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Noise-enhanced temporal regularity in coupled chaotic oscillators
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Existing works on coherence resonance, i.e., the phenomenon of noise-enhanced temporal regularity, focus
on excitable dynamical systems such as those described by the FitzHugh-Nagumo equations. We extend the
scope of coherence resonance to an important class of nonexcitable dynamical systems: coupled chaotic
oscillators. In particular, we argue that, when a system of coupled chaotic oscillators in a noisy environment is
viewed as a signal processing unit, the degree of temporal regularity of certain output signals may be modu-
lated by noise and may reach a maximum value at some optimal noise level. Implications to signal processing
in biological systems are pointed out.
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[. INTRODUCTION been extremely activE3—6], with phenomena reported re-

This paper addresses systems of coupled chaotic oscill@ently such as extensive stochastic resonance, i.e., stochastic
tors as possible devices for signal modulation and processingsonance without the need to tune the noise level, if the
under the influence of noise. Consider, for instance, a onesignal of the system is defined in a particular Way9]. All
dimensional array ofN coupled, nearly identical nonlinear these works concern the enhancement of the amplitude of
oscillators, each described by the differential equation of theertain dynamical variables of the system relative to the
type: dx/dt=F(x), as shown schematically in Fig. 1. As- noise amplitude. The phenomenon of noise-induced en-
sume that a signat;(i=1, ... N), is measured from each hancement of temporal regularity of a physical signal was
oscillator and the measurements are further combined by frst noticed by Sigetet al. [10-12. This phenomenon was
processing unit to yield an output that is a function of all therediscovered and renamed @sherence resonanda excit-
measured signalsty=U(x;,X,, ... X\). Because of the able nonlinear dynamical systemi$3]. Since then, there
chaotic nature of the underlying dynamics in each oscillatorhave been a plethora of theoretical wofkgl—25 and ex-
the output signaU(t) is typically random in time. The pur- perimental investigations as wg¢R6—28§.
pose of this paper is to show that ttemporal regularityof Typically, in excitable dynamical systems, the time trace
the output signal (t) can be greatly modulated by noise. In of dynamical variables of physical interest consists of an
particular, there exists an optimal noise amplitude for whichinfinite sequence of bursts occurring at random time inter-
U(t) can be made predominantly regular, despite the loca¥als. Coherence resonance is referred to the fact that noise

chaotic dynamics in each individual oscillator. can actually be utilized to improve the temporal regularity
Our motivations are twofold. First, for the purpose of pro-

cessing random signals utilizing an engineering system con- X,

sisting of many interconnected subsystems, it is of interest to FI_J

know how the inevitable presence of noise influences the K

temporal regularlty qf the signal. Second, netwo_rks _of — x,

coupled nonlinear oscillators are extremely common in biol- EZ_J

ogy, such as neural networks. The range in which the param- X

eters of each individual element in the network can change i

reasonably can include regimes for chaotic dynamics. Yet the Fi 2

/

overall output of the network may often be regular. One ex-
ample is the sino-atrial node, the natural pacemaker of a
cardiac system, which consists of millions of cells with dis-
tinct intrinsic oscillating properties. Local chaotic dynamics
are possible and have been observed in numerical simula-
tions of a pair of coupled, biophysically detailed sino-atrial
node cells[1]. Despite the possibility of local chaotic dy-
namics, the output of the pacemaker is often regular in time.

The phenomenon of noise-enhanced performance in non-
linear systems has been known since the pioneering work by
Benziet al. on stochastic resonang2], where the signal-to-
noise ratio of a nonlinear system is found to be sensitive to
the noise amplitude and can reach a maximum value at an FIG. 1. A schematic illustration of a system of coupled nonlin-
optimal noise level. The area of stochastic resonance hasar oscillators as a signal processing unit.
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of the bursting time serielsl3]. In particular, at both small Il. THEORY

and large noise levels, the time series appear random in the Here, we establish the theoretical foundation of coherence

S #Esonance in coupled chaotic oscillators. In particular, given
ently exhibit no pronounced peakse exclude the dc com- g,y 5 system, we address the following questiéhswhat
por_1enl. At some intermediate noise Ie_vels, the burstlng tlmetype of signals, say, a combination of the dynamical vari-
series appears more regular, which is characterized by th@jes from the oscillators, can exhibit coherence resonance?
appearance of a finite set of peaks at certain frequencies. }q (2) how to quantify the resonance? In what follows, we
one deﬁnes a measure, Say the I’atiO Of the he|ght Of the moﬁh” describe a hierarchy of Systems Consisting of two
pronounced peak in the Fourier spectrum to its width, tocoupled identical oscillators, two coupled nonidentical oscil-
quantify the temporal regularity of the bursting time series,|ators, andN(N=3) coupled oscillators, and discuss the gen-
then one finds that the measure tends to increase as the nots@l features of these systems. We will then construct a one-
level is raised and reaches a maximum value at some optimgimensional analyzable model, which captures the common
noise level. In addition to the difference between coherencingredients of coupled chaotic oscillators required for coher-
resonances and stochastic resonances that the former concence resonance, and derive explicit solutions demonstrating
the temporal aspect of the signal while the latter deal withquantitative features of the resonance.

guantities related to amplitude such as the signal-to-noise

ratio, coherence resonances do not require an external peri- A. Two coupled identical chaotic oscillators

odic driving [13,29, versus stochastic resonances that usu-
ally do[2-6].

Most existing works on coherence resonance focus exclu-
sively on excitable systenfd 3] such as those described by
the FitzZHugh-Nagumo equatiof80,31 in which the dy-
namics typically consist of a slow motion near some fixed
point and rapid excursions away from it. In such systems, th(\?vherexlyze R Y, fis the vector velocity field of both chaotic

measured time series usually consist of a silent phase and a . . - .
y b oscillators when uncoupled, ari€l is the coupling matrix.

burst_lng one, corresponding, r_espectwely, to m°“°’_‘$ neaféince the oscillators are identical, the synchronization state
the fixed point and the excursion. Temporal regularities O(or the synchronization manifold, denoted 1) x; =Xy, is

random signals, and consequently, coherence resonances, areq)ytion of Eq(1), which is invariant under its time evo-
apparently of great physical, biological, and engineering imysion. That is, in a noiseless situation, if the two oscillators
portance. The purpose of this paper is to point out that costart out being synchronized, they remain so forever. Intro-
herence resonance can actually be expected in another iucing two variablesu= (x; + x,)/2 andv=(x;—X,)/2, we

portant class of dynamical systems: coupled nonlineapptain, near the synchronization manifold (v=0), the fol-
oscillators, which are relevant to a variety of physical andiowing equations:

biological situations[32,33. In particular, we argue that,
when identical or slightly nonidentical chaotic oscillators are u="f(u), )
coupled together, the temporal regularity of some measured

signal characterizing the degree of the synchronization

among the oscillators can be modulated by external noise in V=
the sense of coherence resonance. Such signals, for example,

can simply be the difference among or its function of the
corresponding dynamical variables of the oscillators. W

give numerical examples and a quantitative analysis elucidaf- anifold, the dynamics is described by the velocity figld

ing the dyna}mlcal mechanism for coherence resonances \Byjcp generates a chaotic flow. In the absence of coupling,
coupled oscillator systems. Because of the ubiquity of the o '« —¢ the evolution of the variable is governed by the
occurrence of such systems in nature and in engineering, conian matrixsf/du that possesses at least one time-
correct identification of coherence resonance will be bOthaveraged eigenvalue that is positiiee., a positive trans-
theoretically interesting and practically useful for applica-ygrse Lyapunov exponents the flow generated Hyis cha-
tions such as signal processing. A short account of some pagic, Thus, the synchronization solutier= 0 is unstable. In a
of this work has been published recer{t84]. mathematical term, we say that the synchronization manifold
The rest of the paper is organized as follows. In Sec. lljs transversely unstable. As the coupling paramités in-
we present a physical theory to explain why coherence resqreased, the eigenvalues of the matrigf/gu—2K) de-
nances can occur in wide parameter regimes in coupled charease. Eventually, fok >K., whereK, is a critical cou-
otic oscillators, and how to identify and characterize them. Irpling value, all time-averaged eigenvalues of the matrix
Sec. lll, we give numerical examples and, particularly, debecome negative, signifying an asymptotic stability of the
scribe how the phenomenon may be tested in laboratory exsynchronization state. Since the dynamics in the synchroni-
periments using coupled chaotic electronic circuits. A discuszation manifold is chaotic foK>K,., the synchronism so
sion is offered in Sec. IV. achieved is chaotif35-41.

We consider the following system:

X1=F(X) + K- (Xg—Xy),

X =f(X2) + K- (X, Xp), 1)

-V, (3)

where df/du is the Jacobian matrix of the velocity fiefd
rom Egs.(2) and (3), we see that, in the synchronization

066202-2



NOISE-ENHANCED TEMPORAL REGULARITY IN . .. PHYSICAL REVIEW B4 066202

The above discussion is for noiseless situations. Our point
is, in the presence of noigef amplitudeD), for K nearK,
the coupled system exhibits dynamlcgl characteristics reWherexlzeRd, f,, andf, are the velocity fields of the cha-
quired for coherence resonance. In particulardarK., the tic oscillators when uncoupled. We consider the situation
synchronization state is unstable so that the vector signa(ﬂh the t illat P I hil identichl~f
v(t), which is simply proportional to the difference between Were the wo osciiiators are sightly noniden ichl=~s, .
the dynamical variableg,(t) and x,(t), exhibits an on-off and explore the dynamics near the approximate synchroniza-

intermittent behaviof42—44, regardless of whether noise is tion state:x;~X,. In va_nab_lesu andv, we obtam_, near the
absent or present. Fot=K_, the synchronization state is 2PProximate synchronization state-0, the following equa-
stable so thaw(t)—0 asymptotically forD=0 (noiseless 1ONS:

situation), but for D#0, v(t) exhibits, again, on-off inter-

mittency. To understand the origin of the intermittent behav- U~ }[fl(u)+f2(u)]+ 1(‘9_“ _a_f2> Ry (5)
ior, we focus on the noiseless situation wih=K;. Let 2 2\du du)

A1=0 be the largest time-averaged eigenvalue of the matrix

Xo=To(X) + K- (X —Xp), (4)

(of/ou—2K). Since\t is an asymptotic quantity, i.e., it is 1(of, df, 1

defined in the infinite time limit, in any finite times it is a VA~ §<E+ ) 2K v s —R(w)],
random variable with a probability distribution. Suppose we

distribute a large number of initial conditions in the synchro- =[—-A+N(t)] - v+ §(t), (6)

nization manifold M, computeh(t) for each trajectory at

time t, and then construct the histogram of these finite timewhere of; ,/du are the Jacobian matrices of the velocity
exponents. Typically, the histogram is centered awith a  fieldsf; ,, respectively,—A is a matrix whose elements are
width proportional to 1{t. Thus, at any finite time, the dis- the average values of the corresponding elements of the ma-
tribution of A(t) has a tail on the negative side, indicating trix in front of v in Eq. (6), N(t) is a zero-mean random
that some trajectories actually experience attraction towardsatrix, and & (t) stands for the small chaotic modulation
M. By the ergodicity of chaotic trajectories ifvf, we see term in Eq.(6), which vanishes if the oscillators are identi-
that a single trajectory, while in general repelled front,  cal. Since both oscillators are chaotic, we see from (BY.

will experience episodes of time during which it actually is that the variableau is typically chaotic because approxi-
attracted toward\. Thus, the trajectory tends to stay near mately, it is the average of; andx, under a small chaotic

M with bursts away from it at random times, signifying modulation term proportional te. The variablev, on the
on-off intermittency. At the onset of on-off intermittency, i.e., other hand, obeys the equation that describes on-off intermit-
when A+=0, the time interval between two successivetency [48] under “noise” becausal is chaotic. Thus, we
bursts, or thdaminar phase obeys a power-law probability expect to observe coherence resonance in the sigfial
distribution with the exponent-3/2 [43]. The mechanism under the influence of external noise.

for on-off intermittency may also be understood by analyzing
the transverse stabilities of the infinite set of unstable peri-
odic orbits embedded in the chaotic attractori [36,47). , , ) )
For K=K, with noise, the above dynamical picture remains Ve consider the following system &f coupled, identical

qualitatively similar. Fork =K . without noise, on-off inter- chaotic oscillators:

C. N(N=3) coupled chaotic oscillators

mittency occurs only for a finite amount of time because, N
asymptotically, M is stable. However, noise may cause the ! =f(x-)+K2 G H(x), i=1,...N 7
trajectories to be desynchronized, sustaining the on-off inter- dt SO = T

mittent behavior.

A characteristic feature of on-off intermittency is the ex- whereG;;’s are elements of the normalized coupling matrix
istence of two distinct states: the “off” state in whial{t) G andH(x) is a smooth function. The synchronization mani-
~0 and the “on” state wherev(t) deviates significantly fold M is defined byx;=x,= ...=xy. If G;;’s satisfy the
away from the “off” state. Typically, the system tends to conditionX;G;;=0 for alli, thenM is an invariant subspace
reside in the “off” state for a certain amount of random time of Eq. (7). The stability of M may be assessed by examining
with intermittent bursts away from the “off” statéhe “on” the variational equation derived from E?), as follows
statg. Roughly, the “off” and “on” states here correspond to [49]:
the motion near the fixed point and the excursion away from
it, respectively, in a typical excitable system that exhibits dox; N
coherence resonance. Thus, qualitatively, under the influence a9 Df(x;) - 3xi+K2 GjiDH(X) - 9%, (8
of noise, we expect coherence resonance to occur in coupled =1

chaotic systems. _ o
where Df and DH denote the partial derivatives. Qiv1,

B. Two coupled nonidentical chaotic oscillators wherex;= ...=Xxy=X, this may be written concisely as

We now consider the following system:

dsXx
5<1=f1(X1)+K-(Xz—X1), T=[|N®Df(x)+KG®DH(x)]-5X, 9
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where 6X=(6xy, ...,0xy)", and Iy denotes theNxN 1.6
identity matrix. If  G=T T with r
=diag(yp, - - - »¥n_1), then the systent9) may be decou-
pled into the following block diagonal form:

Z_\::[|N®Df(x)+Kr®DH(x)]-v, (10

whereV=(vq, ... V)" andv;=X;T;; 6x;. In terms of the
individual components, we haw variational equations:

de
St =[DI0+KyDH(] v, k=01,... N-1.
(11)

FIG. 2. Theoretical prediction of the measure of coherence reso-
nancepr versus noise amplitude for a general system of coupled
Shaotic oscillators.

Note that the conditiorX;G;; =0 implies thatG has at least
one zero eigenvalue, which we take tojag the correspond-
ing equation determines the Lyapunov exponents of the ch
otic attractor inM. The remainingN—1 equations deter-
mine the stability of the orbit in thal(N—1) directions
transverse toM. There exists a critical valué, of the cou-

the temporal regularity af(t) is modulated by noise, we use
the following measure introduced in R4fL3], for conve-

pling parameter, where fd¢>K,, the chaotic synchroniza- nience.

tion state becomes transversely stable. We expect coherence (T)

resonance to occur in a parameter regime albqut Br=—F—=, (14
From the above analysis, we see that all signglt) (i vvar(T)

=1,... N), except the one inV, exhibits on-off intermit-

where T is the interval between the bursts, ag#@l) and

Var(T) are the average value and variancerl¢f), respec-
tively. To obtain(T) andVar(T), we consider the following
Fokker-Planck equation associated with EtR):

tency for K aboutK; under the influence of noise. As a
practical matter, we write

N
vi(t)=j21 Tij - (X = Xs), 12) P P 1 1 2
= R I _ - 2
g 70 ( )\v+26U P +2(7U2[(6v +D)P],
whereX, is an arbitrary point inM. If the phase-space re- (15)

gion in which the chaotic attractor of each individual oscil-

lator lies contains the origik=0, we may conveniently WhereP(v,t) is the time-dependent probability distribution
choosexs=0. In the presence of noise, coherence resonanciinction of the random variable(t), D is the noise ampli-
may then be observed in any Component\bﬂ:hat is not tude, ande is the amplitude ON(t) Noting that the inter-

in M. mittent intervalT is in fact the first-passage time, we solve
If the oscillators coupled are not identical, the synchroni-Ed- (15) for quantities that are required for characterizing the
zation statex;= ...=xy is no longer invariant. Analogous time regularity ofv(t) under the conditions that there is an

to the case of two coupled nonidentical oscillators, we expecdbsorbing boundary at=a and a reflecting one at=b. We
the signals defined in Eq12) to exhibit coherence reso- Obtain[50], for the first and second moments Bf the fol-

nance under the influence of noise. lowing:
a y
D. An analyzable model (T(vo))= Zf dy(ey?+ D)We)f(llz)fb (ez?
. . . vo
To make the analysis feasible, we consider one scalar o
variable that exhibits on-off intermittency. That is, we con- +D) (M2~ (Magz,
sider the one-dimensional version of H§). Under the in-
fluence of external noisé,(t), we have <T2>:4Jady( eyz_’_D)()\/e)*(l/Z)
vo

o=[~N+N()Jv+ &)+ E()=[~N+N(D)Jo+ &), )
(13 Xf (e22+ D)~ (11D-WN(T(2))dz,
b
where &(t) now stands for the combination of internal cha-
otic modulation and external noise. Note that Efj3) is  whereuv, is the initial value ofv(t). The quantityB: may
similar to the paradigmatic model for analyzing on-off inter- then be obtained from these moments. Figure 2 shows a typi-
mittency under the influence of noi$48]. To quantify how cal behavior of 31 as a function ofD that we obtain by
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FIG. 3. For a pair of two-coupled identical Lorenz chaotic os-

cillators, the largest transverse Lyapunov exponent versus the cou- FIG- 4. For a pair of two-c?u_pled identical Lorenz chaotic os-
pling parameteK. cillators at couplingK=4.0>K_: time seriesAy(t) at three differ-

ent noise levelsD=0.001(a), D=0.03(b), andD=0.3(¢).

numerically evaluating the integrals contained in the mo-
ments with the following parametergarbitrary: vq
=-5, a=1, b=-20, and\=¢e=10"*. Signature of co-
herence resonance is seen clearly from Fig. 2 witarat-
tains a maximum value at some optimal noise amplitude. Th
theoretical predictioriFig. 2) thus suggests that a dynamical
system with on-off intermittency can exhibit coherence reso
nance.

Figures 4a)—4(c) show, forK=4.0=K_, the time series
Ay(t)=|yi(t)—y,(t)| at three different noise levelsD
=0.001, D=0.03, andD =0.3, respectively. Visually, there
gppears to be a strong temporal regularityAip(t) at the
intermediate noise levéFig. 4(b)], compared with those in
Figs. 4a) and 4c). To characterize the degree of this regu-
larity, we compute the corresponding Fourier power spectra.
Figures %a)—5(c) show the power spectra of the signals in
Figs. 4a)—4(c), respectively. For small noidé&ig. 5a)], the
lIl. NUMERICAL EXAMPLES spectrum exhibits no peak except for the oneat0 (the dc
componeny, indicating a lack of the temporal regularity in
the bursting time series. The situation is similar for large
We consider the following system of two coupled Lorenz nojse[Fig. 5(c)]. A pronounced peak ab#0 does exist at

A. Two coupled identical Lorenz oscillators

oscillators: the intermediate noise levéFig. 5b)], indicating the exis-
. tence of a strong time periodic component in the time series.
X10=01AY17 X129 T KXz X1,0) + D (1), The apparent temporal regularity seen in Figo)5can be
quantified by the characteristics of the peak at the nonzero
ym: Y1,X1.0— Y12~ X121+ DEy(), (16) frequencyw, in the spectrum. In particular, we utilize the
following quantity:
2y 5= — D121 3+ X1 Y12 DES(T), Bs=HQ=Hw,/Aw, (17
whereo; 5, 71, andby , are the parameters of the Lorenz 0.08 -
oscillator[51], K is the coupling parameteg, , ,(t) are in- 3 o004 (a) D=0.001
dependent Gaussian random processes that simulate the ex- g~ L
ternal noise, an® is the noise amplitude. Here, we consider 0 . . .
the case where the two Lorenz oscillators are identically cha- .0 0.1 02 03 04 05
otic: we seto;,=10.0, y,,=28.0, andb,,=8/3 so that . (b) D=0.03
each Lorenz oscillator, when uncoupled, exhibits a chaotic 2 0.04
attractor. This identity stipulates that the asymptotic synchro- &
nization statex, (t) =x,(t), wherex={x,y,z}, is a solution % X 0.0 03 04 05
of Eq. (16) in the absence of noise. Figure 3 shows the larg- 0.08 - - - © D03

est transverse Lyapunov exponent versus the coupling pa- =
, ot 2 0.04

rameter(For a rigorous definition of the transverse Lyapunov & M

exponents, see Refb2-55,49). We see that, in the noise- 0 . o

less situation, the synchronization state is unstableKor 0 0.1 0.2 © 0.3 0.4 0.5

<K, and stable folK>K., whereK.~3.92. Thus, forK

nearK., under the influence of noise, the coupled system FIG. 5. Fourier power spectra afy(t) for the noise-driven

exhibits dynamical characteristics required for coherenceoupled identical Lorenz chaotic oscillators k= 4.0 and the fol-
resonance. lowing noise levels(a) D=0.001,(b) D=0.03, and(c) D=0.3.
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FIG. 6. Coherence-resonance measBgeversus the noise am- FIG. 7. For a pair of two coupled nonidentical Lorenz chaotic
plitude for the pair of coupled identical Lorenz chaotic oscillators oscillators at coupling< =4.0 with a 10% parameter mismatch,
with coupling paramete(a) K=4.0>K.; and (b) K=3.5<K;, time traces of the signaky(t) at three different noise level$a)
where the solid lines are Polyfit curves. D=0.001,(b) D=0.03, and(c) D=0.3.

whereH is the height of the spectral peak afvd is its half  Figs 7a)-7(c), respectively. Figure 9 shows the coherence-
width [13—25. The equivalence betwegs and B7 in EQ.  resonance measup versus the noise amplitude, where we

(14) can be seen, as follows. A physical process may b@pserve typical features of coherence resonance, as those in
described either in the time domaii{(t), or in the frequency Figs. §a) and &b)

domain by its Fourier transfornk(w). When f(t) is ap-
proximately periodic, its Fourier spectrum exhibits a peak at

wp=1KT) with width Aw. Since T~1/w, we have:(T)
+AT~1/(wp+Aw)~1/wp—Aw/w2. Thus, AT~ A w/w? We consider the following system of, nearest-neighbor

and, hencer=(T)/AT~w,/Aw~ Bs. coupled identical Lorenz chaotic oscillators:

By its definition, a high value of3g indicates a strong
temporal regularity in the bursting time series. Figurés 6
and Gb) shows, for Eq.(16) at K=4.0>K. and K=3.5
<K., respectivelyBs versus the noise amplitude We see :

. . . K . L= =\ —X:Z+
that 85 is small at small noise levels, increases as the noise is Yi= yXi—¥imxizit Dg/(L), (18)
increased, reaches a maximum at an optimal noise level, and
decreases as the noise is increased further. These are features z=—bz+xy+D&(M), i=1,... N,
that are typically associated with stochastic resonance where
typically, a signal-to-noise ratio is plotted against the noise o o _
level, but here the relevant quantity concerns the time reguwhere periodic boundary condition is assumed. The mérix

C. N=3 coupled Lorenz oscillators

Xi=0(Yi—X) +K(Xi+ 1= 2%+ X 1) + D&(D),

larity. and the coupling functiofl(x) in Eq. (7) are given by:

B. Two coupled nonidentical Lorenz oscillators 60 '

. . . o = 40 (a) D=0.001 |
When the oscillators are not identical, the synchronization &

state is no longer invariant. Our analysis in Sec. Il indicates @ 20r
that, if the mismatch between the oscillators is small, on-off 00\‘ X oD o3 od 0.5
intermittency persists in a wide parameter regime even in a 60 . : ; ;
noiseless situatiof43]. With the intermittency, we expect = 40 {b) D=0.03
that noise can regulate effectively the temporal characteris- § 20
tics of the bursting time series and, consequently, coherence ‘
resonance can occur. To stipulate the nonidentity between the % 0.1 0.2 0.3 0.4 0.5
two oscillators in Eq(16), we set:o;=10.0 ando,=11.0, 60 ' ' ' D03
which corresponds to a 10% parameter mismatch. The re- 3 40 (©) D=0.
maining parameters are the same as those in Sec. Ill A. Fig- & 20}
ures 7a)—7(c) show, forKk=4.0 and noise amplitudes &f 0 . " .
=0.001,D=0.03, andD = 0.3, respectively, the output sig- 0 01 02 03 0.4 05
nal Ay(t). Even visually, we notice a strong temporal regu- ®
larity at the intermediate noise amplitupfeig. 7(b)]. Figures FIG. 8. (a)—(c) Fourier power spectra of the signals in Figs.

8(a)—8(c) show the Fourier power spectra of the signals in7(a)-7(c), respectively.
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FIG. 9. Coherence-resonance measggeversus the noise am-
plitude for the pair of coupled nonidentical Lorenz chaotic oscilla-
tors forK=4.0, together with a Polyfit curvesolid line).

-z 1 0 1
-z 1 X
G=| O 1 -z 1 0 [, Hx=|0
0
1 0 0 -z
(19

To be illustrative, we choosd=5 in our numerical experi-
ments. The five eigenvalues o6 are: vy,=0, v;=
—1.382, y3=—-2.0, y,=—3.0, andy, 3.618. The cor-
responding eigenvector matrixthen determines the signals,
as a function of linear combinations of the dynamical vari-
ablesx;(i=1, ...,5), which may potentially exhibit coher-
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1 T
. (a) D=0.09
éo.sL
&

0 . . . .

0 0.1 0.2 0.3 0.4 0.5
. (b) D=0.3
Bos
&

0.3 0.4

0.2

0.5

FIG. 11. (a—(c) Fourier power spectra of the signals in Figs.
10(a)—-10(c), respectively.

V) =Hal —yi() +ya() +ys(t) —ys() ]}, (20
wheref is a smooth function and+ 0 is a constant, exhibits
coherence resonance. Figures(@®©10(c) show, for f(x)
=cosx anda=1.118, the signa¥/(t) at the noise amplitudes
D=0.09, D=0.3, and D=1.0, respectively. Visually,
changes in the temporal regularity of the signals in Figs.
10(a)—10(c) are not apparent. However, there are signatures
of such changes and, hence, coherence resonance, in the cor-
responding power spectra, as shown in Figgai1l(c).
Figure 12 shows the coherence-resonance megkiversus

the noise amplitude, which clearly indicates the achievement
of the maximum temporal regularity of the signal at an op-
timal noise level.

D. Two coupled Chua’s circuits

ence resonance. For instance, we find that the following sig- e consider the following system of two coupled Chua’s

nal:
— 1 !
= AR
>0
_ IM hl“hm.‘ Il | Jlm
21)00 2200 2400 2600 2800 3000
' ' ' (b) D=0.3
So
_21)00 2400 2600 2800 3000

2200

c) D=1.0

Mm

2800

9

V()

0

l, NMML

2400

J\

2200

2hoo

2600
t

3000

FIG. 10. ForN=5 coupled identical Lorenz chaotic oscillators
at couplingK=1.1, time traces of the sign¥(t) [Eq.(20)] at three
noise levels{a) D=0.09, (b) D=0.3, and(c) D=1.0, wheref(x)
=COSX.

circuits in dimensionless form56], which can be readily
implemented in laboratory experiments:

0.9

0.6r

0.3r

-1.5 -0.5

4
Iog10 D

FIG. 12. Coherence-resonance meagyeersus the noise am-
plitude for five coupled identical Lorenz chaotic oscillators with
coupling parameteK = 1.1, where the solid line is a Polyfit curve.
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0.6

0.551

0.4}

0'350 0.002 0.004 0.006 0.008 0.01

D

FIG. 13. For a pair of coupled identical Chua chaotic oscillators  FIG. 15. Coherence-resonance meagggeersus the noise am-
at couplingk =0.3, time traces of the signaly(t) at three different  plitude for the pair of coupled identical Chua chaotic oscillators
noise levels(a) D=0.001,(b) D=0.005, andc) D=0.008. with coupling parameteK=0.3, together with a Polyfit curve

(solid line).

X12= a[Y12~ h(X) ]+ K (X217~ X12) T D&(1),
the signalAy(t) =y,(t)—y(t), for D=0.001, D=0.005,

) and D=0.008, respectively. The corresponding power

Y12=X127 Y127 2127 Dy, (2D spectra are shown in Figs. (B}-14(c), respectively. There
exists a spectral peak at>0, the shape of which appears
to be modulated by noise. A strong signature of coherence
resonance can be seen from Fig. 15, which shows the
where h(x)=myx+1/2(my—m;)(|x+1|—|x—1|) is the meafsure,BS versus tl_ﬂe qoise am_plitude. Sjmila_r results are
piecewise linear function that describes the current-voltag@Ptained when the circuits are slightly nonidentical, or when
relation of the nonlinear diode in the circuit, the parameterghe number of coupled circuits is larger than tédata not
of each individual circuit are chosen to beyj=-—1/7, shown).
m,=2/7, «=8.875, B=14.286, ¢;,=0.15, and wy=0.35
so that each circuit exhibits a chaotic attractor when
uncoupled. The coupling parameter ki and the noise IV. DISCUSSION
amplitude isD.

The purpose of studying Eq21) is that the system We summarize by listing the set of necessary dynamical
represents a convenient testbed for experimentally demoRsnditions for coherence resonancét) there exists a
strating coherence resonand®Ve are currently pursuing eference state near which a trajectory can spend long time
this) Figures 18a)—13(c) show, fork=0.3, the time trace of gnans:(2) the system has the potential to temporally burst

out of the reference state; arid) the system is nonlinear.

2 5= — BY1.2+ €0 SiNwpt+ DEy(1),

AO'OZ (a) D=0.001 Under these conditions, it is possible for a signal character-
Booil ] izing the bursting behavior to become temporally more
o !\ regular under the influence of noise. Excitable systems
% o2 o2 5s o8 ] apparently sat_isfy these conditi(_)ns. T_he analysi_s a_nd numeri-
0.02 : : : : cal computations presented in this paper indicate that
— {b) D=0.005 coupled chaotic oscillators, a class of dynamical systems of
58:0_01 ’\ 1 recent interests, also satisfy these conditions and, hence, they
. . generically exhibit coherence resonance. Such systems may
% 0.2 0.4 0.6 0.8 1 be readily constructed in laboratory, say, by using electronic
0.02 ' ' T @ D008 circuits, for experimentally verifying the theoretical
Booil i | prediction of this paper. _ _ _
o Since coupled chaotic oscillators occur in many different
0 - . - contexts of natural sciences, we expect our finding to be
0 02 0.4 06 08 1 important. For example, imagine a biological system consist-

© ing of two coupled, chaotically behaving neurons. Knowing

FIG. 14. (a)—(c) Fourier power spectra of the signals in Figs. that noise may enhance temporal regularity in some outputs
13(a)-13(c), respectively. of the system is clearly of importance if regular behavior is
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desirable, as a tuning of an internal parameter of the system ACKNOWLEDGEMENTS

to move it into a regular regime is practically impossible.
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