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Dynamical mechanism for coexistence of dispersing species without trade-offs
in spatially extended ecological systems
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Most prior studies on the role of dispersal in the coexistence of competing species have emphasized the need
for trade-offs between competitive and colonizing abilities for coexistence. Theoretical studies of the evolution
of dispersal recently have revealed an alternative mechanism for the coexistence of species differing solely in
dispersal rates in spatially extended systems. We present an analysis and numerical evidence indicating that
chaotic synchronism, occurring in an extremely intermittent form, is an important feature of the spatiotemporal
variation in fitness required for the coexistence of species without trade-offs.
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I. INTRODUCTION behave identically within patchetgo that density depen-

| blem i . | . d ddence is experienced uniformly within and among species
A central problem in community ecology is to understandinere s by definition no trade-off between colonizing and

the factors that promote or prevent the coexistence of comgompetitive abilities, and so a different mechanism must un-
peting specie$1—3]. Recent years have seen a growing ap-derlie the observed robust coexistence.

preciation of the importance of spatial heterogeneity and dis- A question of paramount interest is thus the following:
persal in explaining species coexisterjdd. One familiar ~ what is the dynamical mechanism that permits the coexist-
mechanism by which dispersal facilitates coexistence at thence of competing species through dispersal in the absence
landscape scale is a trade-off among species between colgf trade-offs? Qualitatively, it has been suggesfeti that
nizing and competitive abilitief5]. For instance, consider a CO€xistence arises because the system tends to shift between
guild of competitors that utilizes a single limiting resource. distinct dynamical -behaviors concordant with temporal

In a closed, local habitat patch the species which can persi¥fation in average dispersal rates. For instance, at high dis-
. . - persal rates, different habitats tend to become synchronized
at the lowest resource level will eventually displace specie

o . 3 ) their dynamics. This can favor low dispersal, if there is
with higher resource requiremeri8]. But if habitat patches — ghatia| variance in fitneds]. But as the system evolves to-

are open, and if there are extinctions that empty out patch&gards lower dispersal rates, the dynamics of different
and are asynchronous among paiches, inferior competitoigatches may become desynchronized, and a selective advan-
which can disperse sufficiently rapidly may be able to coextage of dispersal may then emerge.
ist regionally with Superior competitors. In effect, rapid dis- The aim of this paper is to report our fmdmg that7 due to
persal can provide temporary windows of opportunity duringnonlinear dynamics, the temporal synchronization and de-
which locally inferior species can colonize empty patchessynchronization between populations in different habitats in
and reproduce sufficiently fast to colonize yet other patchesact occurs through a pattern of on-off intermittency. In par-
before being excluded by more slowly dispersing but comdicular, say we consider a simple system consisting of two
petitively superior species. patches and two species. Lét; andNt, be the total popu-
Another distinct mechanism of coexistence recently hagations in patches 1 and 2, respectively. Then the relative
emerged in theoretical studies of the evolution of dispersalpopulations of the two patches, defined to be the ratios
Without temporal variation spatial heterogeneity alone does Nt1/K; and Ny,/K2, tend to follow each other, approxi-
not tend to favor the evolution of disperg|8]. Even if the ~ Mately, in long epochs of timdaminar phases or, dynami-
external environment is constant, however, nonlinear popucally, the “off” state). (Here,K; is the carrying capacity of
lation dynamics leading to cycles or chaotic dynamics carPatchj, the population size where local births equal local
produce the appropriate spatiotemporal variation in fitnes§€aths, so that the local population is stationary whign
that favors the evolution of dispersal and, at times, the coex= K; -) The synchronization is, however, interrupted by time
istence of competing speci€8,10]. Consider a scenario in P€riods in which the relative populations deviate rapidly
which species compete in patches and disperse among theffP™ €ach other(bursts or the “on” statg The deviation

Within patches, all species are assumed to be equivalent, bFcu's randomly in time and typically lasts for a short time
species may differ in their rates of movement amongperlod(compared with the average time duration of the lami-

. nar phasg after which temporal synchronization between
patches. It has been foufifl,10] that given unstable dynam- the populations in different patches is restored. We can de-

ics, there is often the potential for su'stai'ned coexistence %ine the following quantity to characterize theality of syn-
two or more species, differing greatly in dispersal rates. Thign onization

coexistence is permanefitl], in that each species can in-
crease when it is rare and the other species is in its single- ~ Npg(t)  Nya(t)
species dynamical attractor. Because species are assumed to Q)= K, N Ky @
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The quantityQ(t) exhibits on-off intermittency, a dynamical 1
behavior that has received extensive recent atterjtl@- ool
14]. We provide numerical support and an analysis for the
synchronization and on-off intermittent behaviors in this
model. Our analysis suggests that the observed coexistence o7
unlikely to be a transient behavior. An implication is that
intermittently chaotic synchronism may be a fundamental
mechanism for the coexistence of competing species in spag 05}
tially extended ecological systems.

The rest of the paper is organized as follows. In Sec. I,
we describe the Holt-McPeek model. In Sec. Ill, we present 03
numerical results for synchronization and on-off intermit-  ,!|
tency in the model. A physical analysis for the observed
intermittent synchronization is given in Sec. IV. A brief dis-
cussion is presented in Sec. V. 0
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Il. HOLT-McPEEK MODEL

) ) FIG. 1. Time seriesP,(t) for the Holt-McPeek model withr
The ecological model of Holt and McPe¢8] describes =30, K,=100, K,=50, e;,=0.5, e,=.01, andm=1.

the population dynamics of two species that disperse in a

spatially extended environment defined by two local patchesto understand what conditions favor the survival of a dis-
(The general phenomena illustrated by this model arise in @ersing species, in competition with a species nearly station-
wide range of spatial models with chald].) Let N;;(t) be  ary in space, Holt and McPeek sat>e, and simulate Eq.

the density of speciesin patchj at generatiort. The local  (2) for various values of the growth parameters. As an ex-
population growth rate, or the realized fitness, of species  ample, using the parameter valuks=100, K,=50, e;
patchj is given by the Ricker equatioii6] =0.5, e,=0.01, m=1, andr;=r,=r, Holt and McPeek
find that lowr values of 1 and 2.5 produce stable and cyclic
dynamics, respectfully. Given population stability, clones
with relatively lower dispersal ratgse., e,=0.01) displace
clones with higher dispersal ratése., e;=0.5). With the
wherer; is the intrinsic rate of increase at low-population high-dispersal clone now extinct, the average dispersal rate
size in patcl], andK; is the carrying capacity of patghfor  of the population is low. In other words, dispersal is disfa-
both species combined. The model assumes that the growifpred. However, for a highervalue of 3.0, chaotic behavior
rate is identical for each species within each patch and thajrises: instead of dying off, the high-dispersal clone now
local fitness depends on the total population occurring irpersists and experiences episodic increases in population, as

each patch. To model dispersal, Holt and McPeek assumghown in Fig. 1, where the instantaneous fraction of the
that of the total population of specigsa fractione; migrate,  high-dispersal population,

at each generation, from their natal patch, while the remain-

der (1—¢;) remain in this patch. The quantigy is then the N1q(t) + Nyo(t)

dispersal rate of speciesthis quantity differs for each spe- Pi(t)= N7(t) + Nyo(t) + Nog(t) + Noy() ’

cies, though the two species are identical in all other re- 1 12 2 22

spects. The migratory fraction of the population experiencesgy plotted. Holt and McPeek conclude, based on this obser-
a mortality rate, or cost of dispersal, oftIn), leaving only \ation, thatchaos favors dispersain the sense that the

a fractionm of immigrants to compete on equal terms with p;gpy dispersing species cannot survive unless the growth

the resident population. The resulting model assumes thakies of the patches are sufficiently high to produce chaotic
reproduction and density dependence precede dispersal. TH?namics[Q].

census immediately follows dispersal, costs of dispersal for a Intuitively, the reasons that regular dynamics disfavors
species are experienced entirely by those individuals that a¢yhile chaotic dynamics favors dispersal can be seen as fol-
tually disperse, and population densities are sufficiently high,ys[9]. At sufficiently low intrinsic rates of increasése.,

so that they can be represented by continuous variablgg,, ('s) the population settles into a stable equilibrium or a
rather than discrete integers. The evolution of the density of)eriodic orbit, so dispersers flow from high-to low-K
species (i=1,2) is thus given by patches, indirectly increasing fitness in the former while de-
creasing fitness in the later. As a result, on average, dispers-
ing individuals flow down gradients in fitness, so they have

N1j+Ny;

Kj

1_

Wj:eX[{rj

Nip(t+1)=(1—e)W[ N(t) N1 (1)

+meW,[ Npo(t) TN (), lower fitness than nondispersers. The evolutionarily stable
2 §tat§ of the populatlo_n is zero dispersal. The reasoning also
Nio(t+21)=(1—e)W,[ Nto(t) IN;(1) implies that a dispersing species can coexist with a stationary
one if the patches have approximately identical valuek.of
+meW;[ Nt (t)IN;1(1). On the other hand, in the case of chaotic dynanfieshigh
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V FIG. 3. Form=1 in the Holt-McPeek model, E¢2): (a) on-off
0 100 200 300 . . . . S .
T intermittency inQ(t), quality of synchronization(b) a histogram of

) the distribution of the laminar phase.
FIG. 2. Form=1 in the Holt-McPeek model, Eq2): total

population of patch 2 Nt,=N;,+N,,) versus total population of o _ )
patch 1 (N7;=Ng;+Ny)). dynamics is apparently chaotic, and the instantaneous values

of Nt1/K; and Nt,/K, change between 0 and some con-

values of r), the instantaneous frequency of the high-stant on the order of unitfin contrast to the case of regular
dispersal clone generally tends to decrease but with suddélynamics, say, a stable equilibrium, where these values tend
sharp increases occurring at random times. These episodi@ Unity). More interestingly, we observe that the trajectory
jumps in the frequency increase the mean dispersal rat@oints tend to lie in the vicinity of the line defined by
which in turn tends to synchronize the population dynamics®: Nt1/K1=Nr2/K3, with occasional bursts away from
in the two patches. Once the patches are synchronized, di- The line £ can thus be considered as the synchronization
persal becomes disfavordds with regular dynamigsAs ~ manifold of Eq.(2) in a general sense, as there is no direct
the frequency of the high-dispersal clone declines, the patcBynchronization between the corresponding dynamical vari-
dynamics becomes progressively uncoupled, the relative fi@@bles in the two patches. Such “indirect” synchronization is
nesses among patches generated by chaotic dynamics switatspecial form ofyeneralized synchronizatidi 7]. We also
in rank order again, providing the conditions in which dis- find that, when the trajectory wanders néarthe frequency
persal is, once again, advantageous. p4(t) of the high-dispersal species tends to be large, indicat-

Based on their numerical observations, Holt and McPeeling a strong instantaneous coupling between the two patches.
argue that there are two qualitatively distinct states in theAs ps1(t) declines, the patches become desynchronized, and
system dynamics. the trajectory moves away from the liie We observe that

(i) The populations in the two patches tend to be synchroa movement from peak to valley qm(t) corresponds to a
nized when the frequency of the high-dispersal clopg (s  burst of the trajectory off the synchronization lide After a
large because there is a strong coupling between the twaesynchronization burst, conditions are favorable for the in-
patches. In this nearly synchronized state, dispersal becomgsgsion of the high-dispersal species, leading to an increase in
disadvantageous, leading to a decreag® iand, hence, over p; and, consequently, to generalized synchronization again.
time the patch dynamics becomes progressively decoupledThus, the time trace a@(t) [Eq. (1)] exhibits an intermittent

(i) As a consequence of the reduced coupling strengtehavior, as shown in Fig.(8. We see that most of the
the approximate synchronization state can no longer b&me, Q remains close to zero, signifying synchronization,
maintained, so the patch populations become desynchronizdulit the synchronization state is interspersed with occasional
and dispersal becomes advantageous again, thereby pushipigrsts away from it. The pattern in FigleB is thus typical of

the system towards synchronization. on-off intermittency. The laminar phase, or the time interval
This scenario, synchronization: desynchronization— At between successive bursts in the time series, apparently
synchronization— - - -, with random time intervals between exhibits an algebraic distribution for small values/if and
stages of desynchronization, is a characteristic dynamicain exponential tail for large values aft, as shown in Fig.
pattern of on-off intermittency. 3(b). To obtain Fig. ), we set a threshol®,;, (quite arbi-
trarily) and accumulate the time intervals between the suc-
lIl. SYNCHRONIZATION AND ON-OFF INTERMITTENCY cessive bursts througQ, in Q(t). The distribution so ob-

tained generally does not depend on choice®gf, insofar
To provide numerical support for this synchronization andas it is chosen so that a bursting behavior is meaningful. In
desynchronization scenario, we regard the two patches in Ethe range of approximately algebraic behavior, we observe
(2) as two coupled systems and examine the total populationtat the slope of the distribution is aboutl.5. The behav-
in both patchesNt;=N1;+N,; andN+,=Nq,+ N,,. Figure iors shown in Figs. 2, @), and 3b) appear to be typical for
2 plots N1, versusN+, for K;=100, K,=50, e;,=0.5, e, Eq. (2) as they occur in wide regions in parameter space, as
=0.01, m=1, andr,=r,=3.0. We see that the population we have observed by systematically examining the two-
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74 - - - - studies of Eq.(3) reveal patterns with essentially identical
5 characteristics to the full modéé.g., Figs. 2 and)3In the
o3 following, we consider two situations in turn: (1) where the
) patch environments are identical and (2) where the patches
are nonidentical.
S 1000 2000 ; 3000 4000
0 A. Identical patches
b :i In this case, we hav&(t) =K,(t)=K(t). Introducing
& _g two new variablesu(t) =3[ N (t)+ Ny(t)]/K(t) and v(t)
= g =3[N,(t) —N,(t)]/K(t), we see that the synchronization

-10 state(manifold is given byv=0. In the vicinity of the syn-
0 1 2 Inat 3 4 chronization manifoldy ~0, so we have™""O~1+ry(t).

In the (u,v) variables, Eq(3) becomes
FIG. 4. Form=0.8 in the Holt-McPeek model, Eq2): (a) G al3)

on-off intermittency inQ(t), quality of synchronization(b) a his- u(t+1)=Aexpr[1—u(t)]}u(t),

togram of the distribution of the laminar phase. @)
dimensional parameter plane;(e,) for several values of v(t+1)=Bexpr[1-u®J1-ru®u(b),
andm.

Of particular importance to the problem of the coexist-WhereA=1—e+meandB=1—e—me are constants. We
ence is the parameten, the fraction of the dispersing popu- S€€ that(1) u(t) is governed by a simple growth model
lation that can compete with the resident populatiga which exhibits chaos an(®) u(t)_ pr(_)wdes a_drlvmg_to_the
—m) is the cost of dispershllf mis too small or the cost of U(t) subsystem. The synchronization manifaie-0 is in-
dispersal is too high, then generally the dispersing specie¥driant under Eq(4) and, hence, perfect synchronization
will be extinct. We find in numerical experiments that, inso- =0 ¢an be achieved if it is transversely stable. The trans-
far as chaos is present, the minimum valuesroor coex- ~ Verse stability ofv =0 can be determined by_ the fc_)IIOW|_ng:
istence can be as low as 0.3. Figurés) &nd 4b) show, for ~ Ar=JBexdr(1—u)](1-ru)p(u)du, wherep(u) is the invari-
m=0.8, the apparent on-off intermittent behavior @(t) ant der_1$|ty of the chaotic driving variable If AT<_O, as-
and the distribution of the corresponding laminar phases, re/mptotically we havev(t)—0 (stable synchronization
spectively. There is still a range dft in which the distriou- However, if Ar=0, v(t) exhibits on-off intermittency,

tion appears algebraic, followed by an exponential tail. Thevhich can be understood by analyzing the behavionef
algebraic exponerjtL8] is approximately— 2. computed at finite times for an ensemble of initial condi-

tions, as follows. Suppose we distribute a large number of
initial conditions withv~0, computeA1(t) for each trajec-
tory at timet, and then construct the histogram of these
We now provide an analytic argument for synchronizationfinite-time exponents. Typically, the histogram is centered at
and on-off intermittency that permit the high-dispersing spe-A ;=0 with a width that is proportional to {f. Thus, at any
cies to persist. To construct a simple model amenable téinite time, the distribution ofA(t) will have a tail on the
analysis, we consider the extreme case where the coexistingegative side, indicating that some trajectories actually expe-
species is almost stationary, in that its dispersal rate is closéence attraction towards=0. By ergodicity of the chaotic
to zero. The presence of this species affects the fitness of thariableu(t), we see that a single trajectory, while it is in
high-dispersing species in local patches, and the magnitudgeneral repelled fromm= 0, will experience episodes of time
of this effect varies with the density of the stationary speciesintervals during which it is actually attracted towangs 0.
For the high-dispersing species, the existence of the statiorFhus, what typically is observed is that the trajectory tends to
ary species, with time varying population densities in thestay nearv =0 with bursts away from it at random times,
patches, may be viewed heuristically as comparable to imsignifying on-off intermittency{19].
posing time-dependent disturbances on the carrying capaci-
ties of the patches. This line of thought leads to the following
heuristic model describing the population densithégt)

IV. PHYSICAL THEORY

B. Nonidentical patches

andN,(t) of the high-dispersing species alone: In this case, the new variables are given hyt)
= 3[NL(t)/Kq(t) + Na(t)/K(t)] and v(t) = 3[N1(t)/Ky(t)

Np(t+1)=(1—e)W[N1(t) IN1(t) +meW[ Ny(t) IN,(1), —N,(t)/K,(t)]. Forv~0, we obtain, to first order in(t),
the following:

No(t+1)=(1—e)Wo[ Na(t) INx(t) + meW[ N (1) INy (1), .
3 u(t+1)~e @ UOIA, —(A_—1+e)ro(t)]u(t)

where the growth dynamics in the two patches are given by —(A_—1+eju()}, (5)
W, = " [ NIOK O] gnd W= el Na0Ko0] with time-
dependent carrying capacitiés,; (t) and K,(t). Numerical — v(t+1)~e @ OB [1—ru(t)]o(t)—(B_—1+e)u(t)}
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where the quantitied ., A_, B, , andB_ are time depen- conditions dispersal favors species coexistence. It has been
dent and are given by A.(t)=1—e+mgK,(t)> shown[7,8] that spatial heterogeneity in abundance alone is
+K,o(1)2]/[2K(1)K,(1)] and B.(t)=1—e—megK,(t)2 unable to select for dispersal. To favor dispersal, some tem-
+K,(1)2]/[ 2K (t)K,(t)]. Due to the difference in the patch poral heterogeneity must also be present. Many previous the-
environment, we see that=0 is no longer invariant under oretical treatmentg20] have assumed that external environ-
the dynamics. Thus, we can expect only approximate synmental variation supplies the required driving force to create
chronization ¢ ~0) to occur, as illustrated in Fig. 2, where temporal variation in fitness. However, in view of the ubiq-
the synchronization state is apparently broadened about uity of nonlinearity in ecological systems, it is reasonable
=0 (or Q=0). Comparing with Eq(4), we can regard the that nonlinear population dynamics leading to cycles or cha-
term (B_—1+e)u(t) in thev equation in Eq(5) as a ran- otic behaviors can produce the appropriate temporal varia-
dom noise term. As a result, even in parameter regimeton in fitness that favors the evolution of disperga[10].
where the synchronization state is asymptotically stable, the The main contributions of our work are twofoldt) we
noiselike term can cause desynchronization and induce orprovide analysis and evidence that chaotic dynamics in spa-
off intermittency. Thus, for a realistic system such as@®y. tially coupled ecological models can indeed provide the spa-
we expect approximate chaotic synchronization to occur onlyiotemporal variation in fitness that is necessary for the co-
in an intermittent way and on-off intermittency to be persis-existence of dispersing species; a2y we show that under
tent. We suggest that on-off intermittency may be a widedairly general settings, the spatiotemporal variation in fitness
spread phenomenon in spatially extended ecological systeni@ads to on-off intermittency, with respect to the approximate

with locally chaotic dynamics. synchronization of the relative patch populations. As such,
we expect synchronization and on-off intermittency to be
V. DISCUSSION common in spatially extended ecological systems.
The fundamental dynamics in spatially extended ecologi- ACKNOWLEDGEMENT

cal systems relies on dispersal, which provides the interac-
tion among species in the spatially extended environment. It This work is supported by the NSF under Grant Nos.
is thus of paramount importance to understand under whd®MS-962659 and PHY-9996454.

[1] G. E. Hutchinson,An Introduction to Population Ecology [13]J. F. Heagy, N. Platt, and S. M. Hammel, Phys. Rev4%:

(Yale University Press, New Haven, 1987 1140(1994.

[2] J. Roughgarden, R. M. May, and S. A. LevRerspectives in  [14] In ecology, it has recently been observed that on-off intermit-
Ecological Theory (Princeton University Press, Princeton, tency describes the dynamics of many natural populations,
1989. where variable periods of time at low rarity alternate with sud-

[3] M. Tokeshi,Species Coexistence: Ecological and Evolutionary den outbreaks. The intermittency can arise from different mod-
PerspectivegOxford University Press, Oxford, 1989 els of competition, where coexistence arises because of a local

[4] I. Hanski, Metapopulation EcologyOxford University Press, storage effecfP. L. ChessonCommunity EcologyHarper and
Oxford, 1999. Row, New York, 1986|. However, we here demonstrate that

[5] C. L. Lehman and D. TilmanSpatial Ecology: The Role of on-off intermittency characterizes a competition model where

Space in Population Dynamics and Interspecific Interactions coexistence arises fromlispersalamong patches.
edited by D. Tilman and P. KareivéPrinceton University [15] H. Caswell(personal communication

Press, Princeton, 1987pp. 185-203. [16] R. M. May and G. F. Oster, Natufeondon 110, 573(1976.
[6] J. P. GroverResource CompetitiofChapman and Hall, Lon- [17] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I.
don, 1997. Abarbanel, Phys. Rev. k1, 980(1995.
[7] A. Hastings, Theor. Popul. BioR4, 244 (1983. [18] Strictly speaking, the- 1.5 algebraic exponent in the distribu-
[8] R. D. Holt, Theor. Popul. Biol28, 181(1985. tion of laminar phases occurs only at the onset of the on-off
[9] R. D. Holt and M. A. McPeek, Am. Natl48 709 (1996. intermittency[13]. In parameter regimes away from the onset,
[10] M. Doebeli and G. D. Ruxton, EvolutiofLawrence, Kang. the algebraic behavior only occurs at small intervald bfvith
51, 1730(1997). no universal exponent. The laminar-phase distribution is typi-
[11] R. Law, inAdvanced Ecological Theorgdited by J. McGlade cally exponential for large values aft. These are in fact
(Oxford University Press, Oxford, 199%p. 143-171. observed in our numerical experiments.

[12] See, for example, E. A. Spiegel, Ann. N.Y. Acad. S&l7, [19] See, for example, Y.-C. Lai and C. Grebogi, Phys. Re®2E
305 (1981); H. Fujisaka and T. Yamada, Prog. Theor. Phys. R3313(1995.
74,919(1985; 75, 1087(1986; A. S. Pikovsky and P. Grass- [20] See, for example, M. Gadgil, Ecolod?, 253 (1971); D. A.

berger, J. Phys. R4, 4587(1991); N. Platt, E. A. Spiegel, and Roff, Oecologial9, 217(1975; J. A. Metz, T. J. Dejong, and
C. Tresser, Phys. Rev. Left0, 279 (1993; Y.-C. Lai, Phys. P. G. Klinkham,ibid. 57, 166 (1983; S. A. Levin, D. Cohen,
Rev. E53, R4267(1996; 54, 321(1996; T. Yalcinkaya and and A. Hastings, Theor Popul. Bid6, 165(1984); D. Cohen

Y.-C. Lai, Phys. Rev. Lett77, 5039(1997). and S. A. Levin,ibid. 39, 63 (199.

051905-5



