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We respond to the Comment by Pikovsky and Rosenblum by presenting physical intuitions, further argu-
ments, and numerical results for the occurrence of intermittency in chaotic rotations.
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Intermittency and chaotic rotations are interesting recenscales should be such that some key quantities associated
topics in nonlinear dynamics, and we are pleased that ouwith the rotational dynamics can be treated effectively as
contribution[2] is of sufficient interest to have generated therandom variables. Specifically, in E€L) in our original pa-
preceding Comment by Pikovsky and Rosenbllih We  per[2], the quantitiese(t) and 8(t) are deterministic, but
welcome the opportunity to respond and to clarify our work.they are effectively random variables on large time scales

The main point of our original paper is that a chaotic because they depend on dynamical variables of a chaotic
rotation typically exhibits an intermittent behavif#]. The  system. To obtain a better idea about the behavios (d]j
physical intuition for our study comes from the observationand 3(t), we show in Figs. 8)—1(d) their probability dis-
of rotational structures in well studied chaotic flows such asributions, where Figs. (&) and Xc) are on a linear scale and
the Rassler oscillato3]. The differential equations of the Figs. 1b) and 4d) are on a semilogarithmic scale. Appar-
Rossler system apparently contain an ideal rotational strucently, botha(t) and3(t) haveapproximatelyzero mean and

ture generated by a harmonic oscillator, as follows: they are distributed in ranges near zero. Ideallyy(f) and
R B(t) are independent ob(t), then Eq.(1) in our original

dx - paper 2] represents the standard setting for observing on-off
aqr @Y intermittency[4,5]. Realistically,«(t) and 8(t) are related

to w(t), as the authors of the Comment pointed out. How-
ever, on large time scales, statistical independence is ex-

d_y = woX, 1) pected, at least in an approximate sense, as we argued in our
dt original paper[2] [Egs. (3) and (4) and the accompanying

R R reasoning The main point here is that, on short time scales,
wherex andy are the position and the velocity of the oscil- no dynamical variable, if it comes from a deterministic,
lator, respectively, and, is the frequency of the rotation. continuous-time flow, would look intermittent. However, on
For the Resler oscillator, if one examines the time evolution long time scales, some observables of a chaotic system, such
of the phase variable defined hy(t)=tan Y[y(t)/x(t)], as the instantaneous rotational frequency, can exhibit an
wherex andy are dynamical variables of the Bsler equa- intermittentlike behavior in the approximate sense described
tions, one finds that, on average, it increases approximatelgbove. That is all we wished to convey in our original
linearly with time:{¢(t))~ wot [Fig. 1(c) in [2]]. When the  paper[2].
instantaneous frequenay(t)=d¢(t)/dt is examined, one
finds that it tends to spend intervals of times negr with (@
occasional bursts away from [iFig. 1(d) in [2]]. The ideal 0.06
rotation of the harmonic oscillator thus serves, in an approxi-z a
mate sense, as an “invariant” structure embedded in thex
corresponding chaotic rotation. If one regards rotations nea 003 0.4
the “invariant” one as the “off” state and those away from
the “invariant” one as the “on” state, one clearly encoun-
ters a situation similar to that of on-off intermittency. 0 ] s

For the detection of on-off intermittency, there exists no
rigorous criterion. Most existing works cite the following o2
conditions[4,5]: (1) there exists an invariant statéoff”
statg in which the trajectory can stay for various time inter-

vals, (2) these time intervals are random, a(®l the trajec- g -5 6
tory can occasionally burst out of the “off” state. Figures =
1(d), 2(d), and 3 in our papdr2] contain these three features.

The authors of the Comment stated that a simple visual in-  _10 —11
spection of the time course of the instantaneous frequency  —2 o 2 -2 g 2
does not lead to a recognition of on-off intermittency. Here

we wish to point out the importance of looking at large time  FIG. 1. Statistical distributions of(t) and A(t). (a, on a
scales when performing such a visual inspection. The timéinear scale(b,d) on a semilogarithmic scale.
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0 creased from zero, the time serigs,} still looks quite on-
= off intermittent, but the original power-law distribution is
5 -21 immediately replaced by exponential ones at large times, as
O;C’- shown in Fig. 2b) for the case whergy=10"8. A thorough
o analysis of such perturbed on-off intermittency has been per-
5 | formed recently{6]. The message here is that on-off inter-
o 1 5 3 4 5 mittency with exponential distribution of return times is typi-
log, T cal, since there exists no perfect symmetry and/or invariant
0 ' ' ' ' ” subspace in physical situations. In the case of chaotic rota-
_ (b)n =10 tions, the termp(t) in Eqg. (1) in our paper[2] is a
f -21 I symmetry-breaking term, as we explained there. Thus, gen-
c).? erally we expect to have an exponential distribution for large
o 4 I return times, although this exponential tail may or may not
be observed in specific numerical examples.
—60 200 400 - 500 800 P _ Wg wish to remark that in dynamica] systems with an
invariant subspace the process of on-off intermittency can be
FIG. 2. For the simple model Eq2) for a=2.75, (a) for Viewed conveniently as a codimension-1 bifurcafidhwith
=0, power-law(algebraig distribution of the return times iy,, ~ Parameter, sayp. That is, the intermittency usually exhibits
the on-off intermittent variable, antb) for =108, exponential & parameter dependence where the average lengththe
distribution of return times. laminar phases diverges at a critical paramgigr In the

presence of symmetry breakirfgharacterized by a param-

The general theoretical argument against intermittency irgtere), the problem of the intermittency transition becomes a
chaotic rotations presented by the authors of the Commerthenomenon of codimension-2 bifurcation. In such a general
appears to be the following: a process cannot be called “incase, divergence of can still be expected in the two-
termittent” if the return times between bursts are exponendimensional parameter spaqgg, ) for p—p. ande—0 [6].
tially distributed. We wish to state that this argument is mis-For a chaotic rotation, if these two parameters can be iden-
leading, as the distribution of return times in a realistictified, then it may be possible to observe the divergence of
situation of on-off intermittency is typically exponential at How to do this is an open problem.
large times. It was previously pointed out by Heagal.[5] Another feature of the effect of symmetry-breaking per-
that the power-law distribution of return times is expectedturbations is the broadening of the “off” state, which is
only at the onset of on-off intermittency for systems with aparticularly apparent in the Lorenz attrac{@l, as shown in
perfect invariant subspadgypically due to symmetrythat  Fig. 2 of our original papef2]. Chaotic rotations in the
contains the “off” state. An exponential tail immediately Lorenz attractor are more complicated than those in the
develops as soon as the parameter moves away from thRossler system, as the Lorenz attractor consists of two scrolls
onset, although this tail may occur at such large times that iwith distinct centers of rotation. Depending on the specific
may not be observable in practice. A relevant but more im<hoice of the change of variables to obtain well-defined ro-
portant question is the following: In a realistic physical situ- tations[8], the degree of the intermittent behavior from vi-
ation where there is a symmetry breaking so that there is neual inspection may vary. In any case, when a proper, broad-
perfect invariant subspace, can one expect a power-law digned “off” state is defined and attention is focused on the
tribution? Our answer is generally no and, to the contrarypehavior of the instantaneous frequency away from the
when a symmetry-breaking perturbation is present, no mattef'off” state, we observe, approximately, a behavior that we
how small, the distribution of the return times immediately choose to call intermittenc{to be consistent with the term
becomes exponential. This result can be illustrated by utilizused for the Rssler oscillator. The authors of the Comment
ing the following paradigmatic map modgb] for on-off  did not agree with this usage of the terminology.
intermittency, incorporating symmetry-breaking perturba- As for the relation between phase diffusion and intermit-

tions: tency, we can only remark that, while normal versus anoma-
lous diffusions can in fact be rigorously defined in terms of

Xn+1= F(Xn), the scaling laws and exponents of various statistical quanti-
ties, it is not possible to do so for intermittency. In particular,

Ynr1=axXpyn(1=yn)+ 7, (2 it is not proper to define intermittency based on scaling laws,

such as the distribution of the return times, because such a
where f(x) is a chaotic mapy is the symmetry-breaking distribution for on-off intermittent processes can be either
parameter, and fop=0 there is an invariant subspace de-exponential, or algebraic, or a mixture of both on different
fined byy=0. For =0, on-off intermittency is observed. time scales. Thus, to argue for the absence of intermittency
For =0, the distribution of the return time (or laminar  in terms of phase diffusion is meaningless. As far as F&3f.
phas¢ appears to obey a power law, as shown on a logarithis concerned, we point out that the numerically observed
mic scale in Fig. 2a), wherea=2.75 andf(x) is chosen to fractional Brownian motion there isot associated with the
be the tent mayin this setting, the onset of on-off intermit- overall phase of the Lorenz attractor. It is rather for certain
tency occurs ab.=e~2.718 28). However, whem is in-  specific rotational components obtained via an empirical
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mode decomposition procedyr@]. The authors of the Com- rotations, however, we believe that intermittency, at least in
ment have misinterpreted the meaning of the phase variablég approximate sense, can be claimed based on visual in-

utilized in Ref.[9]. spection on large time scales, physical intuition, and analysis

In summary, so far there exists no rigorous definition ofof simple models.

“intermittency” and, as the authors of the Comment have
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