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We respond to the Comment by Pikovsky and Rosenblum by presenting physical intuitions, further argu-
ments, and numerical results for the occurrence of intermittency in chaotic rotations.
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Intermittency and chaotic rotations are interesting rec
topics in nonlinear dynamics, and we are pleased that
contribution@2# is of sufficient interest to have generated t
preceding Comment by Pikovsky and Rosenblum@1#. We
welcome the opportunity to respond and to clarify our wo

The main point of our original paper is that a chao
rotation typically exhibits an intermittent behavior@2#. The
physical intuition for our study comes from the observati
of rotational structures in well studied chaotic flows such
the Rössler oscillator@3#. The differential equations of the
Rössler system apparently contain an ideal rotational st
ture generated by a harmonic oscillator, as follows:

dx̂

dt
52v0ŷ,

dŷ

dt
5v0x̂, ~1!

wherex̂ and ŷ are the position and the velocity of the osc
lator, respectively, andv0 is the frequency of the rotation
For the Ro¨ssler oscillator, if one examines the time evoluti
of the phase variable defined byf(t)5tan21@y(t)/x(t)#,
wherex andy are dynamical variables of the Ro¨ssler equa-
tions, one finds that, on average, it increases approxima
linearly with time:^f(t)&;v0t @Fig. 1~c! in @2##. When the
instantaneous frequencyv(t)5df(t)/dt is examined, one
finds that it tends to spend intervals of times nearv0, with
occasional bursts away from it@Fig. 1~d! in @2##. The ideal
rotation of the harmonic oscillator thus serves, in an appro
mate sense, as an ‘‘invariant’’ structure embedded in
corresponding chaotic rotation. If one regards rotations n
the ‘‘invariant’’ one as the ‘‘off’’ state and those away from
the ‘‘invariant’’ one as the ‘‘on’’ state, one clearly encoun
ters a situation similar to that of on-off intermittency.

For the detection of on-off intermittency, there exists
rigorous criterion. Most existing works cite the followin
conditions @4,5#: ~1! there exists an invariant state~‘‘off’’
state! in which the trajectory can stay for various time inte
vals, ~2! these time intervals are random, and~3! the trajec-
tory can occasionally burst out of the ‘‘off’’ state. Figure
1~d!, 2~d!, and 3 in our paper@2# contain these three feature
The authors of the Comment stated that a simple visual
spection of the time course of the instantaneous freque
does not lead to a recognition of on-off intermittency. He
we wish to point out the importance of looking at large tim
scales when performing such a visual inspection. The t
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scales should be such that some key quantities assoc
with the rotational dynamics can be treated effectively
random variables. Specifically, in Eq.~1! in our original pa-
per @2#, the quantitiesa(t) and b(t) are deterministic, but
they are effectively random variables on large time sca
because they depend on dynamical variables of a cha
system. To obtain a better idea about the behavior ofa(t)
and b(t), we show in Figs. 1~a!–1~d! their probability dis-
tributions, where Figs. 1~a! and 1~c! are on a linear scale an
Figs. 1~b! and 1~d! are on a semilogarithmic scale. Appa
ently, botha(t) andb(t) haveapproximatelyzero mean and
they are distributed in ranges near zero. Ideally, ifa(t) and
b(t) are independent ofv(t), then Eq.~1! in our original
paper@2# represents the standard setting for observing on
intermittency@4,5#. Realistically,a(t) and b(t) are related
to v(t), as the authors of the Comment pointed out. Ho
ever, on large time scales, statistical independence is
pected, at least in an approximate sense, as we argued i
original paper@2# @Eqs. ~3! and ~4! and the accompanying
reasoning#. The main point here is that, on short time scal
no dynamical variable, if it comes from a determinist
continuous-time flow, would look intermittent. However, o
long time scales, some observables of a chaotic system,
as the instantaneous rotational frequency, can exhibit
intermittentlike behavior in the approximate sense descri
above. That is all we wished to convey in our origin
paper@2#.

FIG. 1. Statistical distributions ofa(t) and b(t). ~a,c! on a
linear scale,~b,d! on a semilogarithmic scale.
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The general theoretical argument against intermittenc
chaotic rotations presented by the authors of the Comm
appears to be the following: a process cannot be called
termittent’’ if the return times between bursts are expon
tially distributed. We wish to state that this argument is m
leading, as the distribution of return times in a realis
situation of on-off intermittency is typically exponential
large times. It was previously pointed out by Heagyet al. @5#
that the power-law distribution of return times is expect
only at the onset of on-off intermittency for systems with
perfect invariant subspace~typically due to symmetry! that
contains the ‘‘off’’ state. An exponential tail immediatel
develops as soon as the parameter moves away from
onset, although this tail may occur at such large times th
may not be observable in practice. A relevant but more
portant question is the following: In a realistic physical sit
ation where there is a symmetry breaking so that there is
perfect invariant subspace, can one expect a power-law
tribution? Our answer is generally no and, to the contra
when a symmetry-breaking perturbation is present, no ma
how small, the distribution of the return times immediate
becomes exponential. This result can be illustrated by ut
ing the following paradigmatic map model@5# for on-off
intermittency, incorporating symmetry-breaking perturb
tions:

xn115 f ~xn!,

yn115axnyn~12yn!1h, ~2!

where f (x) is a chaotic map,h is the symmetry-breaking
parameter, and forh50 there is an invariant subspace d
fined by y50. For h*0, on-off intermittency is observed
For h50, the distribution of the return timet ~or laminar
phase! appears to obey a power law, as shown on a logar
mic scale in Fig. 2~a!, wherea52.75 andf (x) is chosen to
be the tent map~in this setting, the onset of on-off intermit
tency occurs atac5e'2.718 28). However, whenh is in-

FIG. 2. For the simple model Eq.~2! for a52.75, ~a! for h
50, power-law~algebraic! distribution of the return times inyn ,
the on-off intermittent variable, and~b! for h51028, exponential
distribution of return times.
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creased from zero, the time series$yn% still looks quite on-
off intermittent, but the original power-law distribution i
immediately replaced by exponential ones at large times
shown in Fig. 2~b! for the case whereh51028. A thorough
analysis of such perturbed on-off intermittency has been p
formed recently@6#. The message here is that on-off inte
mittency with exponential distribution of return times is typ
cal, since there exists no perfect symmetry and/or invar
subspace in physical situations. In the case of chaotic r
tions, the termb(t) in Eq. ~1! in our paper @2# is a
symmetry-breaking term, as we explained there. Thus, g
erally we expect to have an exponential distribution for lar
return times, although this exponential tail may or may n
be observed in specific numerical examples.

We wish to remark that in dynamical systems with
invariant subspace the process of on-off intermittency can
viewed conveniently as a codimension-1 bifurcation@4# with
parameter, say,p. That is, the intermittency usually exhibit
a parameter dependence where the average lengtht of the
laminar phases diverges at a critical parameterpc . In the
presence of symmetry breaking~characterized by a param
etere!, the problem of the intermittency transition become
phenomenon of codimension-2 bifurcation. In such a gen
case, divergence oft can still be expected in the two
dimensional parameter space (p,e) for p→pc ande→0 @6#.
For a chaotic rotation, if these two parameters can be id
tified, then it may be possible to observe the divergence ot.
How to do this is an open problem.

Another feature of the effect of symmetry-breaking pe
turbations is the broadening of the ‘‘off’’ state, which
particularly apparent in the Lorenz attractor@7#, as shown in
Fig. 2 of our original paper@2#. Chaotic rotations in the
Lorenz attractor are more complicated than those in
Rössler system, as the Lorenz attractor consists of two scr
with distinct centers of rotation. Depending on the spec
choice of the change of variables to obtain well-defined
tations@8#, the degree of the intermittent behavior from v
sual inspection may vary. In any case, when a proper, bro
ened ‘‘off’’ state is defined and attention is focused on t
behavior of the instantaneous frequency away from
‘‘‘off’’ state, we observe, approximately, a behavior that w
choose to call intermittency~to be consistent with the term
used for the Ro¨ssler oscillator!. The authors of the Commen
did not agree with this usage of the terminology.

As for the relation between phase diffusion and interm
tency, we can only remark that, while normal versus anom
lous diffusions can in fact be rigorously defined in terms
the scaling laws and exponents of various statistical qua
ties, it is not possible to do so for intermittency. In particula
it is not proper to define intermittency based on scaling la
such as the distribution of the return times, because suc
distribution for on-off intermittent processes can be eith
exponential, or algebraic, or a mixture of both on differe
time scales. Thus, to argue for the absence of intermitte
in terms of phase diffusion is meaningless. As far as Ref.@9#
is concerned, we point out that the numerically observ
fractional Brownian motion there isnot associated with the
overall phase of the Lorenz attractor. It is rather for cert
specific rotational components obtained via an empiri
4-2
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mode decomposition procedure@8#. The authors of the Com
ment have misinterpreted the meaning of the phase varia
utilized in Ref.@9#.

In summary, so far there exists no rigorous definition
‘‘intermittency’’ and, as the authors of the Comment ha
pointed out, determining whether there is intermittency
pends mainly on visual examination. In the case of cha
e

ys

h,

f
n
L

ng
it

ns
r a

in
im
ot
ist

05820
les

f

-
ic

rotations, however, we believe that intermittency, at leas
an approximate sense, can be claimed based on visua
spection on large time scales, physical intuition, and anal
of simple models.
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