursts; the plot shows 104 iterations. Many laminar phase
last for several hundred iterations. The time series in F
1~b! is qualitatively similar, even though the symmetry h
been broken, but it appears more noisy and seems to h
shorter laminar phases~only 103 iterations are shown!. Our
goal is to determine to what extent the time series in F
1~b! can still be characterized as on-off intermittent.

On-off intermittency, as illustrated in Fig. 1~a!, consists of
laminar phases that begin when an orbit is reinjected int
small neighborhood of the invariant manifold. The burs
occur when the orbit escapes from the small neighborho
We will show that there is a natural extension of this idea
the case where a symmetry breaking destroys the invar
manifold. We focus our analysis on the family of maps
Eq. ~1!.

When h.0, there is no longer an invariant manifold
y50 for Eq. ~1!, and so there is no notion of a transver
Lyapunov exponent. We focus on the dynamics of they vari-
able, given by

yn115axnyn~12yn!1h. ~2!

Figure 2 shows a schematic illustration of a region near
origin. The straight lines extending from (0,h) are the graphs
of Eq. ~2! for some representative values ofx, where the
topmost line corresponds tox51, the horizontal line corre-
sponds tox50, and other lines represent other values ofx
P@0,1#. Note thatyn>h.0 for all n. Now consider an iter-
ateyn that is slightly larger thanh. Given anyyn21P@0,1#,
there exists exactly onex in Eq. ~2! such thatyn21 is the
preimage ofyn . If yn is sufficiently large, then the corre

FIG. 2. A schematic illustration of the dynamics of Eq.~2! near
the origin. The curves starting at (0,h) are representative graphs o
Eq. ~2! for different choices ofx.
0-2
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sponding point in the phase space has no preimages.
example,yn5r can never be reached by the map~2! with the
givenyn21 for x P@0,1#. The largest valueyn5sh for which
there exists anx such that every pointyn21 in (0,1) can be a
preimage ofsh is sh5ah(12h)1h. Let Sdenote the inter-
val @h,sh#, let I 5@z,z1dz# be a subinterval ofS, and let
P(z)dz denote the probability thatz PI . Then

P~z!dz5E
h

1

P~y!P~zuy!dy,

whereP(zuy) is the transition probability that a given pointy
in the unit interval maps intoI. For a fixedy P@h,1#, this
probability is the same as the probability that

xnPF z2h

ay~12y!
,
z1dz2h

ay~12y! G .
Sincex is assumed to be uniformly distributed in (0,1), th
probability is just the length of the interval:dz/ay(12y).
Thus, if y P@h,1#, then the probability thaty maps intoI is

P~yn11P I uynP@h,1# !5
1

m~S!
E

h

1 dz

ay~12y!
dy, ~3!

wherem(S)5ah(12h) denotes the length of the intervalS.
This analysis does not depend on any specific choice ofz or
dz, as long as the resulting intervalI is contained inS.
Hence, the probability density of they component of the
orbits of Eq.~2! is constant onS.

This result is illustrated by the numerical simulatio
shown in Fig. 3. Figure 3~a! shows the probability density
p(y) of they components of orbits of Eq.~1! for a51.5 and
three different choices of the perturbation parameterh. The
unit interval has been divided into 105 equal subintervals
and Eq.~1! has been iterated 107 times. The plot shows a
histogram of the fraction of they components that is con
tained in each subinterval.~The inset shows similar data, bu
the horizontal axis has been magnified to make the intervS
more visible.! The probability density of orbits that lie to th
right of S appears to drop off exponentially. Figure 3~b!
shows analogous plots fora52.8.

Additional analysis illustrates the impact of the symme
breaking on the probability distributions of the orbits. Su
pose thata,e. As h→0, the intervalS shrinks and moves
towards 0. At the same time, the probability that a giv
iteratey lies in S increases, and the limiting distribution is
d function aty50. Next suppose thata>e. Even ash→0,
there is a positive probability that a given iteratey lies to the
right of S, because the origin is not a sink for Eq.~2! when
a.e.

Figure 4 shows some numerical computations of the pr
ability that a given pointy lies to the right ofSas a function
of the perturbation parameterh for three choices ofa. If a
,e, then the probability that a given iterate lies to the rig
of S tends to 0 ash→0, but if a>e, then the probability that
a given iterate lies to the right ofS tends to a positive con
stant ash→0.
01622
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This analysis suggests that it is reasonable to regard
dynamics of Eq.~1! as on-off intermittent even in the pres
ence of symmetry breaking. We regard the dynamics as
ing in an ‘‘off’’ state or laminar phase whenever the orb
lies in S5@h,ah(12h)1h#. The dynamics ‘‘burst’’ or fall
into an ‘‘on’’ state whenever the orbit leaves the intervalS.
This definition has the added property that the laminar ph
is featureless with respect to the probability measure of
orbit, i.e., the probability density of orbits in every subinte
val of S is uniform.

B. Laminar phases

We continue the geometric analysis illustrated in Fig.
An iteratey such thaty,sh5ah(12h)1h is in an ‘‘off’’
state ~laminar phase!, and an iteratey.sh is in an ‘‘on’’
state~burst!. As above, we letS5@h,sh#.

Suppose thatyn21PS. We definexcrit(yn21) to be the
largest value ofx such thatynPS; in general,xcrit(y)5h(1
2h)/y(12y). Sincex is uniformly distributed in@0,1#, the
probability thatx is larger thanxcrit(y) is 12xcrit(y). An
analysis similar to that leading to Eq.~3! implies that

P~yn11¹SuyPS!512xcrit~y!

5
1

m~S!
E

h

shS 12
h~12h!

y~12y! Ddy,

FIG. 3. The numerically computed probability densityp(y) of
the y component of orbits of Eq.~1! for ~a! a51.5 and~b! a52.8.
Each inset shows an enlargement of theh50.001 curve for 0<y
<0.01. In addition, each inset includes a new curvep(y) for h
50.0001. All together, for both~a! and ~b!, three different cases
corresponding to three different values ofh, are shown.
0-3
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wherem(S)5ah(12h) denotes the length of the intervalS.
Let PS denote the probability thatyn11PS when ynPS.
Then

PS5
1

m~S!
E

h

shh~12h!

z~12z!
dz5

1

a
lnFa~12h!11

12ah G . ~4!

The probability of having a laminar phase of lengthn is
simply the probability that the firstn iterates lie inSand the
(n11)st leavesS, i.e., PS

n(12PS). Thus, the lengths of the
laminar phases are exponentially distributed. Exponen
distributions of laminar phases have also been seen in m
of the formyn115znf (yn)1dn102n, wheredn is a bounded
noise process andn.0 scales the noise amplitude@11#.

Numerical simulations confirm that there are lamin
phases whose length is of order 10. It is possible to comp
the probability distribution of the laminar phases numerica
for values ofn up to several dozen, but long laminar phas
are rare events. As a result, the mean lengthM of the laminar
phases is short,

M5~12PS! (
n51

`

nPS
n5

PS

12PS
, ~5!

wherePS , which depends onh, is given by Eq.~4!.
Figure 5 shows a plot~solid line! of Eq. ~5! as a function

of h when a52.75. The boxes are numerical computatio
of M for selected values ofh, using Eq.~1!. Notice thatM is
roughly constant forh,1022. Because the value ofM is
close to 1 for small values ofh, the system remains in th
interval S for only two iterations on the average.

III. SMALL SYMMETRY BREAKING

We now consider the case where the thresholdyth for
measuring on-off intermittency is much greater thanh, the
symmetry-breaking parameter. We will show, by both n

FIG. 4. The fraction of time that orbits of Eq.~1! spend outside
the intervalS as a function of the perturbationh. The circles give
numerically computed results for the case wherea.e; the squares,
a5e; and the dots,a,e.
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merical evidence and a random walk model, that the follo
ing two properties hold whenhÞ0 and the liney50 is no
longer invariant.~1! The distribution of the laminar phase
becomes exponential, no matter how smallh may be.~2!
The fractal dimension of the set of intersecting points of
on-off intermittent time series atyth changes abruptly from
1/2 to 1 ash is increased from zero.

A. Numerical evidence

As a numerical experiment, we choosef (x) to be the tent
map, seta52.75, and iterate Eq.~1! until we accumulate 107

laminar phases@12#. For this purpose, we regard an iterateyn
as being in a laminar phase ifyn,yth51022. Figure 6~a!
shows a plot of the fractionF(Q) of laminar phases as
function of their lengthQ for two different values of the
symmetry breaking parameterh. The plot is semilogarithmic
and suggests that the lengths of the laminar phases are e
nentially distributed, i.e.,F(Q); exp(bQ) for some con-
stant b that depends onh. The exponential behavior o
F(Q) in this case is evident even for small values ofQ.
Figure 6~b! shows the contrasting situation whereh50 and
the liney50 is an invariant subspace. Here the distributi
F(Q) appears to be algebraic, i.e.,F(Q); Qb for a con-
stantb; in fact, b523/2 @3#.

FIG. 5. The mean laminar phase lengthM of orbits of Eq.~1!
when a52.75. The solid line is a graph of the theoretically pr
dicted length, Eq.~5!, as a function ofh, and the boxes are numer
cally computed values ofM.

FIG. 6. The distributionF(Q) of laminar phase lengthsQ of
time series from Eq.~1! with a52.75. ~a! The symmetry-breaking
case with selected positive values of the perturbation parameteh.
~b! The symmetric case,h50.
0-4
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PERTURBED ON-OFF INTERMITTENCY PHYSICAL REVIEW E64 016220
Our confidence in the exponential distribution of the lam
nar phase lengths in the symmetry-breaking case is bolst
by a computation of the fractal dimension of the on-off i
termittent time series. The fractal dimension is computed
follows. Set a thresholdyth.h and consider the set of tim
intervals whose endpoints are determined by the intersec
of the graph ofyn with the horizontal liney5yth . Let N(e)
be the number of intervals of lengthe required to cover the
set of intersecting points of the on-off intermittent time ser
with yth . In the range of time intervalsQ for which the
exponential distributionF(Q) is valid, we expect that
N(e);e2D0, whereD0 is the fractal dimension of the on-of
intermittent time series.

Venkataramaniet al. @4# have argued that an algebra
distribution of laminar phase lengthsQ is equivalent to a
fractal dimensionD051/2 of the on-off intermittent time
series. However, if the distribution of the laminar pha
lengthsQ is exponential, then, as we show below, the frac
dimension of the on-off intermittent time series isD051.
Figure 7 shows a plot of numerically computed values
ln N(e) versus lne for a time series of Eq.~1! with a52.75
and h51024. The regression function is indicated by th
solid line, which suggests thatD0 is close to 1.

B. Random walk model

Qualitatively, the crossover from an algebraic to an ex
nential distribution of the laminar phase lengths ash in-
creases from 0 can be understood as follows. Rewrite Eq~1!
as

yn115axnyn@~12yn!1h/axnyn#.

Consider the case where 1@h.0 and yn is in the ‘‘off’’
state. Then yn'h, so yn11'axnyn(11dn), where dn
5h/axnyn . The probability thatxn is close to 0 is small.
Therefore, most of the time,dn is on the order of 1. Letting

Yn52 ln yn , ~6!

we obtain

Yn115Yn1vn , ~7!

FIG. 7. The filled circles indicate the numerically comput
values of the number of intervalsN(e) of lengthe needed to cover
the set of points formed by the intersection of the graph of the t
series ofy values generated by Eq.~1! with the liney5yth .
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wherevn52 ln(axn)2ln(11dn) is a random variable. In this
way, we obtain a random walk inYn . If h50 anda*ac ,
then ln axn'0 anddn50 so thatvn50, which implies that
the random walk isunbiased. But whenhÞ0, then depend-
ing on the value ofyn , the termdn can be either large o
small. In particular, ifyn is close toh ~in the ‘‘off’’ state!,
thendn is on the order of unity. Asyn moves away from the
‘‘off’’ state, the value of dn becomes negligible. Becaus
there is a high probability that the trajectory remains in t
‘‘off’’ state, we havevn,0. Thus, the random walk inYn is
biasedwhenhÞ0. Therefore, we expect a sudden, quali
tive change in the characteristics of on-off intermittency i
mediately afterh is increased from zero.

We note that, even in the case ofh50 ~no symmetry
breaking!, the random walk so obtained is also biased@3#
when the parametera is increased fromac , the blowout
bifurcation point, becauseln axn*0 for a*ac . In this case,
one also expects an exponential behavior in the distribu
of the laminar phase lengthsQ for sufficiently large values
of Q. In numerically or physically reasonable time scale
one still observes an algebraic distribution@3#. When the
symmetry is broken, however, the switch from an algebr
to an exponential distribution of laminar phase lengths
metamorphic, in the sense that the onset of the expone
behavior is almost immediate at small time scales even w
h is many orders of magnitude smaller than typical scales
the measurable physical quantities of the system.

We are thus led to the analysis of the biased random w
model ~7!, where we assume thatvn is a random variable
with a probability distributionF(v) @13#. The drift of vn is
given by

v̄5E vF~v !dv.

The Fokker-Planck equation forP(Y,t), the probability dis-
tribution of finding the walker at locationY at timet, is given
by @14#

]P

]t
1 v̄

]P

]Y
5D

]2P

]Y2
, ~8!

whereD5*(v2 v̄)2F(v)dv is the diffusion coefficient. The
range of the variableY is (0,̀ ). In the phase spacey, the
drift is towardsy51 if h*0. In the walker’s space, the drif
is towardsY50, i.e., v̄,0. We write v̄52h, whereh.0.

We analyze Eq.~8! in a manner that mimics what is typi
cally done in numerical experiments for computing the lam
nar phases. We set a threshold, say aty51 (Y50), start
from the steady-state distribution~which is equivalent to
eliminating transients!, and examine the probability that th
value of y exceeds the threshold at some timet. Thus, we
have an absorbing boundary atY50,

P~0,t !50. ~9!

For Y.0, the initial condition is

e

0-5
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P~Y,0!5Ps~Y!5S h

D DexpS 2
hY

D D , ~10!

where Ps(Y) is the steady-state solution of the Fokke
Planck equation. Sincey can never reach zero, we have a
other boundary condition

P~`,t !50. ~11!

Let P(Y,s) denote the Laplace transform ofP(Y,t), defined
by

P~Y,s!5E
0

`

P~Y,t !e2stdt, ~12!

where Rs.0. The initial condition in Eq.~10! yields the
following equation forP(Y,s):

D
d2P
dY2

1h
dP
dY

2sP52Ps~Y!. ~13!

The boundary conditions in Eqs.~9! and ~11! lead to the
solution of Eq.~13!,

P~Y,s!5
h

Ds H expS 2
hY

D D2exp@l~s!Y#J , ~14!

where l(s)5(2h2Ah214Ds)/(2D), which satisfies the
relation Rel,0.

Let

W~ t !512E
0

`

P~Y,t !dY ~15!

be the probability thatY is absorbed atY50 ~which is the
probability thaty bursts out ofy51). The Laplace transform
W(s) of W(t) is

W~s!5
1

s
2E

0

`

P~Y,s!dY5
2

s~11A11st!
, ~16!

wheret[4D/h2 defines the characteristic time scale of t
random walk model.

We now consider the inverse Laplace transform ofW(s)
@15#, given by

W~ t !5
1

2p i E2 i`1s

i`1s

W~s!estds. ~17!

There is a pole ats50 and a branch singularity ats* 5
21/t. The pole corresponds tot→` in the time domain and
thus makes no contribution toW(t) in finite time. We choose
a branch cut froms52` to s5s* ,0 as shown in Fig. 8.
The integration over the infinitesimal circular path abouts*
vanishes. The contribution toW(t) comes from the two in-
tegrals, one above the branch cut and another below, a
the negative real axis. The integration yields

W~ t !5g~ t !e2t/t, ~18!
01622
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where

g~ t !5
2

pAt
E

0

` Ax e2tx

~x2s* !2
dx, ~19!

which can be evaluated by using the standard saddle-p
method@16#. We obtaing(t);t23/2 and consequently, the
following scaling relation forW(t):

W~ t !;t23/2e2t/t. ~20!

We can now compute the fractal dimension of the int
mittent time series and the laminar-phase distribution ba
on Eq.~20!. Let y(t) be the time series and choose a unifo
set of time intervals of lengthe to cover the set of points a
which bursts occur. The fractal dimensionD0 is given by
N(e);e2D0, whereN(e) is the number ofe intervals that
are required to cover the set. NowW(e) is the probability
that a randomly chosen interval of lengthe is a part of the
cover. Suppose that the time series has lengthT. The total
number ofe intervals contained in@0,T# is Te21. Thus,

N~e!5~Te21!W~e!; e25/2e2e/t, ~21!

which yieldsD051 @17#.
The distribution of laminar phase lengths can be co

puted as follows. LetR(e) be the probability of having a
laminar phase whose length is at leaste. Let r (e) be the
conditional probability that there is a laminar phase of len
betweene and 2e given that there is a laminar phase
lengthe. Then

r ~e!5@R~e!2R~2e!#/R~e!512R~2e!/R~e!.

Note thatr (e) is the conditional probability that there is
burst in the time interval@(n011)e,(n012)e# given that
there is a burst in the time interval@n0e,(n011)e#, where
n0e is an arbitrary reference initial time. It follows that

FIG. 8. The integration path and branch cut for obtainingW(t),
Eq. ~17!.
0-6
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N~2e!5N~e!2N~e!r ~e!5N~e!@12r ~e!#.

Equation~21! implies thatr (e)512r 0e2e/t (r 0 is a con-
stant!. Hence

R~e!;eqe2e/t,

whereq525/2. NowR(e) is related to the probability dis
tribution F(Q) of the laminar phase by

R~e!5E
e

`

F~Q!dQ. ~22!

Therefore, the probability distribution of the laminar phas
is exponential,

F~Q!;Qqe2Q/t;e2Q/t for Q@1. ~23!

One prediction of the biased random walk model is t
the average length of the laminar phase can be related to
drift 2h and the diffusion coefficientD ast54D/h2. Heu-
ristically, we expect the dependence of the drift and the
fusion coefficient on the perturbation parameterh to be loga-
rithmic for the following two reasons. First, the random-wa
picture is valid in the logarithmic space of the intermitte
variable in the phase space, and second, as we have ar
the term that causes a bias in the random walk is alm
independent ofh. Thus, we expect the following scalin
relation for the average length of the laminar phase:

t~h!;u ln hug, ~24!

where g.0 is the scaling exponent. This scaling relati
implies that the average length of the laminar phases
creases only logarithmically as the amount of perturbatio
decreased and, as a practical matter, many orders of dec
in h yield only an incremental increase in the average len
of the laminar phases. For example, in the simple model
~1!, we find that, whenh is decreased from 1023 to 10210,
the value oft(h) increases only by a factor of 10. Figure
shows a plot of log10t(h) versus log10u log10hu for a52.75.
The approximate linear behavior for small values ofh sup-
ports the scaling law in Eq.~24!. We stress, however, th
scaling law~24! is only meant to be speculative@20#.

The predictions from the biased random walk model
not depend on any specific details of the underlying on-
intermittent system. Therefore, we expect these predict

FIG. 9. Average lengtht of the laminar phases of iterates of E
~1! as a function of the perturbation parameterh.
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to be general. In fact, for Eq.~1!, we are able to obtain
rigorous expressions for the probability distribution and th
average length of the laminar phases that agree with th
from the random walk model.

We have performed numerical tests on various models
on-off intermittency with perturbations and have found a
bust exponential behavior in the distribution of the lamin
phase lengths. Figure 10 shows, on a semilogarithmic sc
the probability distribution of the laminar phases obtained
yth51022 for the model

xn115T~xn!, ~25!

yn115axnyn~12yn!1e1e0cos~2pyn!,

whereT(x) is the tent map anda52.75, e51023, and e0
51023. The exponential nature of the probability distrib
tion of the laminar phase lengths is apparent.

IV. DISCUSSION

Perturbations of an on-off intermittent system that dest
the invariant manifold have a distinct impact on the prop
ties of the dynamics. Most importantly, there is a metam
phosis of the scaling law for the probability distribution
the lengths of the laminar phases that is exponential, in c
trast to the algebraic distribution in a system with an inva
ant manifold.

Moreover, we have shown that the relative amplitude
the symmetry breaking and the threshold amplitude at wh
one defines the ‘‘off’’ state are important. When the thres
old amplitude is comparable to the size of the perturbati
then we have the following.

~i! It is possible to characterize an ‘‘off’’ state in a mann
that yields an exponential probability distribution for th
lengths of the laminar phases. In addition, our definition
the ‘‘off’’ state generates a probability measure for the ite
ates of the dynamical system whose limit~as the perturbation
tends to 0! is the natural measure of the iterates of the ori
nal on-off intermittent system.

FIG. 10. Probability distributionF(Q) of the laminar phase
lengthsQ of iterates of the model~25!.
0-7
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~ii ! The lengths of the observed laminar phases are s
on the average.

When the threshold amplitude is orders of magnitu
greater than the size of the perturbation, then we have
following.

~iii ! The distribution of the laminar phase lengths is exp
nential, in contrast to the algebraic distribution when there
an invariant manifold.

~iv! The fractal dimension of the level sets of the inte
mittent time series changes discontinuously fromD051/2 in
the unperturbed case toD051 in the perturbed case.

Our characterization of the probability distributions of t
laminar phase lengths has an interesting practical app
tion. Suppose that in a laboratory experiment, limited m
-
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surement accuracy leads to uncertainty as to whether a s
metry breaking has occurred. If it is possible to run t
experiment long enough to collect reasonable statistics
the distribution of the laminar phase lengths, then one
check whether the distribution is exponential. An expone
tial distribution implies that the symmetry has been broke

ACKNOWLEDGMENTS

D.M. and E.J.K. are supported by the National Scien
Foundation under Grant No. ECS-9807529. Y.C.L. is su
ported by the Air Force Office of Scientific Research und
Grant No. F49620-98-1-0400 and by the National Scien
Foundation under Grant No. PHY-9996454.
tic

-

ity
d

is

to
two
the
al

is
h
of

m-
off
ply
the
to

his
atch

set
so
e-
@1# E.A. Spiegel, Ann. N.Y. Acad. Sci.617, 305 ~1981!; H.
Fujisaka and T. Yamada, Prog. Theor. Phys.74, 919 ~1985!;
75, 1087 ~1986!; H. Fujisaka, H. Ishii, M. Inoue, and T. Ya
mada, ibid. 76, 1198 ~1986!; L. Yu, E. Ott, and Q. Chen,
Physica D53, 102 ~1992!; Y.-C. Lai and C. Grebogi, Phys
Rev. E52, R3313~1995!; Y.-C. Lai, ibid. 53, R4267~1996!;
54, 321 ~1996!; T. Yalcinkaya and Y.-C. Lai, Phys. Rev. Let
77, 5039~1997!.

@2# N. Platt, E.A. Spiegel, and C. Tresser, Phys. Rev. Lett.70, 279
~1993!.

@3# J.F. Heagy, N. Platt, and S.M. Hammel, Phys. Rev. E49, 1140
~1994!.

@4# S.C. Venkataramani, T.M. Antonsen, Jr., E. Ott, and J.C. S
merer, Physica D96, 66 ~1996!.

@5# The mechanism for on-off intermittency to occur in chao
systems can be understood as follows. Since the chaotic s
M is only weakly unstable in the transverse subspace, all
variant sets embedded in the chaotic set, such as unstabl
riodic orbits, can be classified into two subsets: one tra
versely stable and another transversely unstable, the l
‘‘weighs’’ slightly more than the former@Y. Nagai and Y.-C.
Lai, Phys. Rev. E56, 4031 ~1997!#. A trajectory can be at-
tracted towardsM and stays in the vicinity ofM near some of
the transversely stable invariant sets. This corresponds to
‘‘off’’ state. Due to the existence of the transversely unsta
invariant subset, the off state cannot be sustained indefini
In particular, when the trajectory comes close to some of
transversely unstable sets so that, in the time interval star
from the beginning of the off state, the trajectory becom
transversely unstable; it can then leave the off state, leadin
a burst that corresponds to the ‘‘on’’ state.

@6# L.M. Pecora and T.L. Carroll, Phys. Rev. Lett.64, 821~1990!;
For a recent review, see Chaos Focus Issue7, 4 ~1997!.

@7# J.F. Heagy, T.L. Carroll, and L.M. Pecora, Phys. Rev. Lett.73,
3528 ~1994!; J.F. Heagy, L.M. Pecora, and T.L. Carroll,ibid.
74, 4185~1995!; M. Ding and W. Yang, Phys. Rev. E54, 2489
~1996!; L.M. Pecora and T.L. Carroll, Phys. Rev. Lett.80,
2109 ~1998!.

@8# Say we consider the following model of synchronization b
tween nonidentical chaotic oscillators:
-

in
-

pe-
-
er

he

y.
e
g

s
to

-

dx/dt5f1~x!1C•~y2x!,

dy/dt5f2~x!1C•~x2y!,

where f1'f2 are velocity fields that both generate chao
flows, andC is the coupling matrix. We introduce two new
variables,u5(x1y)/2 andv5(x2y)/2, so that a perfect syn
chronization state is defined byv50. The differential equa-
tions for u andv are given by

du/dt'@ f1~u!1f2~u!#/2,

dv/dt'@G~u!22C#•v1@ f1~u!2f2~u!#/2,

where G(u) is the average Jacobian matrix of the veloc
fields f1 and f2. If f15f2 , v50 is the invariant subspace an
on-off intermittency can occur inv if the largest Lyapunov
exponent evaluated from the product of matrices@G(u)
22C# is slightly positive. However, the invariant subspace
destroyed when there is a systematic difference betweenf1 and
f2.

@9# When the symmetry-breaking perturbation term is additive
the dynamical equations, as we demonstrate in this paper,
regimes of dynamical interest can be defined, depending on
size of the perturbation relative to that of a typical dynamic
variable exhibiting on-off intermittency. If the perturbation
not additive, then generally it may be difficult to distinguis
the corresponding dynamical regimes. However, in a system
coupled chaotic oscillators, which is perhaps the most co
monly utilized class of physical systems in the study of on-
intermittency, symmetry-breaking perturbations are sim
proportional to the mismatch between the parameters of
coupled oscillators. In this case, it is then straightforward
define the two distinct dynamical regimes introduced in t
paper, as one can compare the size of the parameter mism
to that of an on-off intermittent dynamical variable.

@10# When h50, as a is increased fromac , the laminar-phase
distribution begins to develop an exponential tail, but the on
of the exponential behavior typically occurs at large time
that in short-time scales, the dominant behavior is still alg
braic. For instance, it was estimated that fora52.75, the onset
of the exponential distribution occurs for timen>2200, which
was not observed in numerical experiments@3#.
0-8



ill
pi

th
on

b
lly

h

a-
th
in
te

rob-

ifi-

-

by
xi-

eld

ch,
a

-

he

PERTURBED ON-OFF INTERMITTENCY PHYSICAL REVIEW E64 016220
@11# N. Platt, S.M. Hammel, and J.F. Heagy, Phys. Rev. Lett.72,
3498 ~1994!.

@12# It is known that a numerical trajectory from a chaotic map w
eventually become periodic due to the round-off error. Ty
cally, the number of iterationsTN for the onset of artificial
periodicity scales with the round-off errord as TN;d2D2/2,
whereD2 is the correlation dimension of the chaotic set@C.
Grebogi, E. Ott, and J.A. Yorke, Phys. Rev. A38, 3688
~1988!#. In our numerical model,D251 and we use double
precision arithmetic (d;10216), so we haveTN;108. To ac-
cumulate 107 laminar phases, we utilize 104 numerical trajec-
tories from randomly chosen initial conditions, each of leng
107 and, hence, the computer round-off will have no effect
the chaoticity of the trajectories.

@13# If v comes from a chaotic process, the corresponding proba
ity density function cannot be written down because typica
it contains an infinite number of singularities@18#. However,
we still expect to be able to define statistical averages suc
drift.

@14# If an average driftn̄ can be defined, the Fokker-Planck equ
tion is a reasonable model that describes the evolution of
probability distribution insofar as the random walk occurs
many time steps so that the time can be treated approxima
01622
-

il-

as

e

ly

as a continuous variable, regardless of the details of the p
ability distribution ofnn @19#.

@15# In the case treated by Venkataramaniet al. @4#, the random
walk is approximately unbiased so thatt@1. In our case, this
approximation is no longer valid because the walk is sign
cantly biased.

@16# J. Mathews and R. L. Walker,Mathematical Methods of Phys
ics ~Addison-Wesley, Reading, MA, 1970!.

@17# Our analysis is based on a random-walk model, solved
using the diffusion equation under a series of crude appro
mations. It is thus not surprising that the model does not yi
the correct value of the fractal dimensionin a direct way.
Instead, it yields a dimension value that is larger than 1, whi
indirectly, implies D051, as the fractal set is embedded in
one-dimensional line segment.

@18# E. Ott, Chaos in Dynamical Systems~Cambridge University
Press, Cambridge, 1993!.

@19# W. Feller, An Introduction to Probability Theory and Its Ap
plications ~John Wiley & Sons, New York, 1968!.

@20# In addition to the fit suggested by the scaling relation~24!, we
have tried both power-law and exponential scaling to fit t
numerical data in Fig. 9. The scaling~24! apparently gives the
best fit.
0-9


