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Catastrophic bifurcation from riddled to fractal basins
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Most existing works on riddling assume that the underlying dynamical system possesses an invariant sub-
space that usually results from a symmetry. In realistic applications of chaotic systems, however, there exists
no perfect symmetry. The aim of this paper is to examine the consequences of symmetry-breaking on riddling.
In particular, we consider smoothdeterministicperturbations that destroy the existence of invariant subspace,
and identify, as a symmetry-breaking parameter is increased from zero, two distinct bifurcations. In the first
case, the chaotic attractor in the invariant subspace is transversely stable so that the basin is riddled. We find
that a bifurcation from riddled to fractal basins can occur in the sense that an arbitrarily small amount of
symmetry breaking can replace the riddled basin by fractal basins. We call this acatastrophe of riddling. In the
second case, where the chaotic attractor in the invariant subspace is transversely unstable so that there is no
riddling in the unperturbed system, the presence of a symmetry breaking, no matter how small, can immedi-
ately create fractal basins in the vicinity of the original invariant subspace. This is a smooth-fractal basin
boundary metamorphosis. We analyze the dynamical mechanisms for both catastrophes of riddling and basin
boundary metamorphoses, derive scaling laws to characterize the fractal basins induced by symmetry breaking,
and provide numerical confirmations. The main implication of our results is that while riddling is robust
against perturbations that preserve the system symmetry, riddled basins of chaotic attractors in the invariant
subspace, on which most existing works are focused, arestructurally unstableagainst symmetry-breaking
perturbations.

DOI: 10.1103/PhysRevE.64.056228 PACS number~s!: 05.45.Jn, 05.45.Ac
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I. INTRODUCTION

When a nonlinear dynamical system possesses mul
coexisting attractors@1,2#, the basin boundaries between t
attractors can be either smooth or quite complicated
physically important question concerns the predictability
asymptotic attractors when initial conditions are chosen
the vicinity of the boundaries. Smooth boundaries are sim
sets whose dimensions are one less than that of the p
space. For these boundaries, an improvement in the prec
to specify the initial conditions results in an equal amount
improvement in the predictability of the asymptotic attract
Fractal basins are open~e.g., contain open areas in two d
mensions! but their boundaries contain fractal sets@1#. Typi-
cally, the dimension of a fractal basin boundary is a fract
less than the phase-space dimension. As a consequen
more precise specification of the initial conditions often
sults in a much smaller improvement in the probability
predict the attractor correctly. Riddled basins contain
open sets~e.g., no open area in two dimensions! and have
dimensions close to that of the phase space@3–10#. For
riddled basins, a vast reduction in the uncertainty to spe
the initial conditions results in hardly any improvement
ability to predict the final attractor. Because of this serio
physical consequence, the phenomenon of riddling has
ceived quite a lot of recent attention@3–10#. This paper con-
cerns bifurcation from riddled basins to fractal ones~see Sec.
II for more precise meanings of riddled versus fractal b
sins!.

Riddling was first analyzed for general chaotic systems
Alexanderet al. @3#. The dynamical conditions for riddling
to occur were first described in Ref.@3# where it was shown
1063-651X/2001/64~5!/056228~16!/$20.00 64 0562
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that for systems with an invariant subspaceS, ~i! if there is a
chaotic attractor inS, and ~ii ! if a typical trajectory in the
chaotic attractor is stable with respect to perturbations tra
verse toS, then the basin of the chaotic attractor inS can be
riddled with holes that belong to the basin of another attr
tor off S, provided that such an attractor exists. Mathema
cally, a riddled basin is the complement of a dense open
belonging to the basin of the other coexisting attractor. Th
a riddled basin contains no open sets, in contrast to fra
basins that usually do@1#. Physically, the presence of
riddled basin means that, for every initial condition that go
to the chaotic attractor inS, there are initial conditions arbi
trarily nearby that approach the attractor offS and, as a
consequence, prediction of the asymptotic attractor for s
cific initial conditions and parameters becomes practica
impossible. The bifurcation that leads to riddling was stud
in Ref. @7#. A signature of a riddled basin was found in a
experimental system consisting of coupled chaotic electro
circuits @5#. The effect of noise on riddling was also inves
gated @8#. More recently, conditions for riddling were re
examined, and it was found that physical signatures of
dling persist even if the chaotic set in the invariant subsp
is nonattracting@10#. In most existing works on riddling, a
common assumption was that the system possesses a p
invariant subspace. Such an invariant subspace usually
sults from a simple symmetry in the system.

While symmetry and invariance are common in ma
ematical models of physical systems and such intrinsic pr
erties in the system’s equations can have intriguing and
teresting dynamical consequences, the notion of symm
and invariance isnongenericbecause, in a physical reality
©2001 The American Physical Society28-1
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YING-CHENG LAI AND VICTOR ANDRADE PHYSICAL REVIEW E 64 056228
imperfections or perturbations that destroy the system s
metry are always expected to be present. Consider, for
ample, the following system ofN coupled oscillators@11,12#:

dxi

dt
5Fi~xi !1K(

j
H~xi2xj !, i 51, . . . ,N, ~1!

whereFi(xi) is the velocity field of each individual oscillato
when uncoupled, and the coupling is represented by
strengthK and the functionH(xi2xj ) satisfying the condi-
tion H(0)50. When the individual oscillators are identica
i.e., Fi5Fj for i , j 51, . . . ,N, the synchronous statexi(t)
5xj (t) ( i , j 51, . . . ,N) is a solution to Eq.~1!. In this case,
the dynamical equation is identical for each oscillator so t
oscillators starting synchronized remain so forever. The s
space defined byxi(t)5xj (t) ( i , j 51, . . . ,N) is therefore
invariant. Indeed, the existence of such an invariant subsp
appears to be the starting point for analyzing the dynamic
coupled chaotic oscilltors in most existing works@11,12#. In
realistic situations as in laboratory experiments, imperf
tions such as parameter mismatches among oscillators
inevitable. The presence of nonidentity among the veloc
fields Fi ’s, no matter how small, immediately destroys t
original invariant subspace defined by the synchronous s

Motivated by the consideration that symmetry breaking
inevitable in physical situations, in this paper we address
following important question: can riddling be observed? O
principal result is that riddling is typically destroyed b
symmetry-breaking perturbations, no matter how small~ca-
tastrophe of riddling!. In a fairly general setting, a riddle
basin, after its destruction, is converted into a fractal o
which is a common type of basin expected in nonlinear s
tems @1#. However, when the perturbations are small, t
resulting fractal basin may appear, at least visually, simila
a riddled one. Thus the difference between this type of fr
tal basins and riddled basins is rather subtle, which is m
ematically important but perhaps not so from the practi
standpoint of physical observation. We establish our re
by performing mathematical analysis of a class of repres
tative analyzable models, by utilizing an approximate phy
cal theory to derive scaling laws to characterize the effec
symmetry-breaking perturbations on riddling, and by ext
sive numerical computations. A short account of part of
results was recently published@13#.

The rest of the paper is organized as follows. First
consider an analyzable model and present a detailed a
ment for the destruction of riddling under symmetry brea
ing ~Sec. II!. Because of the simplicity of the model, th
subtle difference between riddled and fractal basins, and
the former is converted into the latter by symmetry-break
perturbations, can be understood explicitly. We then de
scaling laws of physically measurable quantities for the
tastrophe of riddling~Sec. III!. In Sec. IV, we provide nu-
merical support. In Sec. V, we present a discussion from
standpoint of prediction and observation.

II. AN ANALYTICAL MODEL

We consider the following two-dimensional mapF(x),
wherex[(x,y)PR2:
05622
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xn115T~xn!5H 2xn , 0<x,1/2

2~12xn!, 1/2<x<1
~2!

yn115 f ~xn ,yn!5H axnyn1e, 0<y,1

lyn , y>1,

whereT(x) is the tent map,a, e, andl.1 are parameters
and the phase-space region of interest is$0<x<1,2`,y
,`%. Whene50, the system possesses the one-dimensio
invariant subspacey50, which is caused by the reflectin
symmetryy→2y. That is, if y050, thenyn50 for all n
.0. The symmetry is broken wheneÞ0. Becausel.1, the
map has at least two attractors:y56`. When e50, the
chaotic attractor of the tent map iny50 can be the third
attractor of the full system if it is transversely stable, say,
a,ac(e50)[ac

0 . Whene is increased from zero, no matte
how small, the chaotic attractor of the tent map is no lon
an attractor of the whole system. The catastrophic bifurca
of riddling occurs fora,ac

0 asueu is increased from zero, in
which the riddled basin of they50 chaotic attractor fore
50 is replaced by fractal basins of either they51` or the
y52` attractor, depending on the sign ofe. Fora.ac

0 , the
basins of they56` attractors arey.0 andy,0, respec-
tively, if e50. A smooth-to-fractal basin boundary metamo
phosis@14# occurs because the two simple basins (y.0 and
y,0) are replaced by fractal ones asueu is increased from
zero. Because of the simplicity of Eq.~2!, these bifurcations
can in fact be understood, to certain extent, analytically.

A. Riddling for eÄ0

When a basin is riddled, it does not contain any open s
and is full of holes~in the measure-theoretic sense!, yet it
must have a positive Lebesgue measure. Alexanderet al. of-
fered the following definition for a riddled basin@3#: The
basin of attraction of an attractor is riddled if its comple
ment intersects every disk in a set of positive meas.
Roughly, the term ‘‘disk’’ here refers toN-dimensional
phase-space volumes of all sizes. In order to argue that
basin of an attractor is riddled, the following two condition
must be established:~i! a set of positive measure is attracte
to the attractor and~ii ! sufficiently many points near the a
tractor are repelled away from it. In Ref.@3#, several analyti-
cal examples were constructed for which these two con
tions can be tested rigorously. In particular, to pro
condition ~i!, one can compute the transverse Lyapunov
ponent~to be defined below! and show that it is negative@3#.
To prove condition~ii !, it is necessary to show that ther
exists an opendenseset near the attractor, points in whic
asymptote to another coexisting attractor. In contrast, a f
tal basin is open and it is defined with respect to the ba
boundary: a basin is fractal if its boundary is a fractal setA
mathematical feature that distinguishes a riddled basin fr
a fractal one is then that, the former is a closed set of po
tive measure while the latter is open.

In Eq. ~2!, for e50, y50 is invariant, so a transvers
Lyapunov exponent can be defined, as follows:
8-2
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CATASTROPIC BIFURCATION FROM RIDDLED TO . . . PHYSICAL REVIEW E64 056228
hT5 lim
K→`

(
n50

K21

lnUdyn11

dyn
U5 lim

K→`
(
n50

K21

ln~axn!

5E
0

1

ln~ax!dx

5 ln a21. ~3!

We see that a blowout bifurcation occurs atac
05e where

hT<0 for a<ac
0 and hT.0 for a.ac

0 . The existence of
riddling for a<ac

0 can be established through the followin
theorem.

Theorem:Let A be the chaotic attractor in the invaria
subspacey50. The basin ofA is riddled for 1,a,ac

0 .
Proof: To establish that when the transverse Lyapun

exponenthT is negative, there is a set of positive measu
that appears asymptotic toA @condition ~i! for riddling#, we
follow the steps in Ref.@3#. Specifically, for fixedC.0, let
MC5A3$y:uyu,C% and consider the set of points:PC
5$(x,y)PMC :Fn(x,y)PMC for all n and L1$(x,y)%
,A%, whereL1$(x,y)% is the forward limit set of (x,y). Let
mx be the Lebesgue measure of the chaotic attractor iy
50, which is absolutely continuous, and letmy denote the
Lebesgue measure in they direction. AssociateMC with the
measure:m5mx3my . For any positivee0,C, the ratiom̂
5m(MCùMe0

)/m(Me0
) defines thee-relative measure o

a setM.
For every (x,0)PA, define

t~x!5supn>0UexpS 2
3

4
nhTD @Dyf (n)#~x,0!U<`.

Since the limit in Eq.~3! exists form almost everyxPA,
t(x) is finite for m almost everyxPA. Let R(s)5$x
PA:t(x)<s%. For sufficiently small C.0 and for all
(x,y)PMC , we have

u f ~x,y!u<exp~2 1
2 hT!u@Dyf #~x,0!uuyu.

Now fix C. Then the existence ofhT implies that if x
PR(s) and u f (k)(x,y)u<C for all k, we have, by induction,
the following:

u f (n)~x,y!u<exp~2 1
2 nhT!u@Dyf (n)#~x,0!uuyu

<s exp~ 1
4 nhT!uyu.

Thus, if xPR(s) and uyu,C/s, thenF(n)(x,y)PMC for all
n>0 and limn→` f (n)(x,y)50, which means that, ife0

<C/s, then thee relative measurem̂(PC)>m„R(s)…/m(A).
Therefore, for a givene0, if we set s5C/e0, then
lime0→0 m̂(PC)51. That is, most points~with respect to the

product measure ofmy andmx) sufficiently close toA stay
C-nearA and eventually approachA. This establishes con
dition ~i! for riddling.

To establish condition~ii ! for riddling, we consider a
small interval @xF2d2 ,xF1d1#, located at distancey0
above the fixed pointxF52/3 embedded inA, where 0
05622
v
e

,y0!1 and d2 and d1 are infinitesimally small. Since

a&ac
0 , we haveaxF.1. Let k be the number of iterations

that the initial condition (xF ,y0) is mapped beyondy51,
i.e., k5 int@ u ln y0u/ln(axF)#11. After k iterations, the initial
condition (xF1d1 ,y0) maps to (xk

1 ,yk
1), where xk

15xF

1(21)k2kd1 and

yk
15aky0)

i 50

k21

@xF1~21! i2id1#.

Sinced1 is infinitesimal, we have

ln yk
15k ln~axF!1 ln y01 (

i 50

k21

lnF11
~22! id1

xF
G

'
~21!k2k21d1

3xF
. ~4!

Similarly, for the initial condition (xF2d2 ,y0), we have

ln yk
2'

~21!k212k21d2

3xF
. ~5!

Equations~4! and~5! are valid whend1 andd2 are chosen
such that 2kd6!3xF , i.e.,

d653axF2int[ u ln y0u/ ln(axF)] 11[ag~y0!, ~6!

where a!1 and g(0)50. If k is even ~odd!, we have
ln yk

1.0 (lnyk
2.0) and thusyk

1.1 (yk
2.1). In any case,

after k iterations, either@xF2d2) or (xF1d1# maps toy
.1 and asymptotes to they5` attractor. Let

W5$~x,y!uy.0 :xF2ag~y!<x,xF

or xF,x,xF1ag~y!%. ~7!

Thus any point inW maps toy.1 under Eq.~2!, and we
haveW1[Wø$y.1%,B(1`), whereB(1`) denotes the
basin of the1` attractor. LetBW be the union of all preim-
ages ofW1 under map~2!:

BW5øn50
` F2n~W1!.

Note that$T2n%n50
` (xF) consists of points with binary rep

resentations all ending in an infinite string 010101 . . . ,
where a trajectory pointx of the tent map is assigned th
symbol 0 (1) if x,1/2 (x.1/2). Thus $T2n%n50

` (xF) is
dense in the unit intervalxP@0,1#. Since$T2n%n50

` (xF) are
the roots of the regionBW in the invariant subspace,BW is an
open dense set. This completes the proof.

After the blowout bifurcation, the system has two attra
tors at6` with basiny.0 andy,0, respectively. There is
no riddling in this case.

B. Catastrophic bifurcation of riddled basin

The replacement of the riddled basin by fractal ones in
presence of a symmetry-breaking perturbation can be s
qualitatively, as follows. As discussed above, fore50, the
8-3
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basin of the chaotic attractorA in y50 is a closed set with
positive Legesgue measure, which is the complement se
two symmetric open dense sets belonging to the attracto
y56`, respectively. While initial conditions withy0.0 or
y0,0 can go toA, they cannot cross the invariant liney
50. ForeÞ0, the dense set of unstable periodic orbits ori
nally embedded inA in y50 spreads out in the vicinity o
y50, convertingA into a chaotic transient. Because of th
spread of unstable periodic orbits, a trajectory initiated
y.0 can penetrate the originally invariant liney50 and
approach they52` attractor, and vice versa. The basin
the y52` attractor in y.0 must be open and therefor
must be fractal, the same for the basin of they51` attrac-
tor in y,0. This can be understood as follows. Consider
open neighborhoodB of one of the attractors at infinity
Choose a pointp in its basin and evolve it forward in time
Eventually the resulting trajectory will approach the attra
tor, which means that, at some finite time, the trajectory w
enterB, say at pointp8. The pointp8 in B must then have an
open neighborhood. Sincep8 is iterated fromp in finite time,
p must also have an open neighborhood in the basin@15#.
Thus, as soon ase becomes nonzero, the riddled basin ofA
is destroyed and simultaneously, two fractal basins arise
what follows we analyze how unstable periodic orbits e
bedded in the original chaotic attractor iny50 are perturbed
by the symmetry breaking, based on which we can estab
the existence of open, but not dense, sets that belong to
basins of the attractors at infinities.

1. Unstable periodic orbits and their stabilities
under the symmetry-breaking perturbation

For concreteness, we consider map~2! with e,0 anda
'ac

0 . Since unstable periodic orbits are structurally stab
we expect that they shift to a small neighborhood about
original invariant subspacey50 for eÞ0. In particular, the
original fixed point (xF,0) ~a repeller with two unstable di
rections inx andy), is shifted to: (xF ,yF), whereyF is given
by

yF5
2ueu

12axF
. ~8!

For a'ac
0 , we haveaxF.1 and, hence,yF.0. The Jaco-

bian matrix of Eq.~2!, evaluated at (xF ,yF), is given by

F 22 0

ayF axF
G .

We see that due to the skew-product structure of Eq.~2!, the
eigenvalues of the perturbed fixed point (xF ,yF) are: Lx
522 andLy5axF.1. Thus under the symmetry-breakin
perturbation, the shifted fixed point is still a repeller. No
consider period-2 orbits (x1

(2),0) and (x2
(2),0), where

T(x1
(2))5x2

(2) andT(x2
(2))5x1

(2) . For eÞ0, they coordinates
of the orbits become
05622
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y1
(2)5

2ueu~ax2
(2)11!

12a2x1
(2)x2

(2)
and y2

(2)5
2ueu~ax1

(2)11!

12a2x1
(2)x2

(2)
.

We observe that~1! the orbit is shifted upward~downward!
from y50 if it is a repeller~saddle!, and~2! the eigenvalues
of the orbit remain unchanged.

In general, for a periodic orbit of periodp ~say, thej th
one among all 2p orbits in the tent map!,

~x1
(p),0!,~x2

(p),0!, . . . ,~xp
(p),0!,

where T(xi
(p))5xi 11

(p) ( i 51, . . . ,p21) and T(xp
(p))5x1

(p) .
For ueuÞ0, they locations of the orbit points are given by

yi
(p)5F2ueu~11axi 21

(p) 1a2xi 21
(p) xi 22

(p) 1•••1ap21!

3 )
l 51,lÞ i

p

xl
(p)G Y S 12ap )

m51

p

xm
(p)D . ~9!

If the original periodic orbit is a repeller~saddle!, i.e.,
ap)m51

p xm
(p).1 (ap)m51

p xm
(p),1), it remains a repeller

~saddle! but its location is shifted upward~downward!, i.e.
yi

(p).0 (yi
(p),0). Since all repellers are located iny.0, a

trajectory starting iny,0 cannot crossy50, but since all
saddles are located iny,0, a trajectory starting iny.0 can
move across thex axis and go to they52` attractor. Thus,
due to the symmetry breaking, they52` attractor acquires
basins iny.0. In so far as the original symmetric syste
possesses two distinct classes of unstable periodic orbits~re-
pellers and saddles!, the basin of they52` attractor has a
component iny.0, regardless of whethera,ac

0 or a.ac
0 .

In what follows we will argue that the symmetry-breakin
induced basin component is not riddled but fractal.

The picture dipicted above, i.e., saddles shifted downw
and repellers upward, is specific for our model system@Eq.
~2!# for the case ofe,0. Fore.0, saddles will shift upward
and repellers will shift downward. In general, in two dime
sions we expect to observe saddles and repellers on
sides of the original invariant subspace when there is a s
metry breaking. Thus there will be fractal basins both abo
and below the original invariant subspace. In higher dim
sions, unstable periodic orbits with different unstable dime
sions~a type of nonhyperbolicity known asunstable dimen-
sion variability @16#!, which are originally all located in the
invariant subspace, will be shifted to its neighborhood un
a symmetry-breaking perturbation.

2. Occurrence of fractal basins

We show that there is still an open set in 0<(x,y)<1
that goes to they51` attractor. Consider a horizontal in
finitesimal interval slightly above the perturbed fixed po
(xF ,yF): @xF2d2 ,xF1d1# at y0*yF . The trajectory from
the initial condition (x0 ,y0), wherex05xF1d1 , is
8-4
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xn
15xF1~22!nd1 ,

~10!

yn
15S an)

i 50

n21

xi D y02ueuS 11 (
l 51

n21

al )
m5n2 l 11

n

xmD .

For ueu*0 andd1*0, we have

ln yn
1'n ln~axF!1 ln y01

~21!n2n21d1

3xF
2ueug~n!,

where g(n)5(11( l 51
n21al)m5n2 l 11

n xm)/(axF)n. Let k be
the time that the trajectory from the initial condition (xF ,y0)
reachesy51, i.e., k ln(axF)1ln y02ueug(k)50. We obtain
ln yk

1'(21)k2k21d1 /(3xF). Similarly, afterk iterations, they
coordinate of the trajectory point from the initial conditio
(xF2d2 ,y0) is: lnyk

2'(21)k212k21d2 /(3xF). Regardless of
whetherk is even or odd, we see that eitheryk

2.1 or yk
1

.1. Thus an open area exists immediately above the sh
fixed point (xF ,yF) which belongs to the basin of they
51` attractor. The set of infinite number of preimages
this area is thus an open set that goes to they51` attractor.

When e50, the ‘‘roots’’ of the open set, i.e., the fixe
point (xF,0) and all its preimages, are located in the invari
subspacey50 and are dense, because the tent map in Eq~2!
is noninvertible@17#. ForeÞ0, these ‘‘roots’’ are shifted and
are distributed in the two-dimensional phase-space reg
abouty50. Thus, the open set is no longer dense. The se
initial conditions in the unit square 0<(x,y)<1 that go to
the y52` attractor is now open. In fact, it is straightfo
ward to see that the region bounded by the curvexy,ueu/a
in the unit square maps toy,0 after one iteration. The basi
of the y52` attractor thus consists of this bounded regi
and all its preimages. The boundaries between the basin
the y56` attractors are fractal. We remark, however, th
in this case, the basin iny.0 of the y52` attractor may
appear indistinguishable from that of a riddled basin beca
most unstable periodic orbits in the original invariant su
space are perturbed only slightly. The above arguments
be casted into the following conjecture.

Conjecture: For a&ac
0 and eÞ0 in Eq. ~2!, the chaotic

attractor in the invariant subspace, together with its ridd
basin fore50, is replaced by a chaotic transient and frac
basins of the attractors at infinities, respectively.

III. CRITICAL BEHAVIORS AND SCALING LAWS

From Sec. II B 1 we see that the presence of a sm
amount of symmetry-breaking causes a spread of unst
periodic orbits in the neighborhood, of size aboute, about
the original invariant subspace. The dynamics outside
neighborhood can be approximately described by that o
random walk. To see this, we rewrite they equation in the
analytical model@Eq. ~2!# as follows:

2 ln yn1152 ln yn2 ln~axn1e/yn!.

Letting Yn[2 ln yn , we obtain

Yn115Yn1nn , ~11!
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wherenn52 ln (axn1e/yn) is a random variable becausexn
comes from a chaotic process. Fore;0, nn is approximately
independent ofyn most of time~except whenyn gets close to
the original invariant subspace!. Equation ~11! thus de-
scribes, approximately, a random walk. If the average d
n[^(Yn112Yn)&5^nn& is small, the random walk mode
can be solved by using the diffusion approximation, fro
which various scaling relations can be derived. Specifica
sincen is small, the evolution of the probability as a functio
of discrete timen in spaceY can be approximated as a
evolution in continuous timet. Let P(Y,t)dY be the prob-
ability of finding the walking in the interval@Y,Y1dY# at
time t, thenP(Y,t) obeys,approximately, the diffusion equa-
tion @18#

]P

]t
1n

]P

]Y
5D

]2P

]Y2
, ~12!

whereD is the diffusion coefficient, defined as follows:

D5^~Yn2n!2&. ~13!

Adopting the above diffusive picture, we see thatn and D
are the two key parameters that determine the dynamics
fact, the average driftn is analogous to the transvers
Lyapunov exponent which can be defined only whene50,
and the diffusion coefficientD characterizes the degree o
the fluctuations of the finite time transverse Lyapunov ex
nent @4#. Our viewpoint is that, when there is a symmet
breaking so that the notions of invariant subspace and tr
verse Lyapunov exponent no longer hold, we can still usn
and D to characterize the dynamics in the vicinity of th
original invariant subspace. In particular, regarding thee
neighborhood of the original invariant suspace as apseudo-
invariant manifoldunder a symmetry breaking, the stabili
of this manifold can be quantified byn andD. Defining the
pesudotransverse Lyapunov exponent

Lq[2n, ~14!

we see that ifLq.0 (n,0), the pseudoinvariant manifold i
transversely unstable because a trajectory leaves the pse
invariant manifold exponentially fast. If, however,Lq,0
(n.0), a trajectory can spend a long time~to be quantified
below! near the pseudoinvariant manifold, although the t
jectory will eventually leave it. In this sense, the manifold
quasistablewith respect to transverse perturbations. Th
we see that, introducing the pseudotransverse Lyapunov
ponent, with the parameterD ’s characterizing its finite-time
fluctuations, enables us to quantify the dynamical property
the pseudoinvariant manifold. This may provide a gene
approach to addressing problems such as the stability of
synchronization manifold in couplednonidenticalchaotic os-
cillators.

A detailed discussion about the validity of the diffusio
approximation near the transition point to a chaotic attrac
with a riddled basin, at which the average drift~or the trans-
verse Lyapunov exponent! is nearly zero, can be found in
8-5
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Ref. @4#. In our case, because of the symmetry breaking,
range for the validity of the diffusion approximation is lim
ited. In particular, we note that, approximately, a trajecto
cannot enter thee neighborhood of the original invarian
subspacey50. However, fory.e, the trajectory experi-
ences both repulsion from and attraction toward thee neigh-
borhood ofy50 due to the existence of periodic orbits wi
different unstable dimensions, namely, repellers and sadd
If n'0, the amount of repulsion is approximately equal
that of attraction and, hence, we expect the diffusion pict
to be valid fore&y,1. In the walk’s space, the range isY

P(0,ē), whereē52 ln e@1. As we will describe, by impos
ing different boundary conditions atē, distinct scaling rela-
tions can be derived. In the following we consider thr
quantities that are measureable in numerical or labora
experiments. For the clarity of presentation, we consider
case wheree&0 so that the symmetry-breaking induced b
sin of they52` attractor lies iny.0.

A. Fraction of symmetry-breaking induced basin

We concentrate on the phase-space region@0<x<1,
ueu<y<1#, and fix a line segment 0<x<1 at y5y0.0,
and uniformly choose a large number of initial conditio
from it. Thus we have the initial condition

P~Y,0!5d~Y2Y0!, ~15!

whereY052 ln y0. Since a trajectory reachingy51 quickly
approaches they51` attractor, we have the following ab
sorbing boundary condition atY52 ln 150:

P~0,t !50. ~16!

Roughly, a trajectory entering theueu neighborhood ofy
50 is lost to the basin of the2` attractor. A realistic pic-
ture is that theY location of the absorbing boundary depen
on x. For instance, from the model of Eq.~2!, we see that a
trajectory goes to they52` attractor wheneveraxnyn
,ueu. In so far asxn is not too small, this happens whe
yn,ueu/axn;ueu. Thus, as a crude approximation, we im
pose an absorbing boundary atē:

P~ ē,t !50. ~17!

Let F(ueu) be the fraction of initial conditions from the lin
segment aty0 that are asymptotic to they52` attractor. As
ueu is increased, we expectF(ueu) to increase@note that
F(0)50]. For ueu;0, we obtain, by solving the diffusion
equation Eq.~12!, together with the initial and boundary con
ditions @Eqs.~15!–~17!#, the following scaling law~see Ap-
pendix A!:

F ueu5
y0

n/D21

ueun/D21
. ~18!

If n*0, we haveueun/D21'21 for ueu;0 and, henceF ueu
'12y0

n/D5const. If n&0, we have:ueun/D21'ueun/D and,
hence
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F ueu;ueu2n/D5ueu unu/D for n&0. ~19!

Thus we see that in the parameter regime wheren'0, the
fraction remains roughly constant, regardless of the amo
of the symmetry breaking. This also implies the catastrop
nature of the symmetry breaking: riddling is destroyed an
fractal basin component is immediately induced as the s
tem deviates away from the symmetric one~say, in the func-
tional space of system equations!, no matter how small the
deviation is.

B. Lifetime of chaotic transient

Consider a trajectory originated from the symmetr
breaking induced fractal basin of they52` attractor iny
.0. After it falls in the negative vicinity ofy50, it typically
experiences a chaotic transient there. In particular, ifn,0
(Lq.0), the transient time is short. If, however,n.0 (Lq
,0), the time can be extraordinarily long. Specifically, s
we sprinkle a large numberN0 of initial conditions in theueu
neighborhood ofy50, which is equivalent to the following
initial condition:

P~Y,0!5d~Y2 ē !. ~20!

Then the number of trajectories that still remain in the neig
borhood decays exponentially with time,

N~ t !5N0e2t/t, ~21!

wheret is the lifetime of the chaotic transient neary50. To
obtain the scaling oft, we note that, due to the symmetr
breaking, a trajectory can never reachy50. Thus, roughly,
the boundary atuyu;ueu is impenetrable. In the walker’s
space, there is then no probability flux into the bounda
Thus we have the following reflecting boundary condition
Y5ueu:

nP~ ueu,t !2D
dP

dYY5ueu 50. ~22!

Solving the diffusion equation under the initial and bounda
conditions@Eqs.~16!, ~20!, and~22!#, we obtain the follow-
ing expression fort ~see Appendix B!:

t'
D

n2
ueu2n/D. ~23!

We stress that, due to symmetry breaking, no typical tra
tory can remain neary50 forever, so the average transie
lifetime is finite. Thus Eq.~23! is not valid forn50 because
of the failure of the diffusion approximation to include th
dependence of the step of the random walknn on its position
Yn in Eq. ~11!. Nonetheless, fornÞ0, we expect Eq.~23! to
capture, qualitatively, the behavior of the chaotic transie
caused by symmetry breaking. In particular, forueu*0, t is
short if n,0 and it can be long forn.0. In the simple
model @Eq. ~2!#, n,0 for a.ac

0 andn.0 for a,ac
0 . Thus

we haven;(ac
02a). For a.ac

0 , ueu2n/D is small, and Eq.
~23! gives
8-6
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t;~a2ac
0!22 for a.ac

0. ~24!

For a,ac
0 , the factor ueu2n/D dominatest becauseueu is

small. We have

t;~ac
02a!22e(ac

0
2a) zlnueuz/D. ~25!

We see thatt increasesexponentiallyasa is decreased from
ac

0 . To obtain a rough idea about how long the transi
lifetime can be, say we haveD51 andueu510210. Thus if
ac

02a50.1, we havet;103. But if ac
02a51.5, then t

;1015. Because of the long transient, the pseudoinvar
manifold for a,ac

0 can be regarded as quasistable.
It should be noted that both Eqs.~24! and~25! are valid in

the parameter region whereaÞac
0 . In general, if we compute

t in a parameter region aboutac
0 , we expect to see across-

overbehavior from short to long lifetime nearac
0 . Also note

from Eq.~25! that, a long transient is expected only when t
amount of the symmetry breaking is small. The transie
while long, is characteristically different from the superpe
sistent chaotic transient@19#.

C. Fractal dimension

To assess the dimensionality of the boundary between
basin of they51` attractor and the symmetry-breakin
induced basin, we fix a line segment aty5y0, wheree!y0
,1, and examine the set of intersecting points with it of t
basin boundary. Letd0 be the box-counting dimension of th
set. We expect 0,d0<1 and, the dimension of the bounda
is D0511d0 in the two-dimensional phase space. For
riddled basin,D0 is typically close to the phase-space dime
sion @4,20#. Our point is that, despite the presence of a sm
amount of symmetry breaking,D0 is still close to 2.Thus, in
a practical sense, the symmetry-breaking induced fractal
sin resembles a riddled one.

The box-counting dimensiond0 can be computed by us
ing the uncertainty algorithm@1,21#. Specifically, letF(d)
be the probability that two initial conditions of distanced
chosen from the line segment aty0 go to different attractors
namely, one toy51` and another toy52`. Then typi-
cally, F(d) scales withd as @1#

F~d!;da, ~26!

where 0<a<1 is the uncertainty exponent@1#. The uncer-
tainty dimensiondu of the basin boundary is defined to be

du5N2a, ~27!

whereN is the phase-space dimension. For hyperbolic s
tems, it can be shown rigorously thatdu5d0 @21#. The same
relation is conjectured to hold for nonhyperbolic systems
well @21#. Following the analysis detailed in Ref.@4#, it can
be shown, by utilizing the solution to the diffusion equati
Eq. ~12! described in Appendix A, that the uncertainty exp
nent is independent of the symmetry-breaking parametee
and is given by
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4D
. ~28!

Thus in the regime wheren'0 ~but nÞ0) so that the diffu-
sion approximation is valid, we expecta'0 and henced0
'1. Regardingd as the accuracy in the specification of th
initial condition, a fractal basin boundary with dimensio
close to that of the phase space~or a near zero uncertaint
exponent! means that the uncertainly probabilityF(d) re-
mains approximately constant, regardless of how accura
we can specify the initial condition. Thus, realistically, it
impossible to predict, from a given initial condition, th
asymptotic attractor. This fundamental obstacle to predict
is common for riddled basins@4,20# and persists even whe
the riddled basin is replaced by a fractal one due to
symmetry-breaking.

IV. NUMERICAL EXAMPLES

A. A two-dimensional map

We consider the following two-dimensional map:

xn115 f ~xn!1byn
2 ,

~29!

yn115axnyn1yn
32e,

wheref (xn)5rxn(12xn) is the logistic map, anda, b, r, and
e>0 are parameters. We fixr 53.8 so that the logistic map
apparently possesses a chaotic attractor. Parameterb is fixed
at b50.1. The symmetry-breaking parameter ise.

1. Riddled basin foreÄ0

For e50, the system possesses a simple reflecting s
metry abouty50 and, hence, it is the one-dimensional i
variant subspace in which there is a chaotic attractor gi
by the logistic map. They3 term stipulates that trajectorie
with large values ofy are asymptotic touyu5` rapidly. Thus
Eq. ~29! possesses two additional attractors: one aty51`
and another aty52`. There is a blowout bifurcation a
ac

0'1.726, wherehT&0 for a&ac
0 andhT*0 for a*ac

0 , as
shown in Fig. 1. Thus fora&ac

0 , the basin of the chaotic
attractor iny50 is riddled, as shown in Fig. 2~a!, wherea
51.7, a grid of 100031000 initial conditions is chosen in
(0,x,1,21,y,1), and black dots denote initial cond
tions whose trajectories stay within 10210 of y50 for suc-
cessive 1000 iterations~which are numerically considered a
having approached they50 chaotic attractor!. To demon-
strate that there are initial conditions arbitrarily neary50
that are asymptotic to either they56` attractors, we
choose a grid of 100031000 initial conditions but in the
region (0.5,x,0.6,20.01,y,0.01) and plot the initial
conditions that are asymptotic to they56` attractors, as
shown in Fig. 2~b!, where black dots iny.0 (y,0) denote
initial conditions to they51` (y52`) attractor. Figures
2~a! and 2~b! exhibit features typical of riddling@3–10#.
8-7
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2. Riddledlike fractal basins in the presence of small symmetry
breaking

WheneÞ0, y50 is no longer invariant and, the riddlin
observed in Figs. 2~a! and 2~b! is destroyed and is replace
by fractal basins, no matter how smalle is. To be concrete
we considere*0. In this case, they,0 region still belongs
to the basin of they52` attractor, but now it has a basi
component iny.0 due to the symmetry breaking. The bas
boundary between they51` and they52` attractors in
y.0 is a fractal, as shown in Fig. 3~a! for a51.72&ac

0 ,
where the black dots denote initial conditions that a
asymptotic to they52` attractor. Although, as we hav
argued, the basins are fractal, they mimic riddled bas
which is demonstrated by Fig. 3~b!, where a small region
neary50 in Fig. 3~a! is magnified but now the black dot
denote initial conditions that go to they51` attractor. We

FIG. 1. Fore50 in the numerical model@Eq. ~29!#, the trans-
verse Lyapunov exponenthT vs the parametera.

FIG. 2. Fore50 in the numerical model@Eq. ~29!#, ~a! the basin
of the y50 chaotic attractor~black dots!, and ~b! the basin of the
y56` attractors~black dots! in a small region neary50. Appar-
ently, there are initial conditions arbitrarily near they50 chaotic
attractor that are asymptotic to they56` attractors.
05622
e
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see that there are initial conditions arbitrarily neary50 that
are asymptotic to they51` attractor, similar to the behav
ior depicted in Fig. 2~b!. While Figs. 3~a! and 3~b! are for a
parameter value below the blowout bifurcation point f
e50, similar basin structures exist fora*ac

0 , as shown in
Figs. 4~a! and 4~b!, where Fig. 4~b! is now a blowup of part
of Fig. 4~a! because in this case, the majority of the initi
conditions go to they51` attractor. Comparing Figs. 3 an
4 with Figs. 2~a! and 2~b!, we observe two features:~1! the
symmetry-breaking induced fractal basins are visually si
lar to riddled basins and~2! the fractal basins exist on bot
sides of the original blowout bifurcation point~defined when
there is no symmetry breaking!.

3. Drift and diffusion coefficient

When eÞ0 so that a symmetry breaking is present, t
invariant subspace is destroyed and the notion of the tra

FIG. 3. Fore510210 anda51.72,ac
0 in the numerical model

@Eq. ~29!#, ~a! the basin of they52` attractor~black dots!, and~b!
the basin of they51` attractor~black dots! in a small region near
y50.

FIG. 4. Fore510210 anda51.73.ac
0 in the numerical model

@Eq. ~29!#, ~a! the basin of they52` attractor~black dots!, and~b!
the basin of they52` attractor~black dots! in a small region near
y50.
8-8
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verse Lyapunov exponent no longer holds. Our analysis
the simple model@Eq. ~2!# indicates, however, that one ca
use the drift coefficientn and the diffusion coefficientD to
characterize the dynamics in the vicinity of the original i
variant subspace. These two parameters are universal in
sense that they determine scaling properties for
symmetry-breaking induced fractal basins, regardless of
details of the system. To computen andD for Eq. ~29!, we
fix a horizontal line segment at 1@y0@e*0 and distribute a
large number of initial conditions (x0 ,y0) on it. The param-
eters are then given by

n5^DY&[^Y12Y0&[^2 lnuy1~x0!/y0u&,
~30!

D5
1

2
^~DY2n!2&,

where ^•& is the ensemble average. Note that whene50,
due to the ergodicity of the chaotic attractor in the invaria
subspace, we haven52hT . Figures 5~a! and 5~b! show n
and D versus the parametera in Eq. ~29!, respectively, for
three values ofe: 1028, 10210, and 10212, where 105 initial
conditions are chosen from the line segmentx0P@0,1# at

y051023. We see thatn changes sign ata'ac
0 , while D

remains essentially constant aboutac
0 . The curves at differ-

ent values ofe are indistinguishable, indicating thatn andD
are ‘‘invariant’’ parameters to characterize the dynamics
der small symmetry-breaking.

4. Fraction of symmetry-breaking induced basin
[Eqs. (18) and (19)]

To numerically compute the fraction of the basin induc
by the symmetry breaking, we choose 107 initial conditions
at y051021 and compute the number of trajectories that a
pear asymptotic to they52` attractor. Our theory predict
that, forn*0, the fraction is almost independent of the ma
nitude of the symmetry breakinge. This is shown in Fig. 6~a!
for three values ofa&ac

0 for which n*0. However, forn

FIG. 5. The average driftn and the diffusion coefficientD vs a
in the numerical model@Eq. ~29!# for three values ofe.
05622
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&0 @a*ac
0#, the fraction scales algebraically withe, as veri-

fied for three values ofa in Fig. 6~b!. The numerically ob-
tained algebraic exponents are, however, several times la
than the predicted one (n/D). The source of deviation come
from the usage of the diffusion approximation to solve t
random-walker problem@Eq. ~11!#, which is crude in the
sense that the amount of the random walknn is not com-
pletely independent of position variableYn . Nonetheless, the
predicted algebraic behavior appears valid.

5. Chaotic transient lifetime

Solutions based on the diffusion approximation sugg
that the lifetime of the chaotic transients induced by symm
try breaking, as a function of its magnitude, is short a
remains roughly constant forn&0 (a*ac

0). However, the
lifetime can be long and increases algebraically withe for
n*0 (a&ac

0). These behaviors are shown in Fig. 7, whe
for each pair of fixeda and e, t is the numerical average
lifetime computed from 107 initial conditions chosen from
the liney051021. Again, although the algebraic scaling b
havior is predicted correctly using the diffusion theory,
fails to predict the scaling exponent, for the reason quote
Sec. IV A 4.

For fixede, Eq. ~23! predicts that the scaling behaviors
the transient lifetime with the parameter variation are ch
acteristically different forn,0 andn.0. In particular, for
n,0 (a.ac

0), the lifetime scales algebraically with the pa
rameter variation, while forn.0 (a,ac

0), the scaling be-
havior is exponential and, therefore, the lifetime can be lo
Neara5ac

0 , as we explain in Sec. III B, Eq.~23! fails but we
expect to see a crossover between the distinct scaling be
iors. Figure 8 shows the distinct scaling behaviors, toget
with the crossovers, for three values ofe, where we see tha
for smalle, the lifetime of the chaotic transient can indeed
extraordinarily long fora,ac

0 .

FIG. 6. Scaling of the fraction of the symmetry-breaking i
duced fractal basin:~b! log10F ueu vs log10e for three values ofa
,ac

0 for which n.0, and~b! algebraic scaling betweenF ueu ande
for three values ofa.ac

0 (n,0).
8-9
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6. Fractal dimension

The main feature of the fractal dimension of the bas
induced by symmetry breaking is that the dimension is cl
to the phase-space dimension and, therefore, these basin
indistinguishable from riddled basins based on a dimens
measurement. Numerically, for fixed values ofe and a, we
randomly distribute a large numberN0 of initial-condition
pairs aty051023. A pair is said to be uncertain if the tw
initial conditions are asymptotic to different attractors. Fo
fixed distanced between the two initial conditions, we in
creaseN0 until the the number of uncertain initial-conditio
pairs reaches a fixed number, say 2000. The uncertain p
ability is given, approximately, byF(d)'2000/N0. Figures
9~a! and 9~b! show, fora51.73.ac

0 and a51.72,ac
0 , re-

spectively,F(d) versusd on a logarithmic scale, wheree
51028 is fixed for both figures. A linear fit gives the ap
proximate value of the uncertainty exponent. We obtain,
both Figs. 9~a! and 9~b!, a'0.00260.01. The fractal dimen-
sions of the basin boundaries are thusdu522a'1.998'2

FIG. 7. For three fixed values of parametera, the scaling of the
chaotic transient lifetime withe.

FIG. 8. For three fixed values ofe, the scaling of the chaotic
transient lifetime with a parametera.
05622
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for both a*ac
0 anda&ac

0 . The closeness of the dimension
of the fractal basin boundaries to that of the phase sp
signifies an extreme difficulty in predicting the asympto
attractor for given initial conditions, which is typical fo
riddled basins@4#.

B. A system of coupled chaotic oscillators

We now examine the effect of symmetry breaking on r
dling in continuous-time dynamical systems. The exam
we study is the system of four coupled Ro¨ssler-like elec-
tronic oscillators utilized by Heagyet al. @5# in the first ex-
perimental investigation of riddled basins. The different
equations of the system are

dxi

dt
52v i yi2zi2rxi1K~xi 111xi 2122xi !,

dyi

dt
5xi1ayi , ~31!

dzi

dt
52bzi1cg~xi !, i 51,2,3,4,

where (xi ,yi ,zi)5xiPR3 are the dynamical variables of in
dividual oscillators with frequenciesv i ( i 51, . . .,4), K is
the linear coupling parameter, and the source of nonlinea
comes from the piecewise linear functiong(x): g(x)5x
2d for x.d and g(x)50 otherwise;r, a, b, c, and d are
intrinsic parameters of the oscillators. Nonidentities amo
oscillators are stipulated by settingv i ’s ( i 51, . . . ,4)
slightly different. Following Heagyet al. @5#, we use peri-
odic boundary conditions and, for concreteness, we fixa
50.13, b51.0, c515.0, r 50.05, and v i'0.5 (i
51, . . .,4), andchooseK as the bifurcation parameter. A
this parameter setting, each oscillator exhibits a chaotic
tractor when uncoupled@5#.

FIG. 9. Scaling of the uncertain probabilityF(d) ~plotted on a
logarithmic scale! for e51028: ~a! a51.73.ac

0 and ~b! a51.72
,ac

0 .
8-10
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We first consider the case of identical oscillators:v i

5v050.5 (i 51, . . .,4). It can be seen easily that the
coupled system possesses the following shift symmetry@11#:
the system is invariant when the oscillator indices are u
formly shifted. Because of this, the synchronous state:x1

5•••5x4 lies in a three-dimensional invariant manifold
which there is a chaotic attractor~the one from individual,
uncoupled oscillators!. The dynamical behavior of oscillator
near the synchronous state can be characterized by the s
Fourier modes. In particular, forN ~even! oscillators, there
are N Fourier modes with mode indices ranging from 0
(N21): the zeroth mode represents the motion on the s
chronization manifold and the rest are transverse to it,
the first through the (N/221)th modes are doubly degene
ate. Thus, forN54, there are three spatially distinct states
synchronous state~mode 0!, two long-wavelength state
~doubly degenerate!, and a short-wavelength state~mode 2!,
as shown schematically in Fig. 10, where the vertical dir
tion corresponds to some dynamical variables of the osc
tors, sayyi(t), and the horizontal axis represents the relat
location of the oscillators~or i, the oscillator index!. Since
both modes 1 and 2 correspond to motion in the transv
direction, their stabilities can be quantified by the transve
Lyapunov exponents@5#. Figure 11 shows the first two trans
verse Lyapunov exponents of both modes as a function
the coupling parameterK, where for reference, the first tw
exponents of the synchronous chaos~mode 0! are also
shown, which do not depend onK due to the invariance o
the synchronization manifold. In the parameter inter
@Ks ,Kd# ~denoted by the two vertical dashed lines in t
figure!, all transverse exponents are negative, indicating
the chaotic attractor in the synchronization manifold is a
an attractor in the full phase space of the coupled syst

FIG. 10. Schematic illustration of the spatially distinct config
rations of attractors in a system of four coupled Ro¨ssler-like chaotic
oscillators@Eq. ~31!#.
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Riddled basin can therefore occur if there are other coex
ing attractors not in the synchronization manifold.

In Ref. @5#, it is shown that forK'Kd , indeed there exist
two period-1 coexisting attractors that belong spatially
mode 2, as shown schematically in Fig. 12. Because of
fixed range of their dynamical variables in the lattice, the
two attractors can be easily distinguished by using the spa
Fourier coefficient of mode 2:S25y1(t)2y2(t)1y3(t)
2y4(t). Thus the periodic attractors in Figs. 12~a! and 12~b!
satisfy^S2&.0 and^S2&,0, respectively.~The synchronous
chaotic attractor haŝS2&50.! To visualize riddled basins

FIG. 11. For a system of four coupled identical Ro¨ssler-like
chaotic oscillators@Eq. ~31!#, the first two transverse Lyapunov ex
ponents for modes 1 and 2. The horizontal lines denote the first
Lyapunov exponents of the chaotic attractor in the synchroniza
manifold, which do not depend on the coupling parameter.

FIG. 12. Schematic illustration of the two coexisting period
attractors~not in the synchronization manifold! that have a mode-2
spatial structure.
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we construct a two-dimensional grid (DX,DY), following
Ref. @5#, where the synchronization manifold corresponds
(DX,DY)5(0,0), and for a given point (xs ,ys ,zs) on the
chaotic attractor in the three-dimensional synchronizat
manifold, initial conditions for each oscillators are chosen,

xi5xs1DX,

yi5ys1~21! iDY, ~32!

zi5zs,

for i 51, . . . ,4. In ournumerical experiments, we distribut
a grid of 7003700 of initial points in the (DX,DY) plane in
the range: 0<DX<1 and21<DY<1. For each point, the
initial conditions for the oscillators are chosen according
Eq. ~32!, and Eq.~31! is integrated. The time average of th
mode-2 Fourier coefficient̂S2& is then computed, after dis
regarding a finite amount of transient, to determine to wh
attractor the initial point is asymptotic to. Figure 13~a! shows
the basin of the chaotic attractor in the synchronization ma
fold ~black dots!, which appears similar to Fig. 2~a! and is
apparently riddled. A blowup of part of Fig. 13~a! is shown
in Fig. 13~b!, where, for clarity of presentation, the blac
dots above and belowDY50 belong to the basins of th
period-1 attractors witĥS2&.0 and ^S2&,0, respectively.
We again note the similarity between Fig. 13~b! and Fig.
2~b!.

We now describe the effect of symmetry breaking on r
dling. For a system of coupled chaotic oscillators, a con
nient way to introduce a small amount of symmetry break
is to make the oscillators slightly nonidentical, such as m

FIG. 13. For a system of four coupled identical Ro¨ssler-like
chaotic oscillators@Eq. ~31!#, for K50.85,Kd . ~a! Riddled basins
of the chaotic attractor~black dots! obtained in the (Dx,Dy)-plane;
~b! blowup of part of ~a!, where now the black dots above an
below Dy50 denote basins of the period-1 attractors with^S2&
.0 and^S2&,0, respectively.
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ing the frequency parameterv i slightly mismatched. We
choosev i from the interval @v02e/2,v01e/2#, where e
!v0 is equivalent to a symmetry-breaking parameter. Sim
lar to the map example in Sec. IV A, the presence of a sy
metry breaking immediately destroys the riddled basin of
chaotic attractor in the synchronization manifold and
places it by fractal basins of the coexisting period-1 attr
tors. Figure 14~a! shows, forK50.85,kd ande51022, the
basin~black dots! of period-1 attractor witĥ S2&.0, and a
blowup of part of~a! nearDY50 is shown in Fig. 14~b!,
where now the black dots denote the basin of the perio
attractor with^S2&,0. We see that Figs. 14~a! and 14~b! are
similar to Figs. 3~a! and 3~b!, respectively. The fractal basin
persist even forK*Kd , where one of the transvers
Lyapunov exponents~the one associated with mode 2! is
slightly positive, as shown in Figs. 15~a! and 15~b! for K
50.875*Kd and e51022, where the basin of the period-
attractor with ^S2&.0 and its blowup nearDY50 are
shown, respectively. We note that Figs. 15~a! and 15~b! are
similar to Figs. 4~a! and 4~b!, respectively, which are the
corresponding basin plots for the map example.

We now present numerically obtained scaling laws
various critical behaviors in the system of coupled Ro¨ssler-
like chaotic oscillators. Our main point is that these scal
laws are qualitatively similar to those obtained from the m
example in Sec. IV A, thereby furnishing more support f
the theoretical predictions in Sec. III.

(1) Fraction of symmetry-breaking induced basins.To
computeF ueu , we make use of the (DX,DY) plane. In par-
ticular, for a given value ofe, to compute the fraction of
basin in the negativeDY region of the period-1 attractor with
^S2&.0, we fix a horizontal line atDY0&0, randomly dis-
tribute 104 initial values ofDX0 in the interval@25,5# on the

FIG. 14. Fractal basins in the (DX,DY) plane of the two
period-1 attractors in a system of four coupled nonidentical Ro¨ssler-
like chaotic oscillators@Eq. ~31!# when there is a symmetry break
ing (e51022). ~a! Basin~black dots! of the period-1 attractor with
^S2&.0. ~b! A blowup of part of~a! nearDY50, where now the
black dots denote the basin of the period-1 attractor with^S2&,0.
The coupling parameter isK50.85,Kd .
8-12
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line, and compute the number ofDX0 values whose corre
sponding initial conditions yield trajectories that a
asymptotic to the period-1 attractor. The scaling behavior
F ueu with e for K&Kd andK*Kd are shown on a logarith
mic scale in Figs. 16~a! and 16~b!, respectively. They are
similar to those with the map example@Figs. 6~a! and 6~b!#,
which agree reasonably with the theoretical predictions@Eqs.
~18! and ~19!#.

(2) Chaotic transient lifetime.We again distribute a large
number of initial values ofDX0 ~in the interval@25,5#! on a
line at DY050 and for each corresponding initial conditio
we compute how long it takes for the trajectory to leave

FIG. 15. Symmetry-breaking induced fractal basins forK
50.87.Kd in a system of four coupled nonidentical Ro¨ssler-like
chaotic oscillators (e51022). ~a! Basin~black dots! of the period-1
attractor with^S2&.0. ~b! A blowup of part of~a! nearDY50.

FIG. 16. For a system of four coupled nonidentical Ro¨ssler-like
chaotic oscillators, the scaling of the fraction of the symmet
breaking induced fractal basins with the symmetry-breaking par
etere for ~a! K50.858,Kd and ~b! K50.875.Kd .
05622
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synchronization manifold. Numerically, this time is approx
mately the time for the value ofu^S2&u of the trajectory to
exceed a small, empirically set threshold, say, 1023. The
average value of all these times is taken to be the ave
chaotic transient lifetimet. Figures 17~a! and 17~b! show,
for K50.858&Kd and K50.875*Kd , respectively, the
scaling behaviors oft with the symmetry-breaking param
etere. We observe algebraic scaling behaviors in both ca
and also a similarity between Figs. 17 and 7. The dra
increase of the transient lifetime asK is reduced throughKd
is shown in Fig. 18, wheree50.1.

-
-

FIG. 17. For a system of four coupled nonidentical Ro¨ssler-like
chaotic oscillators, the scaling of the average chaotic transient
time t with the symmetry-breaking parametere: ~a! K50.858
,Kd and ~b! K50.875.Kd .

FIG. 18. For a system of four coupled nonidentical Ro¨ssler-like
chaotic oscillators, the scaling of the average chaotic transient
time t with the coupling parameterK for e50.1. We see thatt
increases dramatically asK is decreased throughKd .
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(3) Fractal dimension.The fractal dimension of bound
aries between the symmetry-breaking induced basins is c
puted from the scaling of the uncertainty probabilityF(d).
For the system of coupled Ro¨ssler oscillators, initial-
condition pairs are chosen from a fixed line atDY0&0 in the
(DX,DY) plane. Results from two typical cases are shown
Figs. 19~a! and 19~b! for e50.1, K50.835, and 0.868, re
spectively. The uncertainty exponents area'0.09 anda
'0.06. Since the phase-space dimension of Eq.~31! is 12,
these values ofa imply that the dimensions of the fracta
basin boundaries are 11.91 and 11.94 forK50.835 andK
50.868, respectively.

V. DISCUSSION

The main contribution of this paper is a systematic ana
sis of the effect of symmetry breaking on riddling. Spec
cally, we consider symmetry breaking that destroys the
essential dynamical element required for riddling: the ex
tence of an invariant subspace. Our principal result is t
while riddling is robust against perturbations that prese
the symmetry and invariance of the system, it is structura
unstable under perturbations that destroy the symmetry@22#.
Such perturbations destroy riddling, create fractal bas
with physical properties similar to those of a riddled one, a
induce long chaotic transients that scale exponentially w
parameter variations. An implication of this work is th
riddled basins may not actually be observable in phys
experiments, say, in systems of coupled, slightly nonide
cal chaotic oscillators. What can be observed is fractal ba
that appear like riddled ones@23–25#.

FIG. 19. For a system of four coupled nonidentical Ro¨ssler-like
chaotic oscillators, we show the scaling of the uncertain probab
for ~a! K50.835 and~b! K50.868. The uncertainty exponents a
approximately 0.09 and 0.06 for~a! and ~b!, indicating that the
dimensions of the fractal basin boundaries in the full 1
dimensional phase space are approximately 11.91 and 11.94
spectively.
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APPENDIX A: SCALING OF FRACTION
OF SYMMETRY-BREAKING INDUCED BASIN

To solve the diffusion equation@Eq. ~12!#, we use the
standard Laplace transform technique@18#. Let

P̄~Y,s![E
0

`

P~Y,t !e2stdt ~A1!

be the Laplace transform ofP(Y,t), where Re(s).0. Sub-
stituting Eq.~A1! into Eq.~12! and using the initial condition
@Eq. ~15!#, we obtain

D
d2P̄

dY2
2n

dP̄

dY
2sP̄52d~Y2Y0!. ~A2!

Utilizing the boundary conditions@Eqs. ~16! and ~17!#, we
obtain

P̄~Y,s!5H A@el1Y2e(l12l2) ē1l2Y#, Y.Y0

AK~el1Y2el2Y!, 0,Y<Y0 ,
~A3!

whereA, K, l1, andl2 are given by

A5
e2l2Y02e2l1Y0

D~l22l1!@e(l12l2) ē21#
, ~A4!

K5
el1Y02e(l12l2) ē1l2Y0

el1Y02el2Y0
,

l15
n1An214Ds

2D
,

l25
n2An214Ds

2D
.

The instantaneous probability flux per unit time through t
absorbing boundary atē is

f e~ t !5FnP~Y,t !2D
dP

dYGU
Y5 ē

52D
dP

dt U
Y5 ē

. ~A5!

The total probability flux throughē in time t is

Fe~ t !5E
0

t

f e~ t8!dt8. ~A6!

The Laplace transform ofFe(t) is given by

y

-
re-
8-14
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Fe~s!52
D

s

dP̄~Y,s!

dY
U

Y5 ē

5
el1ē~e2l2Y02e2l1Y0!

s@e(l12l2) ē21#
.

~A7!

Note thatFe(s) has a pole ats50 and a branch singularity a
s* 52n2/(4D),0 ~the value ofs that satisfiesl15l2 is
not a pole!. Performing the inverse Laplace transform
Fe(s),

Fe~ t !5
1

2p i Es2 i`

s1 i`

Fe~s!estds, ~A8!

where s.0 so that all singularities are to the left of th
integration path, we see that the contribution from the bra
singularity is proportional toes* t, which vanishes in the limit
t→`. Since the fraction of the symmetry-breaking induc
basin of they52` attractor isFe5 limt→` Fe(t), we see
that the only contribution toFe comes from the pole ats
50 @which determinesFe(t) in the infinite t limit by the
nature of the Laplace transform#. Evaluating the residual a
s50 leads to the scaling relation@Eq. ~18!#.

APPENDIX B: SCALING OF CHAOTIC
TRANSIENT LIFETIME

We solve the diffusion equation@Eq. ~12!# under the ini-
tial and boundary conditions@Eqs.~16!, ~20!, and~22!#. The
solution is

P̄~Y,s!5H A1~el1Y1C1el2Y!, Y.Y0

A1C2~el1Y2el2Y!, 0,Y<Y0,
~B1!

where the coefficientsC1 , C2, andA1 are given by

C152
l2

l1
e(l12l2) ē,
s
,

A
.

r-

A

tt

ni
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C25
el1Y01C1el2Y0

el1Y02el2Y0
, ~B2!

A15
e2l1Y02e2l2Y0

D~C111!~l22l1!
.

The number of trajectories from theN0 initial conditions
distributed ate which remain betweeny5e andy51 at time
t, in which the corresponding random walkers are still mo
ing diffusively, is

N~ t !5N0E
0

ē
P~Y,t !dY. ~B3!

Its Laplace transform is given by

N̄~s!5N0E
0

ē
P̄~Y,s!dY5

l2~el1ē21!2l1~el2ē21!

Dl1l2~l1el2ē2l2el1ē !
.

~B4!

To determine the singularities ofN̄(s), we note that under
the transformAn214Ds→2An214Ds, l1 andl2 are in-
terchanged and, hence,N̄(s) is invariant under the transform
As a result,N̄(s) is an even function ofAn214Ds and it has
no branch singularity. Possible singularities ofN̄(s) are
therefore poles determined by

l1el2ē2l2el1ē50. ~B5!

Since we are interested in the behavior ofN(t) at large
times, we look for solutions of Eq.~B5! at s'0. If n&0
(a*ac

0), we havel1'2s/n andl2'n/D. Thus the pole is

sp'2n2e2(n/D) ē/D. If n*0 (a&ac
0), we havel1'n/D,

l252s/D and, hence again,sp'2n2e2(n/D) ē/D. Thus, as-
ymptotically,N(t);espt, giving the following lifetime of the
chaotic transient:t51/uspu, which is Eq.~23!.
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