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Dynamical mechanism for coexistence of dispersing species without trade-offs
in spatially extended ecological systems
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Most prior studies on the role of dispersal in the coexistence of competing species have emphasized the need
for trade-offs between competitive and colonizing abilities for coexistence. Theoretical studies of the evolution
of dispersal recently have revealed an alternative mechanism for the coexistence of species differing solely in
dispersal rates in spatially extended systems. We present an analysis and numerical evidence indicating that
chaotic synchronism, occurring in an extremely intermittent form, is an important feature of the spatiotemporal
variation in fitness required for the coexistence of species without trade-offs.
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I. INTRODUCTION

A central problem in community ecology is to understa
the factors that promote or prevent the coexistence of c
peting species@1–3#. Recent years have seen a growing a
preciation of the importance of spatial heterogeneity and
persal in explaining species coexistence@4#. One familiar
mechanism by which dispersal facilitates coexistence at
landscape scale is a trade-off among species between
nizing and competitive abilities@5#. For instance, consider
guild of competitors that utilizes a single limiting resourc
In a closed, local habitat patch the species which can pe
at the lowest resource level will eventually displace spec
with higher resource requirements@6#. But if habitat patches
are open, and if there are extinctions that empty out patc
and are asynchronous among patches, inferior compet
which can disperse sufficiently rapidly may be able to co
ist regionally with superior competitors. In effect, rapid d
persal can provide temporary windows of opportunity dur
which locally inferior species can colonize empty patch
and reproduce sufficiently fast to colonize yet other patch
before being excluded by more slowly dispersing but co
petitively superior species.

Another distinct mechanism of coexistence recently
emerged in theoretical studies of the evolution of disper
Without temporal variation, spatial heterogeneity alone doe
not tend to favor the evolution of dispersal@7,8#. Even if the
external environment is constant, however, nonlinear po
lation dynamics leading to cycles or chaotic dynamics c
produce the appropriate spatiotemporal variation in fitn
that favors the evolution of dispersal and, at times, the co
istence of competing species@9,10#. Consider a scenario in
which species compete in patches and disperse among t
Within patches, all species are assumed to be equivalent
species may differ in their rates of movement amo
patches. It has been found@9,10# that given unstable dynam
ics, there is often the potential for sustained coexistenc
two or more species, differing greatly in dispersal rates. T
coexistence is permanent@11#, in that each species can in
crease when it is rare and the other species is in its sin
species dynamical attractor. Because species are assum
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behave identically within patches~so that density depen
dence is experienced uniformly within and among specie!,
there is by definition no trade-off between colonizing a
competitive abilities, and so a different mechanism must
derlie the observed robust coexistence.

A question of paramount interest is thus the followin
what is the dynamical mechanism that permits the coex
ence of competing species through dispersal in the abs
of trade-offs? Qualitatively, it has been suggested@9# that
coexistence arises because the system tends to shift bet
distinct dynamical behaviors concordant with tempo
variation in average dispersal rates. For instance, at high
persal rates, different habitats tend to become synchron
in their dynamics. This can favor low dispersal, if there
spatial variance in fitness@7#. But as the system evolves to
wards lower dispersal rates, the dynamics of differe
patches may become desynchronized, and a selective ad
tage of dispersal may then emerge.

The aim of this paper is to report our finding that, due
nonlinear dynamics, the temporal synchronization and
synchronization between populations in different habitats
fact occurs through a pattern of on-off intermittency. In pa
ticular, say we consider a simple system consisting of t
patches and two species. LetNT1 andNT2 be the total popu-
lations in patches 1 and 2, respectively. Then the rela
populations of the two patches, defined to be the ra
NT1 /K1 and NT2 /K2, tend to follow each other, approx
mately, in long epochs of time~laminar phases or, dynami
cally, the ‘‘off’’ state!. ~Here,K j is the carrying capacity of
patch j, the population size where local births equal loc
deaths, so that the local population is stationary whenNt j
5K j .) The synchronization is, however, interrupted by tim
periods in which the relative populations deviate rapid
from each other~bursts or the ‘‘on’’ state!. The deviation
occurs randomly in time and typically lasts for a short tim
period~compared with the average time duration of the lam
nar phase!, after which temporal synchronization betwee
the populations in different patches is restored. We can
fine the following quantity to characterize thequality of syn-
chronization:

Q~ t !5
NT1~ t !

K1
2

NT2~ t !

K2
. ~1!
©2001 The American Physical Society05-1
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HARRISON, LAI, AND HOLT PHYSICAL REVIEW E 63 051905
The quantityQ(t) exhibits on-off intermittency, a dynamica
behavior that has received extensive recent attention@12–
14#. We provide numerical support and an analysis for
synchronization and on-off intermittent behaviors in th
model. Our analysis suggests that the observed coexisten
unlikely to be a transient behavior. An implication is th
intermittently chaotic synchronism may be a fundamen
mechanism for the coexistence of competing species in
tially extended ecological systems.

The rest of the paper is organized as follows. In Sec.
we describe the Holt-McPeek model. In Sec. III, we pres
numerical results for synchronization and on-off interm
tency in the model. A physical analysis for the observ
intermittent synchronization is given in Sec. IV. A brief di
cussion is presented in Sec. V.

II. HOLT-McPEEK MODEL

The ecological model of Holt and McPeek@9# describes
the population dynamics of two species that disperse i
spatially extended environment defined by two local patch
~The general phenomena illustrated by this model arise
wide range of spatial models with chaos@15#.! Let Ni j (t) be
the density of speciesi in patch j at generationt. The local
population growth rate, or the realized fitness, of speciesi in
patchj is given by the Ricker equation@16#

Wj5expF r j S 12
N1 j1N2 j

K j
D G ,

where r j is the intrinsic rate of increase at low-populatio
size in patchj, andK j is the carrying capacity of patchj for
both species combined. The model assumes that the gr
rate is identical for each species within each patch and
local fitness depends on the total population occurring
each patch. To model dispersal, Holt and McPeek ass
that of the total population of speciesi, a fractionei migrate,
at each generation, from their natal patch, while the rem
der (12ei) remain in this patch. The quantityei is then the
dispersal rate of speciesi; this quantity differs for each spe
cies, though the two species are identical in all other
spects. The migratory fraction of the population experien
a mortality rate, or cost of dispersal, of (12m), leaving only
a fractionm of immigrants to compete on equal terms wi
the resident population. The resulting model assumes
reproduction and density dependence precede dispersal
census immediately follows dispersal, costs of dispersal f
species are experienced entirely by those individuals tha
tually disperse, and population densities are sufficiently h
so that they can be represented by continuous varia
rather than discrete integers. The evolution of the densit
speciesi ( i 51,2) is thus given by

Ni1~ t11!5~12ei !W1@NT1~ t !#Ni1~ t !

1meiW2@NT2~ t !#Ni2~ t !,
~2!

Ni2~ t11!5~12ei !W2@NT2~ t !#Ni2~ t !

1meiW1@NT1~ t !#Ni1~ t !.
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To understand what conditions favor the survival of a d
persing species, in competition with a species nearly stat
ary in space, Holt and McPeek sete2@e1 and simulate Eq.
~2! for various values of the growth parameters. As an
ample, using the parameter valuesK15100, K2550, e1
50.5, e250.01, m51, and r 15r 25r , Holt and McPeek
find that lowr values of 1 and 2.5 produce stable and cyc
dynamics, respectfully. Given population stability, clon
with relatively lower dispersal rates~i.e., e250.01) displace
clones with higher dispersal rates~i.e., e150.5). With the
high-dispersal clone now extinct, the average dispersal
of the population is low. In other words, dispersal is dis
vored. However, for a higherr value of 3.0, chaotic behavio
arises: instead of dying off, the high-dispersal clone n
persists and experiences episodic increases in populatio
shown in Fig. 1, where the instantaneous fraction of
high-dispersal population,

P1~ t !5
N11~ t !1N12~ t !

N11~ t !1N12~ t !1N21~ t !1N22~ t !
,

is plotted. Holt and McPeek conclude, based on this ob
vation, that chaos favors dispersalin the sense that the
highly dispersing species cannot survive unless the gro
rates of the patches are sufficiently high to produce cha
dynamics@9#.

Intuitively, the reasons that regular dynamics disfavo
while chaotic dynamics favors dispersal can be seen as
lows @9#. At sufficiently low intrinsic rates of increases~i.e.,
low r ’s!, the population settles into a stable equilibrium o
periodic orbit, so dispersers flow from high-K to low-K
patches, indirectly increasing fitness in the former while d
creasing fitness in the later. As a result, on average, disp
ing individuals flow down gradients in fitness, so they ha
lower fitness than nondispersers. The evolutionarily sta
state of the population is zero dispersal. The reasoning
implies that a dispersing species can coexist with a station
one if the patches have approximately identical values oK.
On the other hand, in the case of chaotic dynamics~for high

FIG. 1. Time seriesP1(t) for the Holt-McPeek model withr
53.0, K15100, K2550, e150.5, e25.01, andm51.
5-2
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DYNAMICAL MECHANISM FOR COEXISTENCE OF . . . PHYSICAL REVIEW E 63 051905
values of r ), the instantaneous frequency of the hig
dispersal clone generally tends to decrease but with sud
sharp increases occurring at random times. These epis
jumps in the frequency increase the mean dispersal r
which in turn tends to synchronize the population dynam
in the two patches. Once the patches are synchronized,
persal becomes disfavored~as with regular dynamics!. As
the frequency of the high-dispersal clone declines, the pa
dynamics becomes progressively uncoupled, the relative
nesses among patches generated by chaotic dynamics s
in rank order again, providing the conditions in which d
persal is, once again, advantageous.

Based on their numerical observations, Holt and McP
argue that there are two qualitatively distinct states in
system dynamics.

~i! The populations in the two patches tend to be synch
nized when the frequency of the high-dispersal clone (p1) is
large because there is a strong coupling between the
patches. In this nearly synchronized state, dispersal beco
disadvantageous, leading to a decrease inp1 and, hence, ove
time the patch dynamics becomes progressively decoup

~ii ! As a consequence of the reduced coupling stren
the approximate synchronization state can no longer
maintained, so the patch populations become desynchron
and dispersal becomes advantageous again, thereby pu
the system towards synchronization.

This scenario, synchronization→ desynchronization→
synchronization→ •••, with random time intervals betwee
stages of desynchronization, is a characteristic dynam
pattern of on-off intermittency.

III. SYNCHRONIZATION AND ON-OFF INTERMITTENCY

To provide numerical support for this synchronization a
desynchronization scenario, we regard the two patches in
~2! as two coupled systems and examine the total populat
in both patches:NT15N111N21 andNT25N121N22. Figure
2 plots NT1 versusNT2 for K15100, K2550, e150.5, e2
50.01, m51, andr 15r 253.0. We see that the populatio

FIG. 2. For m51 in the Holt-McPeek model, Eq.~2!: total
population of patch 2 (NT25N121N22) versus total population o
patch 1 (NT15N111N21).
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dynamics is apparently chaotic, and the instantaneous va
of NT1 /K1 and NT2 /K2 change between 0 and some co
stant on the order of unity~in contrast to the case of regula
dynamics, say, a stable equilibrium, where these values
to unity!. More interestingly, we observe that the trajecto
points tend to lie in the vicinity of the line defined b
L: NT1 /K15NT2 /K2, with occasional bursts away from
it. The lineL can thus be considered as the synchronizat
manifold of Eq.~2! in a general sense, as there is no dire
synchronization between the corresponding dynamical v
ables in the two patches. Such ‘‘indirect’’ synchronization
a special form ofgeneralized synchronization@17#. We also
find that, when the trajectory wanders nearL, the frequency
p1(t) of the high-dispersal species tends to be large, indic
ing a strong instantaneous coupling between the two patc
As p1(t) declines, the patches become desynchronized,
the trajectory moves away from the lineL. We observe that
a movement from peak to valley onp1(t) corresponds to a
burst of the trajectory off the synchronization lineL. After a
desynchronization burst, conditions are favorable for the
vasion of the high-dispersal species, leading to an increas
p1 and, consequently, to generalized synchronization ag
Thus, the time trace ofQ(t) @Eq. ~1!# exhibits an intermittent
behavior, as shown in Fig. 3~a!. We see that most of the
time, Q remains close to zero, signifying synchronizatio
but the synchronization state is interspersed with occasio
bursts away from it. The pattern in Fig. 3~a! is thus typical of
on-off intermittency. The laminar phase, or the time interv
Dt between successive bursts in the time series, appare
exhibits an algebraic distribution for small values ofDt and
an exponential tail for large values ofDt, as shown in Fig.
3~b!. To obtain Fig. 3~b!, we set a thresholdQth ~quite arbi-
trarily! and accumulate the time intervals between the s
cessive bursts throughQth in Q(t). The distribution so ob-
tained generally does not depend on choices ofQth , insofar
as it is chosen so that a bursting behavior is meaningful
the range of approximately algebraic behavior, we obse
that the slope of the distribution is about21.5. The behav-
iors shown in Figs. 2, 3~a!, and 3~b! appear to be typical for
Eq. ~2! as they occur in wide regions in parameter space
we have observed by systematically examining the tw

FIG. 3. Form51 in the Holt-McPeek model, Eq.~2!: ~a! on-off
intermittency inQ(t), quality of synchronization;~b! a histogram of
the distribution of the laminar phase.
5-3
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HARRISON, LAI, AND HOLT PHYSICAL REVIEW E 63 051905
dimensional parameter plane (e1 ,e2) for several values ofr
andm.

Of particular importance to the problem of the coexi
ence is the parameterm, the fraction of the dispersing popu
lation that can compete with the resident population@(1
2m) is the cost of dispersal#. If m is too small or the cost o
dispersal is too high, then generally the dispersing spe
will be extinct. We find in numerical experiments that, ins
far as chaos is present, the minimum values ofm for coex-
istence can be as low as 0.3. Figures 4~a! and 4~b! show, for
m50.8, the apparent on-off intermittent behavior inQ(t)
and the distribution of the corresponding laminar phases
spectively. There is still a range ofDt in which the distribu-
tion appears algebraic, followed by an exponential tail. T
algebraic exponent@18# is approximately22.

IV. PHYSICAL THEORY

We now provide an analytic argument for synchronizat
and on-off intermittency that permit the high-dispersing s
cies to persist. To construct a simple model amenable
analysis, we consider the extreme case where the coexi
species is almost stationary, in that its dispersal rate is c
to zero. The presence of this species affects the fitness o
high-dispersing species in local patches, and the magni
of this effect varies with the density of the stationary spec
For the high-dispersing species, the existence of the sta
ary species, with time varying population densities in t
patches, may be viewed heuristically as comparable to
posing time-dependent disturbances on the carrying cap
ties of the patches. This line of thought leads to the follow
heuristic model describing the population densitiesN1(t)
andN2(t) of the high-dispersing species alone:

N1~ t11!5~12e!W1@N1~ t !#N1~ t !1meW2@N2~ t !#N2~ t !,

N2~ t11!5~12e!W2@N2~ t !#N2~ t !1meW1@N1~ t !#N1~ t !,
~3!

where the growth dynamics in the two patches are given
W15er [12N1(t)/K1(t)] and W25er [12N2(t)/K2(t)] with time-
dependent carrying capacitiesK1(t) and K2(t). Numerical

FIG. 4. For m50.8 in the Holt-McPeek model, Eq.~2!: ~a!
on-off intermittency inQ(t), quality of synchronization;~b! a his-
togram of the distribution of the laminar phase.
05190
-

es

e-

e

-
to
ing
se
he
de
s.
n-

e
-

ci-
g

y

studies of Eq.~3! reveal patterns with essentially identic
characteristics to the full model~e.g., Figs. 2 and 3!. In the
following, we consider two situations in turn: (1) where th
patch environments are identical and (2) where the patc
are nonidentical.

A. Identical patches

In this case, we haveK1(t)5K2(t)5K(t). Introducing
two new variablesu(t)5 1

2 @N1(t)1N2(t)#/K(t) and v(t)
5 1

2 @N1(t)2N2(t)#/K(t), we see that the synchronizatio
state~manifold! is given byv50. In the vicinity of the syn-
chronization manifold,v'0, so we havee6rv(t)'16rv(t).
In the (u,v) variables, Eq.~3! becomes

u~ t11!5A exp$r @12u~ t !#%u~ t !,
~4!

v~ t11!5B exp$r @12u~ t !#%@12ru~ t !#v~ t !,

whereA512e1me and B512e2me are constants. We
see that~1! u(t) is governed by a simple growth mode
which exhibits chaos and~2! u(t) provides a driving to the
v(t) subsystem. The synchronization manifoldv50 is in-
variant under Eq.~4! and, hence, perfect synchronizationv
50 can be achieved if it is transversely stable. The tra
verse stability ofv50 can be determined by the following
LT5*Bexp@r(12u)#(12ru)r(u)du, wherer(u) is the invari-
ant density of the chaotic driving variableu. If LT,0, as-
ymptotically we havev(t)→0 ~stable synchronization!.
However, if LT*0, v(t) exhibits on-off intermittency,
which can be understood by analyzing the behavior ofLT
computed at finite times for an ensemble of initial con
tions, as follows. Suppose we distribute a large number
initial conditions withv'0, computeLT(t) for each trajec-
tory at time t, and then construct the histogram of the
finite-time exponents. Typically, the histogram is centered
LT*0 with a width that is proportional to 1/At. Thus, at any
finite time, the distribution ofLT(t) will have a tail on the
negative side, indicating that some trajectories actually ex
rience attraction towardsv50. By ergodicity of the chaotic
variableu(t), we see that a single trajectory, while it is
general repelled fromv50, will experience episodes of tim
intervals during which it is actually attracted towardsv50.
Thus, what typically is observed is that the trajectory tends
stay nearv50 with bursts away from it at random times
signifying on-off intermittency@19#.

B. Nonidentical patches

In this case, the new variables are given byu(t)
5 1

2 @N1(t)/K1(t)1N2(t)/K2(t)# and v(t)5 1
2 @N1(t)/K1(t)

2N2(t)/K2(t)#. For v'0, we obtain, to first order inv(t),
the following:

u~ t11!'er (12u(t)$@A12~A2211e!rv~ t !#u~ t !

2~A2211e!v~ t !%, ~5!

v~ t11!'er (12u(t)$B1@12ru~ t !#v~ t !2~B2211e!u~ t !%
5-4
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where the quantitiesA1 , A2 , B1 , andB2 are time depen-
dent and are given by A6(t)512e1me@K1(t)2

6K2(t)2#/@2K1(t)K2(t)# and B6(t)512e2me@K1(t)2

6K2(t)2#/@2K1(t)K2(t)#. Due to the difference in the patc
environment, we see thatv50 is no longer invariant unde
the dynamics. Thus, we can expect only approximate s
chronization (v'0) to occur, as illustrated in Fig. 2, wher
the synchronization state is apparently broadened abov
50 ~or Q50). Comparing with Eq.~4!, we can regard the
term (B2211e)u(t) in the v equation in Eq.~5! as a ran-
dom noise term. As a result, even in parameter regim
where the synchronization state is asymptotically stable,
noiselike term can cause desynchronization and induce
off intermittency. Thus, for a realistic system such as Eq.~2!,
we expect approximate chaotic synchronization to occur o
in an intermittent way and on-off intermittency to be pers
tent. We suggest that on-off intermittency may be a wid
spread phenomenon in spatially extended ecological sys
with locally chaotic dynamics.

V. DISCUSSION

The fundamental dynamics in spatially extended ecolo
cal systems relies on dispersal, which provides the inte
tion among species in the spatially extended environmen
is thus of paramount importance to understand under w
n,

ry

f
ns

ys
-
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conditions dispersal favors species coexistence. It has b
shown@7,8# that spatial heterogeneity in abundance alone
unable to select for dispersal. To favor dispersal, some t
poral heterogeneity must also be present. Many previous
oretical treatments@20# have assumed that external enviro
mental variation supplies the required driving force to cre
temporal variation in fitness. However, in view of the ubi
uity of nonlinearity in ecological systems, it is reasonab
that nonlinear population dynamics leading to cycles or c
otic behaviors can produce the appropriate temporal va
tion in fitness that favors the evolution of dispersal@9,10#.

The main contributions of our work are twofold:~1! we
provide analysis and evidence that chaotic dynamics in s
tially coupled ecological models can indeed provide the s
tiotemporal variation in fitness that is necessary for the
existence of dispersing species; and~2! we show that under
fairly general settings, the spatiotemporal variation in fitne
leads to on-off intermittency, with respect to the approxim
synchronization of the relative patch populations. As su
we expect synchronization and on-off intermittency to
common in spatially extended ecological systems.
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no universal exponent. The laminar-phase distribution is ty
cally exponential for large values ofDt. These are in fact
observed in our numerical experiments.
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