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Catastrophic bifurcation from riddled to fractal basins
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Most existing works on riddling assume that the underlying dynamical system possesses an invariant sub-
space that usually results from a symmetry. In realistic applications of chaotic systems, however, there exists
no perfect symmetry. The aim of this paper is to examine the consequences of symmetry-breaking on riddling.
In particular, we consider smootfeterministicperturbations that destroy the existence of invariant subspace,
and identify, as a symmetry-breaking parameter is increased from zero, two distinct bifurcations. In the first
case, the chaotic attractor in the invariant subspace is transversely stable so that the basin is riddled. We find
that a bifurcation from riddled to fractal basins can occur in the sense that an arbitrarily small amount of
symmetry breaking can replace the riddled basin by fractal basins. We calldhiastrophe of riddlingln the
second case, where the chaotic attractor in the invariant subspace is transversely unstable so that there is no
riddling in the unperturbed system, the presence of a symmetry breaking, no matter how small, can immedi-
ately create fractal basins in the vicinity of the original invariant subspace. This is a smooth-fractal basin
boundary metamorphosis. We analyze the dynamical mechanisms for both catastrophes of riddling and basin
boundary metamorphoses, derive scaling laws to characterize the fractal basins induced by symmetry breaking,
and provide numerical confirmations. The main implication of our results is that while riddling is robust
against perturbations that preserve the system symmetry, riddled basins of chaotic attractors in the invariant
subspace, on which most existing works are focused sareturally unstableagainst symmetry-breaking

perturbations.
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. INTRODUCTION that for systems with an invariant subspatdi) if there is a

When a nonlinear dynamical system possesses multiplehaotic attractor inS, and (ii) if a typical trajectory in the
coexisting attractorfl,2], the basin boundaries between the chaotic attractor is stable with respect to perturbations trans-
attractors can be either smooth or quite complicated. Averse toS, then the basin of the chaotic attractorSrcan be
physically important question concerns the predictability ofriddled with holes that belong to the basin of another attrac-
asymptotic attractors when initial conditions are chosen irtor off S, provided that such an attractor exists. Mathemati-
the vicinity of the boundaries. Smooth boundaries are simpleally, a riddled basin is the complement of a dense open set
sets whose dimensions are one less than that of the phabelonging to the basin of the other coexisting attractor. Thus
space. For these boundaries, an improvement in the precisi@riddled basin contains no open sets, in contrast to fractal
to specify the initial conditions results in an equal amount ofbasins that usually d§1]. Physically, the presence of a
improvement in the predictability of the asymptotic attractor.riddled basin means that, for every initial condition that goes
Fractal basins are opge.g., contain open areas in two di- to the chaotic attractor i§, there are initial conditions arbi-
mensiong but their boundaries contain fractal set3. Typi-  trarily nearby that approach the attractor d¢ffand, as a
cally, the dimension of a fractal basin boundary is a fractionconsequence, prediction of the asymptotic attractor for spe-
less than the phase-space dimension. As a consequencegific initial conditions and parameters becomes practically
more precise specification of the initial conditions often re-impossible. The bifurcation that leads to riddling was studied
sults in a much smaller improvement in the probability toin Ref.[7]. A signature of a riddled basin was found in an
predict the attractor correctly. Riddled basins contain nceexperimental system consisting of coupled chaotic electronic
open setge.g., no open area in two dimensiprand have circuits[5]. The effect of noise on riddling was also investi-
dimensions close to that of the phase spf8el(Q. For gated[8]. More recently, conditions for riddling were re-
riddled basins, a vast reduction in the uncertainty to specifygexamined, and it was found that physical signatures of rid-
the initial conditions results in hardly any improvement in dling persist even if the chaotic set in the invariant subspace
ability to predict the final attractor. Because of this seriousis nonattractingd10]. In most existing works on riddling, a
physical consequence, the phenomenon of riddling has reeommon assumption was that the system possesses a perfect
ceived quite a lot of recent attentip8—10|. This paper con- invariant subspace. Such an invariant subspace usually re-
cerns bifurcation from riddled basins to fractal ofigse Sec. sults from a simple symmetry in the system.

Il for more precise meanings of riddled versus fractal ba- While symmetry and invariance are common in math-
sing. ematical models of physical systems and such intrinsic prop-

Riddling was first analyzed for general chaotic systems byerties in the system’s equations can have intriguing and in-
Alexanderet al. [3]. The dynamical conditions for riddling teresting dynamical consequences, the notion of symmetry
to occur were first described in R¢8] where it was shown and invariance isiongenericbecause, in a physical reality,
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imperfections or perturbations that destroy the system sym- 2X, 0=x<1/2

metry are always expected to be present. Consider, for ex- Xp+1=T(Xp) = 2(1-x,), 12<x<1

ample, the following system & coupled oscillator§11,12: Xn)» =X= @
dx

T E(x x) = ax,\y,te O0sy<l
dt FI(XI)—’_K; R XJ), =L N @ yn+1:f(xn’yn):[)\yn n y=1
no» =4,

whereF;(x;) is the velocity field of each individual oscillator

when uncoupled, and the coupling is represented by th@hereT(x) is the tent mapa, €, and\>1 are parameters,
strengthK and the functiorH(x; —x;) satisfying the condi- and the phase-space region of interesfdssx<1,— %<y

tion H(0)=0. When the individual oscillators are identical, <o}. Whene=0, the system possesses the one-dimensional
i.e., Fi=F; for i,j=1,... N, the synchronous statg(t) invariant subspacg=0, which is caused by the reflecting
=x;(t) (i,j=1,... N) is a solution to Eq(1). In this case, symmetryy— —y. That is, if y,=0, theny,=0 for all n

the dynamical equation is identical for each oscillator so that-0. The symmetry is broken wher# 0. Becausa > 1, the
oscillators starting synchronized remain so forever. The submap has at least two attractorg= =. When e=0, the
space defined by(t)=x;(t) (i,j=1,...N) is therefore chaotic attractor of the tent map =0 can be the third
invariant. Indeed, the existence of such an invariant subspacgitractor of the full system if it is transversely stable, say, for
appears to be the starting point for analyzing the dynamics o< 5 (e=0)=a. Whene is increased from zero, no matter
coupled chaotic oscilltors in most existing worldsl,12. In 16y small, the chaotic attractor of the tent map is no longer
realistic situations as in laboratory experiments, imperfecyn attractor of the whole system. The catastrophic bifurcation
tions such as parameter mismatches among oscillators 3 riddling occurs fora< a’ as|e| is increased from zero, in
inevitable. The presence of nonidentity among the VeIOCitXNhich the riddled basin gf thg=0 chaotic attractor fo
fields F;'s, no matter how small, immediately destroys the:0 is replaced by fractal basins of either §e +oc or the
originaj invariant subspac_;e def_ined by the synchronous_ state._ _ attractor, depending on the signefFora>a2, the

. I\/!otwatgd by the COPS'd?ra“O.” tha}t symmetry breaking i asins of they= *+oo attractors arey>0 andy<O0, respec-
inevitable in physical situations, in this paper we address th%vely, if e=0. A smooth-to-fractal basin boundary metamor-

S I o 5
following important question: can riddling be observed- Ourphosis[14] occurs because the two simple basigs-0 and

principal result is that riddling is typically destroyed by o
: , . y<0) are replaced by fractal ones |ag is increased from
symmetry-breaking perturbations, no matter how s zero. Because of the simplicity of E), these bifurcations

tastrophe of riddling. In a fairly general setting, a riddled ; ) :
basin, after its destruction, is converted into a fractal onef:an in fact be understood, to certain extent, analytically.
which is a common type of basin expected in nonlinear sys-

tems[1]. However, when the perturbations are small, the A. Riddling for e=0
resulting fractal basin may appear, at least visually, similar to

; 4 ! When a basin is riddled, it does not contain any open sets
e e ety e 02 o 2o sl o e he messure.thoret seneset
' ust have a positive Lebesgue measure. Alexaatat. of-

ematically important but perhaps not so from the practicag

standpoint of physical observation. We establish our resul ered the following definition for a riddled basi]: The
P of phy ) g asin of attraction of an attractor is riddled if its comple-
by performing mathematical analysis of a class of represen..

tative analyzable models, by utilizing an approximate physi- ent intersects every disk in a set of positive measure

cal theory to derive scaling laws to characterize the effect Oﬁoughly, the term “disk™ here refers td\-dimensional
symmetry-breaking perturbations on riddling, and by exten_pha_se-space volume_s O.f all sizes. In ord_er to argue t_h_at the
sive numerical computations. A short accour,1t of part of thebasm of an attractor is riddled, the following two conditions

P L P must be establishedi) a set of positive measure is attracted
results was recently publishéd3].

The rest of the paper is organized as follows. First Weto the attractor andii) sufficiently many points near the at-

. . tractor are repelled away from it. In R¢8B], several analyti-
consider an analyzaple model gnd present a detailed argdy) examples were constructed for which these two condi-
ment for the destruction of ndd_lmg _under symmetry break'tions can be tested rigorously. In particular, to prove
Sublle ifterence betueen ridcied and fracal basins, and hofociion (1 one can compte the transverse Lyapunov ex
the former is converted into the latter by symmetry-breakin onent(to be defined belogand show that it is negatiye].

. 2 . “To prove condition(ii), it is necessary to show that there
gs;tlrjnr ba:gsvr;s,of ar;] Z?C;Tdi:z?;iaeégl'ngr'lt\iglsst?;ntﬁeeré\;%xists an opemenseset near the attractor, points in which
tastroghe of rid(Fj)Iir?gSecylll) In Sec I\(} we provide nu- asymptote to another coexisting attractor. In contrast, a frac-

merical supoort. In Sec. V. we present a discussion from thtal basin is open and it is defined with respect to the basin
support. In Sec. v, P . %oundary: a basin is fractal if its boundary is a fractal set.
standpoint of prediction and observation.

mathematical feature that distinguishes a riddled basin from
a fractal one is then that, the former is a closed set of posi-
tive measure while the latter is open

We consider the following two-dimensional mdg{x), In Eq. (2), for e=0, y=0 is invariant, so a transverse
wherex=(x,y) € R%: Lyapunov exponent can be defined, as follows:

II. AN ANALYTICAL MODEL
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K—-1 dy K-1
hr=lim > In—=22=lim Y In(ax,)
K—o0 N=0 dyn K—o N=0
1
zf In(ax)dx
0
=lna—1. )

We see that a blowout bifurcation occurs aft=e where
hy=<0 for a<a® and h;>0 for a>al. The existence of
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<yp<1 and §_ and &, are infinitesimally small. Since
a<a?, we haveaxz>1. Letk be the number of iterations
that the initial condition Xg,Y,) is mapped beyong=1,
i.e., k=int[|Inygl/In(ax:)]+1. After k iterations, the initial
condition e+ &, ,yo) maps to &, ,yx), Where x, =xg
+(—1)k2ks, and
k-1
yk*=akyoi1]0 [Xe+(—1)'2'5,].

riddling for a< a‘c’ can be established through the following Sinceé., is infinitesimal, we have

theorem.

Theorem:Let A be the chaotic attractor in the invariant

subspace/=0. The basin of4 is riddled for 1<a< a(c’.

k-1

-2)'s
Iny, =kIn(axg)+Inyy+ >, In (=2,
=0

Xg

1+

Proof: To establish that when the transverse Lyapunov

exponentht is negative, there is a set of positive measure

that appears asymptotic i [condition (i) for riddling], we
follow the steps in Ref[3]. Specifically, for fixedC>0, let
Mc=Ax{y:|ly|<C} and consider the set of point$
={(x,y) e M¢c:F"(x,y) e Mc for all n and L*{(x,y)}
C A}, whereL "{(x,y)} is the forward limit set of X,y). Let
uy be the Lebesgue measure of the chaotic attractoy in
=0, which is absolutely continuous, and |e} denote the
Lebesgue measure in tlyadirection. AssociateM with the
measureu = u, X uy . For any positivee,<C, the ratiou
=u(McN M)/ u(M,) defines thee-relative measure of
a setM.

For every &,0) e A, define

7(X)=SUfh=0

3h D,fM](x,0)|<
ex _ZnT[y 1(x,0)| <.

Since the limit in Eq.(3) exists foru almost everyx e A,
7(x) is finite for u almost everyxe A. Let R(s)={x
e A:r(x)<s}. For sufficiently smallC>0 and for all
(x,y) e M¢, we have

[f(x,y)|<exp(—3hn)|[Dyf1(x,0)|lyl.

Now fix C. Then the existence oh; implies that if x
eR(s) and|f®(x,y)|=<C for all k, we have, by induction,
the following:

1V (x,y)|<exp(— znhp)|[D,F™M](x,0]y|
<sexpznhy)lyl.

Thus, ifxe R(s) and|y|<C/s, thenF("(x,y) e M. for all
n=0 and lim, .. f™(x,y)=0, which means that, ife,
<Cls, then thee relative measurg.(Pc)= w(R(s))/ w(A).
Therefore, for a giveney, if we set s=Cleg, then
lim, o w(Pc)=1. That is, most pointéwith respect to the
product measure of, and u,) sufficiently close toA stay
C-near A and eventually approacH. This establishes con-
dition (i) for riddling.

To establish condition(ii) for riddling, we consider a
small interval [xg—6_ ,xg+ 6, ], located at distancey,
above the fixed poinkg=2/3 embedded in4, where 0

( _ l)k2k715+
3Xg '

4

Similarly, for the initial condition kg— 6_,Y,), we have

(DR t2dts
3Xg '

Iny, ~ )
Equations(4) and(5) are valid whens, and 5_ are chosen
such that 85, <3xg, i.e.,

5::3axF2int[\In yo\lln(axF)]+1Eag(y0)' (6)
where a<1 and g(0)=0. If k is even (odd), we have
Iny, >0 (Iny, >0) and thusy, >1 (y, >1). In any case,
after k iterations, eithefxg—§6_) or (xg+ 6,.] maps toy
>1 and asymptotes to the= attractor. Let

W={(X,Y)|y=0:Xr— ag(y) <X<Xg

or Xg<x<xXg+ag(y)}.

()

Thus any point inW maps toy>1 under Eq.(2), and we
haveW"=WU{y>1}CB(+ =), whereB(+«) denotes the
basin of the+« attractor. LetB,, be the union of all preim-
ages ofW* under map(2):

Bw=UZ_oF "(W").

Note that{T "}, _,(Xg) consists of points with binary rep-
resentations all ending in an infinite string 01Q10.,
where a trajectory poink of the tent map is assigned the
symbol 0 (1) if x<1/2 (x>1/2). Thus{T "}, _o(Xg) is
dense in the unit interval e [0,1]. Since{T "},_,(Xg) are
the roots of the regioB,y in the invariant subspacB,, is an
open dense set. This completes the proof.

After the blowout bifurcation, the system has two attrac-
tors at+« with basiny>0 andy<0, respectively. There is
no riddling in this case.

B. Catastrophic bifurcation of riddled basin

The replacement of the riddled basin by fractal ones in the
presence of a symmetry-breaking perturbation can be seen
qualitatively, as follows. As discussed above, &t 0, the
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basin of the chaotic attractot in y=0 is a closed set with —lel(axP+1) —|el(ax{P+1)
positive Legesgue measure, which is the complement set of y§2)=w and y(22)=W.
two symmetric open dense sets belonging to the attractors at 1-a™"%; 1-a™i7x;

y= * oo, respectively. While initial conditions witkio>0 or

Yo<0 can go toA, they cannot cross the invariant line  We observe thatl) the orbit is shifted upwarddownward
=0. Fore+#0, the dense set of unstable periodic orbits Origi-from y=0 ifitis a repe”er(sadd]e, and(2) the eigenva|ues
naIIy embedded in4 in y:O Spreads out in the vicinity of of the orbit remain unchanged_

y=0, convertingA into a chaotic transient. Because of this  |n general, for a periodic orbit of period (say, thejth
spread of unstable periodic orbits, a trajectory initiated inopne among all 2 orbits in the tent map

y>0 can penetrate the originally invariant line=0 and
approach the/= — o attractor, and vice versa. The basin of
the y=—o0 attractor iny>0 must be open and therefore
must be fractal, the same for the basin of yhe+ oo attrac-
tor in y<_O. This can be understood as follows. Co_ns_id_er anvhere T(xM)=x{®, (i=1,... p—1) and T(xf)"))zx(lp) )
open neighborhood of one of the attractors at infinity. For|¢|+0, they locations of the orbit points are given by
Choose a poinp in its basin and evolve it forward in time.
Eventually the resulting trajectory will approach the attrac-
tor, which means that, at some finite time, the trajectory will _

enter3, say at poinp’. The pointp’ in B must then have an yi"= { —lel(1+axPy+axPx(Py+ - +aP )

open neighborhood. Sing® is iterated fronp in finite time, ;

p must also have an open neighborhood in the bakH).
Thus, as soon as becomes nonzero, the riddled basin4of XI_I_L_ Xl(p) / (1_ap 1__[1 xﬁﬁ)), 9
is destroyed and simultaneously, two fractal basins arise. In B m

what follows we analyze how unstable periodic orbits em-

bedded in the original chaotic attractoryir-0 are perturbed If the original periodic orbit is a repellefsaddle, i.e.,
by the symmetry breaking, based on which we can establish®IT?,_,x{?>1 (aPlIf,_,x{P’'<1), it remains a repeller
the existence of open, but not dense, sets that belong to thisaddl¢ but its location is shifted upwar(downward, i.e.

?,0,(7.,0), ... (x{P,0),

p
1

basins of the attractors at infinities. y(P>0 (y(P<0). Since all repellers are located yr-0, a
trajectory starting iny<<O cannot crosy =0, but since all

1. Unstable periodic orbits and their stabilities saddles are located <0, a trajectory starting ig>0 can

under the symmetry-breaking perturbation move across thg axis and go to thg= — o attractor. Thus,

For concreteness, we consider m@p with e<0 anda  due to the symmetry breaking, tiye= — attractor acquires
~a?. Since unstable periodic orbits are structurally stablebasins iny>0. In so far as the original symmetric system
we expect that they shift to a small neighborhood about th@0Ssesses two distinct classes of unstable periodic drbits
original invariant subspacg=0 for e#0. In particular, the Pellers and saddigsthe basin of the/= — attractor has a
original fixed point &g,0) (a repeller with two unstable di- component iny>0, regardless of whether< ag ora>ag.
rections inx andy)' is shifted to: é(F ’yF)' WhereyF is given In what follows we will argue that the Symmetry-breaking
by induced basin component is not riddled but fractal.

The picture dipicted above, i.e., saddles shifted downward

and repellers upward, is specific for our model sysfé&m.

_ €l ®) (2)] for the case o£<0. Fore>0, saddles will shift upward
l-axg’ and repellers will shift downward. In general, in two dimen-

sions we expect to observe saddles and repellers on both
0 sides of the original invariant subspace when there is a sym-
Fora~a;, we haveaxz>1 and, henceyg>0. The Jaco- metry breaking. Thus there will be fractal basins both above
bian matrix of Eq.(2), evaluated atxXr,y), is given by and below the original invariant subspace. In higher dimen-
sions, unstable periodic orbits with different unstable dimen-
sions(a type of nonhyperbolicity known amstable dimen-
sion variability [16]), which are originally all located in the
invariant subspace, will be shifted to its neighborhood under
a symmetry-breaking perturbation.

YE

-2 0
ayr aXe

We see that due to the skew-product structure of(Eg.the )

eigenvalues of the perturbed fixed point=(yg) are: L, 2. Occurrence of fractal basins

=—2 andL,=ax>1. Thus under the symmetry-breaking  We show that there is still an open set irc(x,y)<1
perturbation, the shifted fixed point is still a repeller. Now that goes to thegg=+ attractor. Consider a horizontal in-
consider period-2 orbits X{),0) and &,0), where finitesimal interval slightly above the perturbed fixed point
T(xP)=x{2 and T(x?) =x{¥. Fore+0, they coordinates  (xg,yg): [Xe— 6_ ,Xg+ 8. ] atyo=ye . The trajectory from
of the orbits become the initial condition &q,yo), wherexg=xg+ 6, , is
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Xp=Xg+(—2)"5,,
(10)

n-1 n

=T wyorte 143 & TT ]

For|e|=0 andé§, =0, we have

non—1
Iny,fmnIn(axF)+Inyo+M—|e|y(n)
3Xg
where y(n)=(1+=]""}a'll" _, _ . xm)/(ax)". Let k be
the time that the trajectory from the initial conditiorg(,y)
reachesy=1, i.e., kin(ax)+Iny,—|¢yK)=0. We obtain
Inyy ~(—1)<2*"15, /(3%=). Similarly, afterk iterations, they

coordinate of the trajectory point from the initial condition:

(Xg—6_,Yo) is: Iny, ~(—1)¢12"15_/(3x:). Regardless of
whetherk is even or odd, we see that eithgf >1 ory,

PHYSICAL REVIEW B4 056228

wherev,= —In (ax,+ €ly,) is a random variable becaugg
comes from a chaotic process. For 0, v, is approximately
independent oy, most of time(except whery,, gets close to
the original invariant subspaceEquation (11) thus de-
scribes, approximately, a random walk. If the average drift
v={_(Yn11—Yn))=(v,) is small, the random walk model
can be solved by using the diffusion approximation, from
which various scaling relations can be derived. Specifically,
sincev is small, the evolution of the probability as a function
of discrete timen in spaceY can be approximated as an
evolution in continuous time. Let P(Y,t)dY be the prob-
ability of finding the walking in the intervdlY,Y+dY] at
timet, thenP(Y,t) obeys,approximatelythe diffusion equa-
tion [18]

PP
Y2’

P

P

v (12

>1. Thus an open area exists immediately above the shifted

fixed point xg,yg) which belongs to the basin of the

= +oo attractor. The set of infinite number of preimages of

this area is thus an open set that goes toyther « attractor.

When €=0, the “roots” of the open set, i.e., the fixed

whereD is the diffusion coefficient, defined as follows:

D=((Yn—7)?. (13)

pOint (XF,O) and all its preimages, are located in the invariantAdopting the above diffusive picture, we see thatnd D
subspacg =0 and are dense, because the tent map ifAq. are the two key parameters that determine the dynamics. In
is noninvertible[l?]. Fore+0, these “roots” are shifted and fact, the average driftv is ana|ogou3 to the transverse
are distributed in the two-dimensional phase-space regiopyapunov exponent which can be defined only when0,
abouty=0. Thus, the open set is no longer dense. The set dnd the diffusion coefficienb characterizes the degree of

initial conditions in the unit square<9(x,y)=<1 that go to

the fluctuations of the finite time transverse Lyapunov expo-

the y=—co attractor is now open. In fact, it is straightfor- nent[4]. Our viewpoint is that, when there is a symmetry

ward to see that the region bounded by the cwye|¢|/a

breaking so that the notions of invariant subspace and trans-

in the unit square maps $0<0 after one iteration. The basin verse Lyapunov exponent no longer hold, we can still use
of the y=—co attractor thus consists of this bounded regionand D to characterize the dynamics in the vicinity of the
and all its preimages. The boundaries between the basins efiginal invariant subspace. In particular, regarding the
they= +« attractors are fractal. We remark, however, thatneighborhood of the original invariant suspace gssaudo-

in this case, the basin in>0 of they= —oo attractor may

invariant manifoldunder a symmetry breaking, the stability

appear indistinguishable from that of a riddled basin becausef this manifold can be quantified by andD. Defining the
most unstable periodic orbits in the original invariant sub-pesudotransverse Lyapunov exponent
space are perturbed only slightly. The above arguments can

be casted into the following conjecture.
Conjecture For a<aO and e#0 in Eq. (2), the chaotic

Ag=—v, (14

attractor in the invariant subspace, together with its rldd'edNe see that if\ >0 (V<0) the pseudomvanant manifold is
basin fore=0, is replaced by a chaotic transient and fractaliransversely unstable because a trajectory leaves the pseudo-

basins of the attractors at infinities, respectively.

Ill. CRITICAL BEHAVIORS AND SCALING LAWS

From Sec. IIB1 we see that the presence of a sma
amount of symmetry-breaking causes a spread of unstab

periodic orbits in the neighborhood, of size abeutabout

the original invariant subspace. The dynamics outside th
neighborhood can be approximately described by that of

random walk. To see this, we rewrite tlgeequation in the
analytical mode[Eq. (2)] as follows:
In(ax,+ €ly,).

—Inypy1=—Iny,—

Letting Y,=—Iny,, we obtain

Yni1=Ynt vy, (11

invariant manifold exponentially fast. If, howeved <0
(v>0), a trajectory can spend a long tirfte be quantified
below) near the pseudoinvariant manifold, although the tra-

uasistablewith respect to transverse perturbations. Thus,

e see that, introducing the pseudotransverse Lyapunov ex-

onent, with the paramet@’s characterizing its finite-time

uctuations, enables us to quantify the dynamical property of

e pseudoinvariant manifold. This may provide a general
approach to addressing problems such as the stability of the
synchronization manifold in coupletbnidenticalchaotic os-
cillators.

A detailed discussion about the validity of the diffusion
approximation near the transition point to a chaotic attractor
with a riddled basin, at which the average d(it the trans-
verse Lyapunov exponenis nearly zero, can be found in

Ectory will eventually leave it. In this sense, the manifold is
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Ref.[4]. In our case, because of the symmetry breaking, the F|E|~|e|‘”’D=|e|‘VVD for v=<0. (19)
range for the validity of the diffusion approximation is lim-

ited. In particular, we note that, approximately, a trajectoryThus we see that in the parameter regime wheté, the
cannot enter thes neighborhood of the original invariant fraction remains roughly constant, regardless of the amount
subspacey=0. However, fory>e, the trajectory experi- of the symmetry breaking. This also implies the catastrophic
ences both repulsion from and attraction towarddtreigh- ~ nature of the symmetry breaking: riddling is destroyed and a
borhood ofy=0 due to the existence of periodic orbits with fractal basin component is immediately induced as the sys-
different unstable dimensions, namely, repellers and saddletem deviates away from the symmetric dsay, in the func-

If »v~0, the amount of repulsion is approximately equal totional space of system equationso matter how small the
that of attraction and, hence, we expect the diffusion picturgleviation is.

to be valid fore<y<1. In the walk’s space, the rangeYs

€ (0,€), wheree= —In e>1. As we will describe, by impos- B. Lifetime of chaotic transient

ing different boundary conditions &t distinct scaling rela- Consider a trajectory originated from the symmetry-
tions can be derived. In the following we consider threebreaking induced fractal basin of tlye= —co attractor iny
quantities that are measureable in numerical or laboratory-0. After it falls in the negative vicinity of =0, it typically
experiments. For the clarity of presentation, we consider thexperiences a chaotic transient there. In particulag;<ifO
case where=<0 so that the symmetry-breaking induced ba—(Aq>O), the transient time is short. If, however>0 (A4

sin of they= — o attractor lies iny>0. <0), the time can be extraordinarily long. Specifically, say
we sprinkle a large numbet, of initial conditions in the €|
A. Fraction of symmetry-breaking induced basin neighborhood ofy=0, which is equivalent to the following

initial condition:
We concentrate on the phase-space redifrex=<1,

|e|<y=<1], and fix a line segment@x=<1 aty=y,>0, P(Y,00=8(Y—¢) (20)
and uniformly choose a large number of initial conditions ' '
from it. Thus we have the initial condition Then the number of trajectories that still remain in the neigh-

P(Y.0)= 8(Y—Yo), (15 borhood decays exponentially with time,

. . . . N(t)=Noe 7, (21)
whereY,=—Iny,. Since a trajectory reaching=1 quickly

approaches thg= +« attractor, we have the following ab- wherer is the lifetime of the chaotic transient neae 0. To

sorbing boundary condition &= —1In1=0: obtain the scaling ofr, we note that, due to the symmetry
breaking, a trajectory can never reagh 0. Thus, roughly,
P(0,t)=0. (160 the boundary afy|~|e| is impenetrable. In the walker's

space, there is then no probability flux into the boundary.
Thus we have the following reflecting boundary condition at
Y=|¢€l:

Roughly, a trajectory entering thie| neighborhood ofy
=0 is lost to the basin of the-« attractor. A realistic pic-
ture is that theY location of the absorbing boundary depends
on x. For instance, from the model of E(), we see that a _
trajectory goes to they=—c attractor whenevemx,y, vP(|e|,t)-D
<|€l. In so far asx, is not too small, this happens when

yn<|el/ax,~|e[. Thus, as a crude approximation, we im- Solving the diffusion equation under the initial and boundary

pose an absorbing boundary et conditions[Egs. (16), (20), and(22)], we obtain the follow-
ing expression for (see Appendix B

Jyv-1a=0. (22)

P(e,t)=0. (17)
D

Let F(|€]) be the fraction of initial conditions from the line ~—|el 7P, (23)
segment ay, that are asymptotic to the= — o attractor. As v
|e| is increased, we expedE(|e|) to increase[note that
F(0)=0]. For |e|~0, we obtain, by solving the diffusion
equation Eq(12), together with the initial and boundary con-
ditions [Egs. (15—(17)], the following scaling law(see Ap-
pendix A):

We stress that, due to symmetry breaking, no typical trajec-
tory can remain neay=0 forever, so the average transient
lifetime is finite. Thus Eq(23) is not valid forv=0 because
of the failure of the diffusion approximation to include the
dependence of the step of the random wgjlon its position
D Y, in EqQ.(11). Nonetheless, for+0, we expect Eq(23) to
E= Yo —1 (18) capture, qualitatively, the behavior of the chaotic transients
lel le|P—1" caused by symmetry breaking. In particular, fef=0, 7 is
short if v<O and it can be long fow>0. In the simple
If ¥=0, we havele|”’P—1~—1 for |¢|~0 and, henc&|,  model[Eq. (2)], »<0 for a>a and»>0 for a<ag. Thus
~1-yP=const. Ify=<0, we have]e|’P—1~|¢|"'® and, we haver~(al—a). Fora>al, |e| *'® is small, and Eq.
hence (23) gives
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0y—-2 0 2
~(a—a for a>a_. 24 v
™ ) ¢ 24 a=—-—. (28
For a<a?, the factor|e| "' dominatesr becausde| is

small. We have ) ) ,
Thus in the regime where~0 (but v+ 0) so that the diffu-

sion approximation is valid, we expeat~0 and henceal,

~1. Regardingd as the accuracy in the specification of the

i ) ) initial condition, a fractal basin boundary with dimension

V\(/)e see thatr_ |ncrease$x_ponent|all3asa is decreased from close to that of the phase spa@@ a near zero uncertainty

a;. To obtain a rough idea about how long the transienieyponent means that the uncertainly probabilify(5) re-

lifetime can be, say we ha@=1 and|e|=10""" Thus if  majns approximately constant, regardless of how accurately

ag—a=0.1, we haver~10®. But if ag—~a=15, thent  we can specify the initial condition. Thus, realistically, it is

~10". Because of the long transient, the pseudoinvarianimpossible to predict, from a given initial condition, the

manifold fora<a? can be regarded as quasistable. asymptotic attractor. This fundamental obstacle to prediction
It should be noted that both Eq®24) and(25) are valid in  is common for riddled basinst,20] and persists even when

the parameter region wheag* ag. In general, if we compute the riddled basin is replaced by a fractal one due to the

7 in a parameter region aboaf, we expect to see eross-  Symmetry-breaking.

over behavior from short to long lifetime neaf . Also note

from Eq.(25) that, a long transient is expected only when the

amount of the symmetry breaking is small. The transient, IV. NUMERICAL EXAMPLES

while long, is characteristically different from the superper- A. A two-dimensional map

sistent chaotic transiefit9].

Tw(ag_a)72e(a27a)|ln\e\|/D' (25)

We consider the following two-dimensional map:

C. Fractal dimension Xnt1=F(Xp) + byﬁ,

To assess the dimensionality of the boundary between the (29)
basin of they=+x attractor and the symmetry-breaking —ax.y.+vi—
induced basin, we fix a line segmentyaty,, wheree<y, Yn+1 nYnTYn™ €
<1, and examine the set of intersecting points with it of the
basin boundary. Led, be the box-counting dimension of the wheref(x,) =rx,(1—Xx,) is the logistic map, and, b, r, and
set. We expect &do<1 and, the dimension of the boundary ¢=0 are parameters. We fix=3.8 so that the logistic map
is Do=1+dg in the two-dimensional phase space. For aapparently possesses a chaotic attractor. Paramétefixed
riddled basinD is typically close to the phase-space dimen-at b=0.1. The symmetry-breaking parameteris
sion[4,20]. Our point is that, despite the presence of a small

amounF of symmetry breakin® is still plo;e to 2Thus, in 1. Riddled basin fore=0
a practical sense, the symmetry-breaking induced fractal ba- . )
sin resembles a riddled one. For e=0, the system possesses a simple reflecting sym-

The box-counting dimensiod, can be computed by us- Metry abouty=0 and, hence, it is the one-dimensional in-
ing the uncertainty algorithril,21]. Specifically, letd(8) variant supspace in which there is a chaotic attractor given
be the probability that two initial conditions of distanée DY the logistic map. The® term stipulates that trajectories
chosen from the line segmentyaj go to different attractors, With large values of are asymptotic tgy| = rapidly. Thus
namely, one toy= +c and another toy= —. Then typi- EQ- (29) possesses two additional attractors: ongat+ «

cally, () scales withs as[1] agd another ay=—o. There ig a blowout bifurcagion at
a;~1.726, whereh;=<0 fora<a; andh;=0 fora=a., as

P (6)~ 6%, (26)  shown in Fig. 1. Thus fom=<a?, the basin of the chaotic
attractor iny=0 is riddled, as shown in Fig.(&), wherea

where O<a<1 is the uncertainty exponefit]. The uncer- =17, a grid of 100& 1000 initial conditions is chosen in

tainty dimensiond,, of the basin boundary is defined to be (0<x<1,—1<y<1), and black dots denote initial condi-

tions whose trajectories stay within 18 of y=0 for suc-

d,=N-—a, (27 cessive 1000 iteratior{svhich are numerically considered as

having approached thg=0 chaotic attractor To demon-
whereN is the phase-space dimension. For hyperbolic sysstrate that there are initial conditions arbitrarily nees 0
tems, it can be shown rigorously thét=d, [21]. The same that are asymptotic to either thg==*o attractors, we
relation is conjectured to hold for nonhyperbolic systems ashoose a grid of 10001000 initial conditions but in the
well [21]. Following the analysis detailed in Rg#], it can  region (0.5<x<0.6,-0.01<y<0.01) and plot the initial
be shown, by utilizing the solution to the diffusion equation conditions that are asymptotic to tlye= = attractors, as
Eq. (12) described in Appendix A, that the uncertainty expo-shown in Fig. 2b), where black dots ity>0 (y<0) denote
nent is independent of the symmetry-breaking parameter initial conditions to they= + (y= —©) attractor. Figures
and is given by 2(a) and 2b) exhibit features typical of riddling3—10].
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FIG. 1. Fore=0 in the numerical moddEg. (29)], the trans- FIG. 3. Fore= 10T10 anda=1.72<a? in the numerical model
verse Lyapunov exponeti; vs the parametea. [Eq.(29)], (a) the basin of they= —  attractor(black dot$, and(b)
the basin of they= + attractor(black dot$ in a small region near

2. Riddledlike fractal basins in the presence of small symmetry y=0.

breaking see that there are initial conditions arbitrarily nga+0 that

Whene+0, y=0 is no longer invariant and, the riddling aré asymptotic to thg= + attractor, similar to the behav-
observed in Figs. @) and 2b) is destroyed and is replaced ior depicted in Fig. &). While Figs. 3a) and 3b) are for a
by fractal basins, no matter how smalis. To be concrete, Parameter value below the blowout blfL(J)l‘C&tIOﬂ point for
we considere=0. In this case, thg<0 region still belongs €= 0, sSimilar basin structures exist far=a., as shown in
to the basin of the/= —c attractor, but now it has a basin Figs. 4&) and 4b), where Fig. 4b) is now a blowup of part
component iny>0 due to the symmetry breaking. The basin ©f Fig. 4@ because in this case, the majority of the initial
boundary between thg= + and they= — attractors in conditions go to thg = + < attractor. Comparing Figs. 3 and
y>0 is a fractal, as shown in Fig.@ for a=1.72$a(c’, 4 with Figs. Za) gnd_ ab), we observe tvyo featurg(sl) the. .
where the black dots denote initial conditions that areSYMmetry-breaking induced fractal basins are visually simi-
asymptotic to they=—c attractor. Although, as we have Ia_1r to riddled ba_sms an?) the_ fractgl basms e>_<|st on both
argued, the basins are fractal, they mimic riddled basiné,'des pf the original blowout_ bifurcation poifdefined when
which is demonstrated by Fig.(13, where a small region (here is no symmetry breaking
neary=0 in Fig. 3a) is magnified but now the black dots
denote initial conditions that go to the= + attractor. We

3. Drift and diffusion coefficient

When e#0 so that a symmetry breaking is present, the
invariant subspace is destroyed and the notion of the trans-

14

>0.005
05 052 054 056 058 06 0
X 05 0.52 0.54 0.56 0.58 0.6
X
FIG. 2. Fore=0 in the numerical modé¢Eq. (29)], (a) the basin
of the y=0 chaotic attractoftblack dot3, and(b) the basin of the FIG. 4. Fore=10"°and a:1.73>a8 in the numerical model

y= *+oo attractors(black dot$ in a small region neay=0. Appar-  [EQ.(29)], (a) the basin of theg= — attractor(black dot3, and(b)
ently, there are initial conditions arbitrarily near tiie=0 chaotic  the basin of theg= —« attractor(black dotg in a small region near
attractor that are asymptotic to tlye= + o attractors. y=0.
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a Iogms
_ FIG. 5. The average drift and the diffusion coefficierD vs a FIG. 6. Scaling of the fraction of the symmetry-breaking in-
in the numerical mod€lEq. (29)] for three values of. duced fractal basin(b) log,oF| Vs loge for three values of

~ <a? for which »>0, and(b) algebraic scaling betwedf and e
verse Lyapunov exponent no longer holds. Our analysis Ofor three values oa>a? (»<0).
the simple modelEq. (2)] indicates, however, that one can
use the drift coefficient and the diffusion coefficienD to 0 : . . .
characterize the dynamics in the vicinity of the original in- =0 [@=2c], the fraction scales algebraically wieh as veri-

variant subspace. These two parameters are universal in tfgd for three values o& in Fig. 6(b). The numerically ob-
sense that they determine scaling properties for thdained algebraic exponents are, however, several times larger

symmetry-breaking induced fractal basins, regardless of thian the predicted one/(D). The source of deviation comes
details of the system. To computeandD for Eq. (29), we from the usage of the diffusion approximation to s_olve the
fix a horizontal line segment atly,>e=0 and distribute a  random-walker problemiEq. (11)], which is crude in the
large number of initial conditionsx},y,) on it. The param- S€nse that the amount of the random wajkis not com-
eters are then given by pletely independent of position variablg . Nonetheless, the

predicted algebraic behavior appears valid.
v=(AY)=(Y1—=Yo)=(—=In|ys(xo)/yol),

(30 5. Chaotic transient lifetime

D= 1<(Ay_v)2>, Soluti(_)ns_ based on the pliffusion approximation suggest
2 that the lifetime of the chaotic transients induced by symme-
) try breaking, as a function of its magnitude, is short and
where(-) is the .e.nsemble average. Note that w@no,. remains roughly constant far<0 (a=a?). However, the
due to the ergodicity of the chaotic attractor in the invariantc e can be long and increases algzzbraically vétfor
subspace, we have=—hy. Figures %) and §b) showr (a<a?). These behaviors are shown in Fig. 7, where
andD versus the p?game,t?g'” Eq. (2?2)’ respect%/gly,.for for each pair of fixeda and €, 7 is the numerical average
three_ yalues ok: 1077, 10", and .10 » where 10 initial lifetime computed from 10initial conditions chosen from
conditions are chosen from the line segmept[0,1] at the liney,=10"*. Again, although the algebrai ling be-
3 . 0 , 0 . Again, gh the algebraic scaling be
Yo=10"". We see that changes sign aa~ac, while D hayior is predicted correctly using the diffusion theory, it
remains essentially constant abagt. The curves at differ-  fajls to predict the scaling exponent, for the reason quoted in
ent values of are indistinguishable, indicating thatandD Sec. IV A 4.
are “invariant” parameters to characterize the dynamics un-  For fixede, Eq.(23) predicts that the scaling behaviors of

der small symmetry-breaking. the transient lifetime with the parameter variation are char-
acteristically different forv<<O and»>0. In particular, for
4. Fraction of symmetry-breaking induced basin »<0 (a>al), the lifetime scales algebraically with the pa-
[Egs. (18) and (19)] rameter variation, while fon>0 (a<a?), the scaling be-

To numerically compute the fraction of the basin inducedhavior is exponential and, therefore, the lifetime can be long.
by the symmetry breaking, we choose’ ifitial conditions Neara=a8, as we explain in Sec. 1l B, E¢23) fails but we
aty,=10"1 and compute the number of trajectories that ap-expect to see a crossover between the distinct scaling behav-
pear asymptotic to thg= —oo attractor. Our theory predicts iors. Figure 8 shows the distinct scaling behaviors, together
that, forr=0, the fraction is almost independent of the mag-with the crossovers, for three valuesegfwhere we see that
nitude of the symmetry breaking This is shown in Fig. @  for smalle, the lifetime of the chaotic transient can indeed be
for three values oh=<a? for which »=0. However, forv  extraordinarily long fora<a?.
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FIG. 7. For three fixed values of paramegetthe scaling of the ) . .
chaotic transient lifetime witle. FIG. 9. Scaling of the uncertain probabiliy(5) (plotted on a
logarithmic scalg for e=10"8: (a) a= l.73>a2 and (b) a=1.72
<al.

6. Fractal dimension

The main feature of the fractal dimension of the basinsfor botha=a? anda<al. The closeness of the dimensions
induced by symmetry breaking is that the dimension is closef the fractal basin boundaries to that of the phase space
to the phase-space dimension and, therefore, these basins gignifies an extreme difficulty in predicting the asymptotic
indistinguishable from riddled basins based on a dimensiomttractor for given initial conditions, which is typical for
measurement. Numerically, for fixed valueseoinda, we  riddled basing4].
randomly distribute a large numbét, of initial-condition
pairs aty,=10"3. A pair is said to be uncertain if the two
initial conditions are asymptotic to different attractors. For a ) ) )
fixed distances between the two initial conditions, we in- e now examine the effect of symmetry breaking on rid-
creaseN, until the the number of uncertain initial-condition dling in continuous-time dynamical systems. The example
pairs reaches a fixed number, say 2000. The uncertain proB€ Study is the system of four coupled $3ter-like elec-
ability is given, approximately, byb(8)~2000N,. Figures tronic oscnlgtors gt|||;ed by Heaggt al. [_5] in the f|(st ex-
9(a) and 9b) show, fora= 1_73>a(c) anda= 1_72<a8’ re.  berimental investigation of riddled basins. The differential

spectively,®(5) versusé on a logarithmic scale, where equations of the system are

B. A system of coupled chaotic oscillators

=108 is fixed for both figures. A linear fit gives the ap- dx
proximate value of the uncertainty exponent. We obtain, for d_tl =—wy;—Z— X+ K(X 11+ X1~ 2X%;),
both Figs. 9a) and 9b), a~0.002+0.01. The fractal dimen-
sions of the basin boundaries are thljs=2— a~1.998<2 q
y.
d—t'=xi+ayi, (3

dz .
dat —bz+co(x), 1=1,234,

where ; ,y;,z) =X € R® are the dynamical variables of in-
dividual oscillators with frequencies; (i=1,...,4), K is

the linear coupling parameter, and the source of nonlinearity
comes from the piecewise linear functi@(x): g(x)=x

—d for x>d and g(x)=0 otherwise;r, a, b, ¢, andd are
intrinsic parameters of the oscillators. Nonidentities among
oscillators are stipulated by setting’'s (i=1,...,4)
slightly different. Following Heagyet al. [5], we use peri-

Iog1 of

. . . b odic boundary conditions and, for concreteness, weafix
1.71 1.72 1-a73 1.74 1.75 =0.13, b=1.0, ¢=15.0, r=0.05 and w;=0.5 (i
=1,...,4), andchooseK as the bifurcation parameter. At
FIG. 8. For three fixed values af, the scaling of the chaotic this parameter setting, each oscillator exhibits a chaotic at-
transient lifetime with a parameter tractor when uncouplefb].
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FIG. 11. For a system of four coupled identical Rter-like
chaotic oscillator$Eq. (31)], the first two transverse Lyapunov ex-

NSNS

ponents for modes 1 and 2. The horizontal lines denote the first two

FIG. 10. Schematic illustration of the spatially distinct configu- Lyapunov exponents of the chaotic attractor in the synchronization

rations of attractors in a system of four coupletsBler-like chaotic
oscillators[Eq. (31)].

We first consider the case of identical oscillatots:
=wy=0.5 (i=1,...,4). It can beseen easily that the
coupled system possesses the following shift symmnjétty:

manifold, which do not depend on the coupling parameter.

Riddled basin can therefore occur if there are other coexist-
ing attractors not in the synchronization manifold.

In Ref.[5], it is shown that foK ~K, indeed there exist
two period-1 coexisting attractors that belong spatially to
mode 2, as shown schematically in Fig. 12. Because of the

the system is invariant when the oscillator indices are unigj e range of their dynamical variables in the lattice, these

formly shifted. Because of this, the synchronous state:

two attractors can be easily distinguished by using the spatial

=---=X4 lies in a three-dimensional invariant manifold in Foyrier coefficient of mode 2:S,=y;(t)—ya(t) +ya(t)

which there is a chaotic attract@the one from individual,

—V.4(t). Thus the periodic attractors in Figs.(&2and 12b)

uncoupled oscillatojs The dynamical behavior of oscillators satisfy(S,)>0 and(S,)<0, respectively(The synchronous

near the synchronous state can be characterized by the spaig@laotic attractor haéS,)=0.) To visualize riddled basins,
Fourier modes. In particular, fd¥ (even oscillators, there

are N Fourier modes with mode indices ranging from 0 to ()
(N—1): the zeroth mode represents the motion on the syn- | ¥
chronization manifold and the rest are transverse to it, anc
the first through theN/2—1)th modes are doubly degener-
ate. Thus, foN=4, there are three spatially distinct states: a ,\
synchronous statémode 0, two long-wavelength states pd
(doubly degenerajeand a short-wavelength stat@ode 3, 4 -
as shown schematically in Fig. 10, where the vertical direc- X
tion corresponds to some dynamical variables of the oscilla-
tors, sayy;(t), and the horizontal axis represents the relative
location of the oscillatorgor i, the oscillator index Since
both modes 1 and 2 correspond to motion in the transverst
direction, their stabilities can be quantified by the transverse
Lyapunov exponentss]. Figure 11 shows the first two trans-
verse Lyapunov exponents of both modes as a function ol
the coupling parametés, where for reference, the first two ,
exponents of the synchronous cha@sode Q are also - £
shown, which do not depend df due to the invariance of AN
&>

the synchronization manifold. In the parameter interval
[Ks,Kq4] (denoted by the two vertical dashed lines in the

figure), all transverse exponents are negative, indicating that FIG. 12. Schematic illustration of the two coexisting period-1
the chaotic attractor in the synchronization manifold is alsaattractors(not in the synchronization manifdldhat have a mode-2
an attractor in the full phase space of the coupled systenspatial structure.
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FIG. 13. For a system of four coupled identical Rter-like FIG. 14. Fractal basins in theAKX,AY) plane of the two

chaotic oscillator$Eq. (31)], for K=0.85<K. (a) Riddled basins ~ Period-1 attractors in a system of four coupled nonidenticaisio-

of the chaotic attractafblack dots obtained in the £x,Ay)-plane;  like chaotic oscillator$Eq. (31)] when there is a symmetry break-

(b) blowup of part of(a), where now the black dots above and ing (e=10"2). (a) Basin(black dot$ of the period-1 attractor with

below Ay=0 denote basins of the period-1 attractors wig)  (S2)>0. (b) A blowup of part of(a) nearAY=0, where now the

>0 and(S,)<0, respectively. black dots denote the basin of the period-1 attractor &) <0.
The coupling parameter K=0.85<Kj.

we construct a two-dimensional gridiK,AY), following

Ref.[5], where the synchronization manifold corresponds tdng the frequency parametes; slightly mismatched. We

(AX,AY)=(0,0), and for a given pointx;,ys,z) on the choosew; from the interval[ wo— €/2,00+ €/2], where e

chaotic attractor in the three-dimensional synchronizatior<® is equivalent to a symmetry-breaking parameter. Simi-

manifold, initial conditions for each oscillators are chosen, adar to the map example in Sec. IV A, the presence of a sym-
metry breaking immediately destroys the riddled basin of the
chaotic attractor in the synchronization manifold and re-

X=Xt AX, places it by fractal basins of the coexisting period-1 attrac-

tors. Figure 14a) shows, fork =0.85<k4 ande=10"2, the
basin(black dot$ of period-1 attractor witS,)>0, and a

yi=yst+(—1)AY, (32 blowup of part of(a) nearAY=0 is shown in Fig. 1),
where now the black dots denote the basin of the period-1
Z=12 attractor with(S,)<0. We see that Figs. 1d and 14b) are
similar to Figs. 8a) and 3b), respectively. The fractal basins
fori=1,...,4. In oumumerical experiments, we distribute persist even forK=K,, where one of the transverse

a grid of 700< 700 of initial points in the AX,AY) plane in  Lyapunov exponentsthe one associated with mode B
the range: AX<1 and—1<AY=1. For each point, the slightly positive, as shown in Figs. (& and 1%b) for K
initial conditions for the oscillators are chosen according to=0.875=K4 and e= 102, where the basin of the period-1
Eg. (32), and Eq.(31) is integrated. The time average of the attractor with (S,)>0 and its blowup nea’AY=0 are
mode-2 Fourier coefficientS,) is then computed, after dis- shown, respectively. We note that Figs.(d5and 15b) are
regarding a finite amount of transient, to determine to whictsimilar to Figs. 4a) and 4b), respectively, which are the
attractor the initial point is asymptotic to. Figure(dBshows corresponding basin plots for the map example.
the basin of the chaotic attractor in the synchronization mani- We now present numerically obtained scaling laws for
fold (black dot3, which appears similar to Fig.(& and is  various critical behaviors in the system of couplecs8er-
apparently riddled. A blowup of part of Fig. @8 is shown like chaotic oscillators. Our main point is that these scaling
in Fig. 13b), where, for clarity of presentation, the black laws are qualitatively similar to those obtained from the map
dots above and belowsY=0 belong to the basins of the example in Sec. IV A, thereby furnishing more support for
period-1 attractors witfS,)>0 and(S,)<0, respectively. the theoretical predictions in Sec. Ill.
We again note the similarity between Fig.(kBand Fig. (1) Fraction of symmetry-breaking induced basifis
2(b). computeF |, we make use of theAXX,AY) plane. In par-
We now describe the effect of symmetry breaking on rid-ticular, for a given value of, to compute the fraction of
dling. For a system of coupled chaotic oscillators, a convebasin in the negativA'Y region of the period-1 attractor with
nient way to introduce a small amount of symmetry breaking(S,)>0, we fix a horizontal line aY,=<0, randomly dis-
is to make the oscillators slightly nonidentical, such as makiribute 1¢ initial values ofA X, in the interval —5,5] on the
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FIG. 15. Symmetry-breaking induced fractal basins #r 0
=0.87>Kq in a systemgf four coupled nonidentical Ster-like FIG. 17. For a system of four coupled nonidenticakBler-like
chaotic oscillators¢=10"). (a) Basin(black dot3 of the period-1  chaotic oscillators, the scaling of the average chaotic transient life-
attractor with(S;)>0. (b) A blowup of part of(a) nearAY=0. time 7 with the symmetry-breaking parameter (a) K=0.858

<Kq4 and(b) K=0.875>Ky.
line, and compute the number afX, values whose corre-
sponding initial conditions vyield trajectories that are
asymptotic to the period-1 attractor. The scaling behaviors o
F|¢ With € for K=Ky andK=K, are shown on a logarith-

mic_lscale ki]n Figs.. hl(aa and 16b), respectively. -Lhe)t; are  average value of all these times is taken to be the average
similar to those with the map exampilEigs. Ga) and Gb)], chaotic transient lifetimer. Figures 17a) and 17b) show,

which agree reasonably with the theoretical predictidts. for K=0.858=K, and K=0.875=K,, respectively, the

(18) and(19)]. . . . )
; . I s scaling behaviors of with the symmetry-breaking param-

(2% Ch?c.)t'.i. trlans||ent In;se;l(me'\N(tahagaltn d'slm_b;tSe a large etere. We observe algebraic scaling behaviors in both cases,

number of initial values oA X, (in the interval —5,5)) on a and also a similarity between Figs. 17 and 7. The drastic

line atAY,=0 and for each corresponding initial condition, increase of the transient lifetime &sis reduced througy

we compute how long it takes for the trajectory to leave theIS shown in Fig. 18, where=0.1

ynchronization manifold. Numerically, this time is approxi-
ately the time for the value d{S,)| of the trajectory to
exceed a small, empirically set threshold, say, ®10The

(a)

6

OM'
w1 4 55r

oo,
251 .......o;b

-3 -25 -2 -1.5 0.84 086 088 09 092 094 096 098 1
log,, € K

FIG. 16. For a system of four coupled nonidenticasBler-like FIG. 18. For a system of four coupled nonidenticakBler-like
chaotic oscillators, the scaling of the fraction of the symmetry-chaotic oscillators, the scaling of the average chaotic transient life-
breaking induced fractal basins with the symmetry-breaking paramtime 7 with the coupling parametek for e=0.1. We see that
etere for (8) K=0.858<K, and(b) K=0.875>Kg. increases dramatically a6 is decreased throughy .
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APPENDIX A: SCALING OF FRACTION
OF SYMMETRY-BREAKING INDUCED BASIN

b B |Og10 ) ) To solve the diffusion equatiofEq. (12)], we use the
(b) . . : . . standard Laplace transform technidue]. Let

©

0.5} o, _csa_eets 1 E(Y,s)sf P(Y,t)e sdt (A1)
0

be the Laplace transform ¢(Y,t), where Re§)>0. Sub-

. . s . - - - stituting Eq.(A1) into Eqg.(12) and using the initial condition

-0 -9 -8 -7 Ioée s> @ ® 2 [Eq(19] we obtain
10

FIG. 19. For a system of four coupled nonidenticakBler-like DdZ_P _ Vd_P —sp=— S(Y—Yo) (A2)
chaotic oscillators, we show the scaling of the uncertain probability dy? dy 0
for (8) K=0.835 and(b) K=0.868. The uncertainty exponents are
approximately 0.09 and 0.06 fde) and (b), indicating that the

ilizing th ndar nditiongEgs. (1 nd (1 W
dimensions of the fractal basin boundaries in the full 12- ut g the boundary conditiongEgs. (16) and (17)], we

dimensional phase space are approximately 11.91 and 11.94, rgptaln
spectively. v A[eMY— e Adet oY) Y>> Y A3
’ AK(eMY—gr2Y), 0<Y=<Y,,
(3) Fractal dimensionThe fractal dimension of bound-
aries between the symmetry-breaking induced basins is comvhereA, K, \;, and\, are given by
puted from the scaling of the uncertainty probability 5).
For the system of coupled Rsler oscillators, initial- e~ 2Yo_ @ Yo
condition pairs are chosen from a fixed lineAdt (=<0 in the A= , (A4)
(AX,AY) plane. Results from two typical cases are shown in D(Ap—Ap)[eP17De—1]
Figs. 19a) and 19b) for e=0.1, K=0.835, and 0.868, re- _
spectively. The uncertainty exponents are=0.09 anda ehYo— g(r1—r)etAaYo
~0.06. Since the phase-space dimension of Bd) is 12, K=

) ! ) eMYo— gh2Yo
these values otv imply that the dimensions of the fractal

basin boundaries are 11.91 and 11.94 Kot 0.835 andK

=0.868, respectively. N v+\v’+4Ds
1 2D 7
V. DISCUSSION
v—12+4Ds
The main contribution of this paper is a systematic analy- )\QZT.

sis of the effect of symmetry breaking on riddling. Specifi-
cally, we consider symmetry breaking that destroys the thel_
essential dynamical element required for riddling: the exis- i :
tence of an invariant subspace. Our principal result is tha@PSorbing boundary at is
while riddling is robust against perturbations that preserve
the symmetry and invariance of the system, it is structurally
unstable under perturbations that destroy the symnjafty
Such perturbations destroy riddling, create fractal basins
with physical properties similar to those of a riddled one, andT
induce long chaotic transients that scale exponentially with
parameter variations. An implication of this work is that .
riddled basins may not actually be observable in physical Fe(t):f f(t)dt’. (AB)
experiments, say, in systems of coupled, slightly nonidenti- 0

cal chaotic oscillators. What can be observed is fractal basins

that appear like riddled ong23-25. The Laplace transform df (t) is given by

he instantaneous probability flux per unit time through the

f(t)= (A5)

By DdP B DdP
vPY.)-Dgy .~ Par

Y=¢

he total probability flux througEin timetis
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e)\ l:(e— )\2Y0_ e— )\1Y0)

y-c  s[eMiDeo]

D dP(Y,s)
E(S -
S

dy

(A7)

Note thatF .(s) has a pole as=0 and a branch singularity at
s*=—1%/(4D)<0 (the value ofs that satisfies\;=X\, is

PHYSICAL REVIEW B4 056228

c eMYo+ C,er2"o ©2)
27 eMYo_gh2Yo

e MYo_ @—A2%o
" D(Ci+1)(Np—Ny)

A

not a pole. Performing the inverse Laplace transform of The number of trajectories from thi, initial conditions

Fe(s),

= [ E (e A8
=557 . Fds)eds, (A8)

where ¢>0 so that all singularities are to the left of the

distributed ate which remain betweep= e andy=1 at time
t, in which the corresponding random walkers are still mov-
ing diffusively, is

N(t)zNofo?P(Y,t)dY. (B3)

integration path, we see that the contribution from the branclptS Laplace transform is given by

singularity is proportional te@>"t, which vanishes in the limit

t—oo. Since the fraction of the symmetry-breaking induced

basin of they= —o attractor isF.=lim,_, . F.(t), we see
that the only contribution td=. comes from the pole a
=0 [which determined=(t) in the infinite t limit by the
nature of the Laplace transfofmEvaluating the residual at
s=0 leads to the scaling relatidiEq. (18)].

APPENDIX B: SCALING OF CHAQOTIC
TRANSIENT LIFETIME

We solve the diffusion equatigrEq. (12)] under the ini-
tial and boundary conditionf€gs. (16), (20), and(22)]. The
solution is
A (eMY+Cet2Y),

Alcz(e)\lY_ e)\ZY),

Y>Y,
0<Y<=Y,,

P(Y,s)= (B1)
where the coefficient€,, C,, andA; are given by

N, —
= — — (A17AZ)E
C, )\1e ,

Ae_ 1) _ Ape_
N(S)=N0f055(v,s)dyz"2(e 1) -y (eh2 - 1)

DA A o(N 26— N et€)
(B4)

To determine the singularities d)T(s), we note that under
the transformyv°+4Ds— — \»*+4Ds, \; and\, are in-
terchanged and, hendg(s) is invariant under the transform.
As a resultN(s) is an even function of 2+ 4Ds and it has

no branch singularity. Possible singularities E(s) are
therefore poles determined by

N eh2f— )\ ,eMe=0. (B5)

Since we are interested in the behavior ft) at large
times, we look for solutions of EqB5) at s~0. If v<0
(a=a?), we havex,;~ —s/v and\,~»/D. Thus the pole is

sp~—v?e DD If y=0 (a=<al), we havex;~v/D,
\,=—s/D and, hence agairs,~ — v?e~ ("P)¥/D. Thus, as-
ymptotically, N(t) ~ e, giving the following lifetime of the
chaotic transientr=1/|s,|, which is Eq.(23).
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