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Noise-enhanced temporal regularity in coupled chaotic oscillators
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Existing works on coherence resonance, i.e., the phenomenon of noise-enhanced temporal regularity, focus
on excitable dynamical systems such as those described by the FitzHugh-Nagumo equations. We extend the
scope of coherence resonance to an important class of nonexcitable dynamical systems: coupled chaotic
oscillators. In particular, we argue that, when a system of coupled chaotic oscillators in a noisy environment is
viewed as a signal processing unit, the degree of temporal regularity of certain output signals may be modu-
lated by noise and may reach a maximum value at some optimal noise level. Implications to signal processing
in biological systems are pointed out.
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I. INTRODUCTION

This paper addresses systems of coupled chaotic osc
tors as possible devices for signal modulation and proces
under the influence of noise. Consider, for instance, a o
dimensional array ofN coupled, nearly identical nonlinea
oscillators, each described by the differential equation of
type: dx/dt5F(x), as shown schematically in Fig. 1. As
sume that a signalxi( i 51, . . . ,N), is measured from eac
oscillator and the measurements are further combined b
processing unit to yield an output that is a function of all t
measured signals:U5U(x1 ,x2 , . . . ,xN). Because of the
chaotic nature of the underlying dynamics in each oscilla
the output signalU(t) is typically random in time. The pur
pose of this paper is to show that thetemporal regularityof
the output signalU(t) can be greatly modulated by noise.
particular, there exists an optimal noise amplitude for wh
U(t) can be made predominantly regular, despite the lo
chaotic dynamics in each individual oscillator.

Our motivations are twofold. First, for the purpose of pr
cessing random signals utilizing an engineering system c
sisting of many interconnected subsystems, it is of interes
know how the inevitable presence of noise influences
temporal regularity of the signal. Second, networks
coupled nonlinear oscillators are extremely common in b
ogy, such as neural networks. The range in which the par
eters of each individual element in the network can cha
reasonably can include regimes for chaotic dynamics. Yet
overall output of the network may often be regular. One
ample is the sino-atrial node, the natural pacemaker o
cardiac system, which consists of millions of cells with d
tinct intrinsic oscillating properties. Local chaotic dynami
are possible and have been observed in numerical sim
tions of a pair of coupled, biophysically detailed sino-atr
node cells@1#. Despite the possibility of local chaotic dy
namics, the output of the pacemaker is often regular in ti

The phenomenon of noise-enhanced performance in n
linear systems has been known since the pioneering wor
Benziet al. on stochastic resonance@2#, where the signal-to-
noise ratio of a nonlinear system is found to be sensitive
the noise amplitude and can reach a maximum value a
optimal noise level. The area of stochastic resonance
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been extremely active@3–6#, with phenomena reported re
cently such as extensive stochastic resonance, i.e., stoch
resonance without the need to tune the noise level, if
signal of the system is defined in a particular way@7–9#. All
these works concern the enhancement of the amplitud
certain dynamical variables of the system relative to
noise amplitude. The phenomenon of noise-induced
hancement of temporal regularity of a physical signal w
first noticed by Sigetiet al. @10–12#. This phenomenon was
rediscovered and renamed ascoherence resonancein excit-
able nonlinear dynamical systems@13#. Since then, there
have been a plethora of theoretical works@14–25# and ex-
perimental investigations as well@26–28#.

Typically, in excitable dynamical systems, the time tra
of dynamical variables of physical interest consists of
infinite sequence of bursts occurring at random time int
vals. Coherence resonance is referred to the fact that n
can actually be utilized to improve the temporal regular

FIG. 1. A schematic illustration of a system of coupled nonl
ear oscillators as a signal processing unit.
©2001 The American Physical Society02-1
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of the bursting time series@13#. In particular, at both smal
and large noise levels, the time series appear random in
sense that their Fourier spectra are broad band and ap
ently exhibit no pronounced peaks~we exclude the dc com
ponent!. At some intermediate noise levels, the bursting ti
series appears more regular, which is characterized by
appearance of a finite set of peaks at certain frequencie
one defines a measure, say the ratio of the height of the m
pronounced peak in the Fourier spectrum to its width,
quantify the temporal regularity of the bursting time seri
then one finds that the measure tends to increase as the
level is raised and reaches a maximum value at some opt
noise level. In addition to the difference between cohere
resonances and stochastic resonances that the former co
the temporal aspect of the signal while the latter deal w
quantities related to amplitude such as the signal-to-n
ratio, coherence resonances do not require an external
odic driving @13,29#, versus stochastic resonances that u
ally do @2–6#.

Most existing works on coherence resonance focus ex
sively on excitable systems@13# such as those described b
the FitzHugh-Nagumo equations@30,31# in which the dy-
namics typically consist of a slow motion near some fix
point and rapid excursions away from it. In such systems,
measured time series usually consist of a silent phase a
bursting one, corresponding, respectively, to motions n
the fixed point and the excursion. Temporal regularities
random signals, and consequently, coherence resonance
apparently of great physical, biological, and engineering
portance. The purpose of this paper is to point out that
herence resonance can actually be expected in anothe
portant class of dynamical systems: coupled nonlin
oscillators, which are relevant to a variety of physical a
biological situations@32,33#. In particular, we argue that
when identical or slightly nonidentical chaotic oscillators a
coupled together, the temporal regularity of some measu
signal characterizing the degree of the synchroniza
among the oscillators can be modulated by external nois
the sense of coherence resonance. Such signals, for exa
can simply be the difference among or its function of t
corresponding dynamical variables of the oscillators.
give numerical examples and a quantitative analysis eluci
ing the dynamical mechanism for coherence resonance
coupled oscillator systems. Because of the ubiquity of
occurrence of such systems in nature and in engineerin
correct identification of coherence resonance will be b
theoretically interesting and practically useful for applic
tions such as signal processing. A short account of some
of this work has been published recently@34#.

The rest of the paper is organized as follows. In Sec.
we present a physical theory to explain why coherence re
nances can occur in wide parameter regimes in coupled
otic oscillators, and how to identify and characterize them
Sec. III, we give numerical examples and, particularly, d
scribe how the phenomenon may be tested in laboratory
periments using coupled chaotic electronic circuits. A disc
sion is offered in Sec. IV.
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II. THEORY

Here, we establish the theoretical foundation of cohere
resonance in coupled chaotic oscillators. In particular, giv
such a system, we address the following questions:~1! what
type of signals, say, a combination of the dynamical va
ables from the oscillators, can exhibit coherence resonan
and ~2! how to quantify the resonance? In what follows, w
will describe a hierarchy of systems consisting of tw
coupled identical oscillators, two coupled nonidentical osc
lators, andN(N>3) coupled oscillators, and discuss the ge
eral features of these systems. We will then construct a o
dimensional analyzable model, which captures the comm
ingredients of coupled chaotic oscillators required for coh
ence resonance, and derive explicit solutions demonstra
quantitative features of the resonance.

A. Two coupled identical chaotic oscillators

We consider the following system:

ẋ15f~x1!1K•~x22x1!,

ẋ25f~x2!1K•~x12x2!, ~1!

wherex1,2PR d, f is the vector velocity field of both chaoti
oscillators when uncoupled, andK is the coupling matrix.
Since the oscillators are identical, the synchronization s
~or the synchronization manifold, denoted byM): x15x2, is
a solution of Eq.~1!, which is invariant under its time evo
lution. That is, in a noiseless situation, if the two oscillato
start out being synchronized, they remain so forever. In
ducing two variables:u5(x11x2)/2 andv5(x12x2)/2, we
obtain, near the synchronization manifoldM (v50), the fol-
lowing equations:

u̇5f~u!, ~2!

v̇5F ]f

]u
22K G•v, ~3!

where ]f/]u is the Jacobian matrix of the velocity fieldf.
From Eqs.~2! and ~3!, we see that, in the synchronizatio
manifold, the dynamics is described by the velocity fieldf,
which generates a chaotic flow. In the absence of coupl
i.e., K50, the evolution of the variablev is governed by the
Jacobian matrix]f/]u that possesses at least one tim
averaged eigenvalue that is positive~i.e., a positive trans-
verse Lyapunov exponent!, as the flow generated byf is cha-
otic. Thus, the synchronization solutionv50 is unstable. In a
mathematical term, we say that the synchronization manif
is transversely unstable. As the coupling parameterK is in-
creased, the eigenvalues of the matrix (]f/]u22K ) de-
crease. Eventually, forK.Kc , whereKc is a critical cou-
pling value, all time-averaged eigenvalues of the mat
become negative, signifying an asymptotic stability of t
synchronization state. Since the dynamics in the synchr
zation manifold is chaotic forK.Kc , the synchronism so
achieved is chaotic@35–41#.
2-2
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The above discussion is for noiseless situations. Our p
is, in the presence of noise~of amplitudeD!, for K nearKc ,
the coupled system exhibits dynamical characteristics
quired for coherence resonance. In particular forK&Kc , the
synchronization state is unstable so that the vector sig
v(t), which is simply proportional to the difference betwe
the dynamical variablesx1(t) and x2(t), exhibits an on-off
intermittent behavior@42–46#, regardless of whether noise
absent or present. ForK*Kc , the synchronization state i
stable so thatv(t)→0 asymptotically forD50 ~noiseless
situation!, but for DÞ0, v(t) exhibits, again, on-off inter-
mittency. To understand the origin of the intermittent beh
ior, we focus on the noiseless situation withK&Kc . Let
lT*0 be the largest time-averaged eigenvalue of the ma
(]f/]u22K ). SincelT is an asymptotic quantity, i.e., it i
defined in the infinite time limit, in any finite times it is
random variable with a probability distribution. Suppose
distribute a large number of initial conditions in the synch
nization manifoldM, computelT(t) for each trajectory at
time t, and then construct the histogram of these finite ti
exponents. Typically, the histogram is centered atlT with a
width proportional to 1/At. Thus, at any finite time, the dis
tribution of lT(t) has a tail on the negative side, indicatin
that some trajectories actually experience attraction towa
M. By the ergodicity of chaotic trajectories inM, we see
that a single trajectory, while in general repelled fromM,
will experience episodes of time during which it actually
attracted towardM. Thus, the trajectory tends to stay ne
M with bursts away from it at random times, signifyin
on-off intermittency. At the onset of on-off intermittency, i.e
when lT50, the time interval between two successi
bursts, or thelaminar phase, obeys a power-law probability
distribution with the exponent23/2 @43#. The mechanism
for on-off intermittency may also be understood by analyz
the transverse stabilities of the infinite set of unstable p
odic orbits embedded in the chaotic attractor inM @36,47#.
For K*Kc with noise, the above dynamical picture remai
qualitatively similar. ForK*Kc without noise, on-off inter-
mittency occurs only for a finite amount of time becau
asymptotically,M is stable. However, noise may cause t
trajectories to be desynchronized, sustaining the on-off in
mittent behavior.

A characteristic feature of on-off intermittency is the e
istence of two distinct states: the ‘‘off’’ state in whichv(t)
'0 and the ‘‘on’’ state wherev(t) deviates significantly
away from the ‘‘off’’ state. Typically, the system tends
reside in the ‘‘off’’ state for a certain amount of random tim
with intermittent bursts away from the ‘‘off’’ state~the ‘‘on’’
state!. Roughly, the ‘‘off’’ and ‘‘on’’ states here correspond t
the motion near the fixed point and the excursion away fr
it, respectively, in a typical excitable system that exhib
coherence resonance. Thus, qualitatively, under the influe
of noise, we expect coherence resonance to occur in cou
chaotic systems.

B. Two coupled nonidentical chaotic oscillators

We now consider the following system:

ẋ15f1~x1!1K•~x22x1!,
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ẋ25f2~x2!1K•~x12x2!, ~4!

wherex1,2PR d, f1, andf2 are the velocity fields of the cha
otic oscillators when uncoupled. We consider the situat
where the two oscillators are slightly nonidentical:f1'f2,
and explore the dynamics near the approximate synchron
tion state:x1'x2. In variablesu andv, we obtain, near the
approximate synchronization statev'0, the following equa-
tions:

u̇'
1

2
@ f1~u!1f2~u!#1

1

2 S ]f1

]u
2

]f2

]u D •v, ~5!

v̇'F1

2 S ]f1

]u
1

]f2

]u D22K G•v1
1

2
@ f1~u!2f2~u!#,

[@2A1N~ t !#•v1ji~ t !, ~6!

where ]f1,2/]u are the Jacobian matrices of the veloc
fields f1,2, respectively,2A is a matrix whose elements ar
the average values of the corresponding elements of the
trix in front of v in Eq. ~6!, N(t) is a zero-mean random
matrix, andji(t) stands for the small chaotic modulatio
term in Eq.~6!, which vanishes if the oscillators are ident
cal. Since both oscillators are chaotic, we see from Eq.~5!
that the variablesu is typically chaotic because approx
mately, it is the average ofx1 andx2 under a small chaotic
modulation term proportional tov. The variablev, on the
other hand, obeys the equation that describes on-off inter
tency @48# under ‘‘noise’’ becauseu is chaotic. Thus, we
expect to observe coherence resonance in the signalv(t)
under the influence of external noise.

C. N„NÐ3… coupled chaotic oscillators

We consider the following system ofN coupled, identical
chaotic oscillators:

dxi

dt
5f~xi !1K(

j 51

N

Gi j H~xj !, i 51, . . . ,N, ~7!

whereGi j ’s are elements of the normalized coupling mat
G andH(x) is a smooth function. The synchronization man
fold M is defined by:x15x25 . . . 5xN . If Gi j ’s satisfy the
condition( jGi j 50 for all i, thenM is an invariant subspac
of Eq. ~7!. The stability ofM may be assessed by examinin
the variational equation derived from Eq.~7!, as follows
@49#:

ddxi

dt
5Df~xi !•dxi1K(

j 51

N

Gi j DH~xi !•dxj , ~8!

where Df and DH denote the partial derivatives. OnM,
wherex15 . . . 5xN5x, this may be written concisely as

ddX

dt
5@ IN^ Df~x!1KG^ DH~x!#•dX, ~9!
2-3
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where dX5(dx1 , . . . ,dxN)T, and IN denotes theN3N
identity matrix. If G5T21GT with G
5diag(g0 , . . . ,gN21), then the system~9! may be decou-
pled into the following block diagonal form:

dV

dt
5@ IN^ Df~x!1KG^ DH~x!#•V, ~10!

whereV5(v1 , . . . ,vN)T andvi5( jTi j dxj . In terms of the
individual components, we haveN variational equations:

dvk

dt
5@Df~x!1KgkDH~x!#•vk , k50,1, . . . ,N21.

~11!

Note that the condition( jGi j 50 implies thatG has at least
one zero eigenvalue, which we take to beg0; the correspond-
ing equation determines the Lyapunov exponents of the c
otic attractor inM. The remainingN21 equations deter
mine the stability of the orbit in thed(N21) directions
transverse toM. There exists a critical valueKc of the cou-
pling parameter, where forK.Kc , the chaotic synchroniza
tion state becomes transversely stable. We expect coher
resonance to occur in a parameter regime aboutKc .

From the above analysis, we see that all signalsvi(t) ( i
51, . . . ,N), except the one inM, exhibits on-off intermit-
tency for K about Kc under the influence of noise. As
practical matter, we write

vi~ t !5(
j 51

N

Ti j •~xj2xs!, ~12!

wherexs is an arbitrary point inM. If the phase-space re
gion in which the chaotic attractor of each individual osc
lator lies contains the originx50, we may conveniently
choosexs50. In the presence of noise, coherence resona
may then be observed in any component ofV that is not
in M.

If the oscillators coupled are not identical, the synchro
zation statex15 . . . 5xN is no longer invariant. Analogou
to the case of two coupled nonidentical oscillators, we exp
the signals defined in Eq.~12! to exhibit coherence reso
nance under the influence of noise.

D. An analyzable model

To make the analysis feasible, we consider one sc
variable that exhibits on-off intermittency. That is, we co
sider the one-dimensional version of Eq.~6!. Under the in-
fluence of external noiseje(t), we have

v̇5@2l1N~ t !#v1j i~ t !1je~ t ![@2l1N~ t !#v1j~ t !,
~13!

wherej(t) now stands for the combination of internal ch
otic modulation and external noise. Note that Eq.~13! is
similar to the paradigmatic model for analyzing on-off inte
mittency under the influence of noise@48#. To quantify how
06620
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the temporal regularity ofv(t) is modulated by noise, we us
the following measure introduced in Ref.@13#, for conve-
nience:

bT5
^T&

AVar~T!
, ~14!

where T is the interval between the bursts, and^T& and
Var(T) are the average value and variance ofT(t), respec-
tively. To obtain^T& andVar(T), we consider the following
Fokker-Planck equation associated with Eq.~13!:

]P

]t
52

]

]v F S 2lv1
1

2
ev D PG1

1

2

]2

]v2
@~ev21D !P#,

~15!

whereP(v,t) is the time-dependent probability distributio
function of the random variablev(t), D is the noise ampli-
tude, ande is the amplitude ofN(t). Noting that the inter-
mittent intervalT is in fact the first-passage time, we solv
Eq. ~15! for quantities that are required for characterizing t
time regularity ofv(t) under the conditions that there is a
absorbing boundary atv5a and a reflecting one atv5b. We
obtain @50#, for the first and second moments ofT, the fol-
lowing:

^T~v0!&52E
v0

a

dy~ey21D !(l/e)2(1/2)E
b

y

~ez2

1D !2(1/2)2(l/e)dz,

^T2&54E
v0

a

dy~ey21D !(l/e)2(1/2)

3E
b

y

~ez21D !2(1/2)2(l/e)^T~z!&dz,

wherev0 is the initial value ofv(t). The quantitybT may
then be obtained from these moments. Figure 2 shows a t
cal behavior ofbT as a function ofD that we obtain by

FIG. 2. Theoretical prediction of the measure of coherence re
nancebT versus noise amplitude for a general system of coup
chaotic oscillators.
2-4
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numerically evaluating the integrals contained in the m
ments with the following parameters~arbitrary!: v0
525, a51, b5220, andl5e51024. Signature of co-
herence resonance is seen clearly from Fig. 2 wherebT at-
tains a maximum value at some optimal noise amplitude.
theoretical prediction~Fig. 2! thus suggests that a dynamic
system with on-off intermittency can exhibit coherence re
nance.

III. NUMERICAL EXAMPLES

A. Two coupled identical Lorenz oscillators

We consider the following system of two coupled Lore
oscillators:

ẋ1,25s1,2~y1,22x1,2!1K~x2,12x1,2!1Djx~ t !,

ẏ1,25g1,2x1,22y1,22x1,2z1,21Djy~ t !, ~16!

ż1,252b1,2z1,21x1,2y1,21Djz~ t !,

wheres1,2, g1,2, andb1,2 are the parameters of the Loren
oscillator @51#, K is the coupling parameter,jx,y,z(t) are in-
dependent Gaussian random processes that simulate th
ternal noise, andD is the noise amplitude. Here, we consid
the case where the two Lorenz oscillators are identically c
otic: we sets1,2510.0, g1,2528.0, andb1,258/3 so that
each Lorenz oscillator, when uncoupled, exhibits a cha
attractor. This identity stipulates that the asymptotic synch
nization state:x1(t)5x2(t), wherex5$x,y,z%, is a solution
of Eq. ~16! in the absence of noise. Figure 3 shows the la
est transverse Lyapunov exponent versus the coupling
rameter~For a rigorous definition of the transverse Lyapun
exponents, see Refs.@52–55,49#!. We see that, in the noise
less situation, the synchronization state is unstable foK
,Kc and stable forK.Kc , whereKc'3.92. Thus, forK
nearKc , under the influence of noise, the coupled syst
exhibits dynamical characteristics required for cohere
resonance.

FIG. 3. For a pair of two-coupled identical Lorenz chaotic o
cillators, the largest transverse Lyapunov exponent versus the
pling parameterK.
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Figures 4~a!–4~c! show, forK54.0*Kc , the time series
Dy(t)[uy1(t)2y2(t)u at three different noise levels:D
50.001, D50.03, andD50.3, respectively. Visually, there
appears to be a strong temporal regularity inDy(t) at the
intermediate noise level@Fig. 4~b!#, compared with those in
Figs. 4~a! and 4~c!. To characterize the degree of this reg
larity, we compute the corresponding Fourier power spec
Figures 5~a!–5~c! show the power spectra of the signals
Figs. 4~a!–4~c!, respectively. For small noise@Fig. 5~a!#, the
spectrum exhibits no peak except for the one atv50 ~the dc
component!, indicating a lack of the temporal regularity i
the bursting time series. The situation is similar for lar
noise@Fig. 5~c!#. A pronounced peak atvÞ0 does exist at
the intermediate noise level@Fig. 5~b!#, indicating the exis-
tence of a strong time periodic component in the time ser
The apparent temporal regularity seen in Fig. 5~b! can be
quantified by the characteristics of the peak at the nonz
frequencyvp in the spectrum. In particular, we utilize th
following quantity:

bS[HQs[Hvp /Dv, ~17!

-
u- FIG. 4. For a pair of two-coupled identical Lorenz chaotic o
cillators at couplingK54.0.Kc : time seriesDy(t) at three differ-
ent noise levels:D50.001~a!, D50.03 ~b!, andD50.3 ~c!.

FIG. 5. Fourier power spectra ofDy(t) for the noise-driven
coupled identical Lorenz chaotic oscillators forK54.0 and the fol-
lowing noise levels:~a! D50.001,~b! D50.03, and~c! D50.3.
2-5
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whereH is the height of the spectral peak andDv is its half
width @13–25#. The equivalence betweenbS and bT in Eq.
~14! can be seen, as follows. A physical process may
described either in the time domain:f (t), or in the frequency
domain by its Fourier transformF(v). When f (t) is ap-
proximately periodic, its Fourier spectrum exhibits a peak
vp51/̂ T& with width Dv. Since T;1/v, we have:^T&
1DT;1/(vp1Dv)'1/vp2Dv/vp

2 . Thus, DT;Dv/vp
2

and, hence,bT5^T&/DT;vp /Dv;bS .
By its definition, a high value ofbS indicates a strong

temporal regularity in the bursting time series. Figures 6~a!
and 6~b! shows, for Eq.~16! at K54.0.Kc and K53.5
,Kc , respectively,bS versus the noise amplitudeD. We see
thatbS is small at small noise levels, increases as the nois
increased, reaches a maximum at an optimal noise level,
decreases as the noise is increased further. These are fe
that are typically associated with stochastic resonance w
typically, a signal-to-noise ratio is plotted against the no
level, but here the relevant quantity concerns the time re
larity.

B. Two coupled nonidentical Lorenz oscillators

When the oscillators are not identical, the synchronizat
state is no longer invariant. Our analysis in Sec. II indica
that, if the mismatch between the oscillators is small, on-
intermittency persists in a wide parameter regime even
noiseless situation@43#. With the intermittency, we expec
that noise can regulate effectively the temporal characte
tics of the bursting time series and, consequently, cohere
resonance can occur. To stipulate the nonidentity between
two oscillators in Eq.~16!, we set:s1510.0 ands2511.0,
which corresponds to a 10% parameter mismatch. The
maining parameters are the same as those in Sec. III A.
ures 7~a!–7~c! show, forK54.0 and noise amplitudes ofD
50.001, D50.03, andD50.3, respectively, the output sig
nal Dy(t). Even visually, we notice a strong temporal reg
larity at the intermediate noise amplitude@Fig. 7~b!#. Figures
8~a!–8~c! show the Fourier power spectra of the signals

FIG. 6. Coherence-resonance measurebS versus the noise am
plitude for the pair of coupled identical Lorenz chaotic oscillato
with coupling parameter~a! K54.0.Kc and ~b! K53.5,Kc ,
where the solid lines are Polyfit curves.
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Figs. 7~a!–7~c!, respectively. Figure 9 shows the coherenc
resonance measurebS versus the noise amplitude, where w
observe typical features of coherence resonance, as tho
Figs. 6~a! and 6~b!.

C. NÐ3 coupled Lorenz oscillators

We consider the following system ofN, nearest-neighbor
coupled identical Lorenz chaotic oscillators:

ẋi5s~yi2xi !1K~xi 1122xi1xi 21!1Djx~ t !,

ẏi5gxi2yi2xizi1Djy~ t !, ~18!

żi52bzi1xiyi1Djz~ t !, i 51, . . . ,N,

where periodic boundary condition is assumed. The matriG
and the coupling functionH(x) in Eq. ~7! are given by:

FIG. 7. For a pair of two coupled nonidentical Lorenz chao
oscillators at couplingK54.0 with a 10% parameter mismatch
time traces of the signalDy(t) at three different noise levels:~a!
D50.001,~b! D50.03, and~c! D50.3.

FIG. 8. ~a!–~c! Fourier power spectra of the signals in Fig
7~a!–7~c!, respectively.
2-6
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G5S 2z 1 0 0 ¯ 1

1 2z 1 0 ¯ 0

0 1 2z 1 ¯ 0

¯ ¯ ¯ ¯ ¯ ¯

1 0 0 ¯ ¯ 2z

D , H~x!5S x

0

0
D .

~19!

To be illustrative, we chooseN55 in our numerical experi-
ments. The five eigenvalues ofG are: g050, g15
21.382, g3522.0, g4523.0, andg4523.618. The cor-
responding eigenvector matrixT then determines the signal
as a function of linear combinations of the dynamical va
ablesxi( i 51, . . .,5), which may potentially exhibit coher
ence resonance. For instance, we find that the following
nal:

FIG. 10. ForN55 coupled identical Lorenz chaotic oscillato
at couplingK51.1, time traces of the signalV(t) @Eq. ~20!# at three
noise levels:~a! D50.09, ~b! D50.3, and~c! D51.0, wheref (x)
5cosx.

FIG. 9. Coherence-resonance measurebS versus the noise am
plitude for the pair of coupled nonidentical Lorenz chaotic oscil
tors for K54.0, together with a Polyfit curve~solid line!.
06620
-
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V~ t ![ f $a@2y1~ t !1y2~ t !1y3~ t !2y5~ t !#%, ~20!

wheref is a smooth function andaÞ0 is a constant, exhibits
coherence resonance. Figures 10~a!–10~c! show, for f (x)
5cosx anda51.118, the signalV(t) at the noise amplitudes
D50.09, D50.3, and D51.0, respectively. Visually,
changes in the temporal regularity of the signals in Fi
10~a!–10~c! are not apparent. However, there are signatu
of such changes and, hence, coherence resonance, in th
responding power spectra, as shown in Figs. 11~a!–11~c!.
Figure 12 shows the coherence-resonance measurebS versus
the noise amplitude, which clearly indicates the achievem
of the maximum temporal regularity of the signal at an o
timal noise level.

D. Two coupled Chua’s circuits

We consider the following system of two coupled Chua
circuits in dimensionless form@56#, which can be readily
implemented in laboratory experiments:

FIG. 11. ~a!–~c! Fourier power spectra of the signals in Fig
10~a!–10~c!, respectively.

FIG. 12. Coherence-resonance measurebS versus the noise am
plitude for five coupled identical Lorenz chaotic oscillators wi
coupling parameterK51.1, where the solid line is a Polyfit curve

-
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ẋ1,25a@y1,22h~x!#1K~x2,12x1,2!1Djx~ t !,

ẏ1,25x1,22y1,21z1,21Djy , ~21!

ż1,252by1,21e0 sinv0t1Djz~ t !,

where h(x)5m1x11/2(m02m1)(ux11u2ux21u) is the
piecewise linear function that describes the current-volt
relation of the nonlinear diode in the circuit, the paramet
of each individual circuit are chosen to be:m0521/7,
m152/7, a58.875, b514.286, e050.15, and v050.35
so that each circuit exhibits a chaotic attractor wh
uncoupled. The coupling parameter isK and the noise
amplitude isD.

The purpose of studying Eq.~21! is that the system
represents a convenient testbed for experimentally dem
strating coherence resonance.~We are currently pursuing
this.! Figures 13~a!–13~c! show, forK50.3, the time trace of

FIG. 13. For a pair of coupled identical Chua chaotic oscillat
at couplingK50.3, time traces of the signalDy(t) at three different
noise levels:~a! D50.001,~b! D50.005, and~c! D50.008.

FIG. 14. ~a!–~c! Fourier power spectra of the signals in Fig
13~a!–13~c!, respectively.
06620
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the signalDy(t)5y2(t)2y1(t), for D50.001, D50.005,
and D50.008, respectively. The corresponding pow
spectra are shown in Figs. 14~a!–14~c!, respectively. There
exists a spectral peak atv.0, the shape of which appear
to be modulated by noise. A strong signature of cohere
resonance can be seen from Fig. 15, which shows
measurebS versus the noise amplitude. Similar results a
obtained when the circuits are slightly nonidentical, or wh
the number of coupled circuits is larger than two~data not
shown!.

IV. DISCUSSION

We summarize by listing the set of necessary dynam
conditions for coherence resonance:~1! there exists a
reference state near which a trajectory can spend long
spans;~2! the system has the potential to temporally bu
out of the reference state; and~3! the system is nonlinear
Under these conditions, it is possible for a signal charac
izing the bursting behavior to become temporally mo
regular under the influence of noise. Excitable syste
apparently satisfy these conditions. The analysis and num
cal computations presented in this paper indicate t
coupled chaotic oscillators, a class of dynamical system
recent interests, also satisfy these conditions and, hence,
generically exhibit coherence resonance. Such systems
be readily constructed in laboratory, say, by using electro
circuits, for experimentally verifying the theoretica
prediction of this paper.

Since coupled chaotic oscillators occur in many differe
contexts of natural sciences, we expect our finding to
important. For example, imagine a biological system cons
ing of two coupled, chaotically behaving neurons. Knowi
that noise may enhance temporal regularity in some outp
of the system is clearly of importance if regular behavior

s FIG. 15. Coherence-resonance measurebS versus the noise am
plitude for the pair of coupled identical Chua chaotic oscillato
with coupling parameterK50.3, together with a Polyfit curve
~solid line!.
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desirable, as a tuning of an internal parameter of the sys
to move it into a regular regime is practically impossib
Similar applications may be anticipated in a system of t
coupled chaotic lasers where a regular output signa
desirable.
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