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Regular dynamics of low-frequency fluctuations in external cavity semiconductor lasers
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It is commonly believed that the dynamics responsible for low-frequency fluctuations~LFF’s! in external
cavity semiconductor lasers is stochastic or chaotic. A common approach to address the origin of LFF’s is to
investigate the dynamical behavior of, and the interaction among, various external cavity modes in the Lang-
Kobayashi~LK ! paradigm. In this paper, we propose a framework for understanding of the LFFs based on a
different set of fundamental solutions of the LK equations, which are periodic or quasiperiodic, and which are
characterized by a sequence of time-locked pulses with slowly varying magnitude. We present numerical
evidence and heuristic arguments, indicating that the dynamics of LFF’s emerges as a result of quasiperiodic
bifurcations from these solutions as the pumping current increases. Regular periodic solutions can actually be
observed when~1! the feedback level is moderate,~2! pumping current is below solitary threshold, and~3! the
linewidth enhancement factor is relatively large.
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I. INTRODUCTION

Nonlinear delay dynamical systems@1# are extensively
used in many fields of science and engineering. Such d
plines as population dynamics, epidemiology, financ
mathematics, and optoelectronics, to name a few, use
descriptions in their modeling efforts. In recent years pri
examples under intense investigation were the MacK
Glass model@2# of blood flow and the Ikeda equation@3#
describing the evolution of the electric field in a ring cavit
Usually the model equations have very simple functio
forms, yet this apparent simplicity is deceiving. They disp
rich and complex dynamics, partially resulting from the hi
dimensionality that the retarded terms introduce, since
phase space associated with these equations is of infinit
mension.

In optoelectronics, the intrinsic high dimensionality of th
delayed optical systems was recently used in commun
tions applications with chaotic wave forms@4#. Typically,
optoelectronic systems contain semiconductor lasers, w
are preferred over other types of lasers due to their small
and high efficiency. However, the extreme sensitivity
semiconductor lasers to optical feedback, which is inevita
in such systems, makes their operation unpredictable
hard to control. Therefore, the problem of understanding
behavior of the laser under the influence of external opt
feedback is of great practical importance. During the pas
years, in the area of semiconductor laser instabilities the
lay equations of Lang and Kobayashi@5# emerged as the
premiere model to discuss the behavior of external ca
semiconductor lasers. The focus of this paper is to inve
gate some intriguing aspects of this dynamics.

Experimentally, the feedback is modeled by an exter
reflector, which reinjects part of the emitted light back in
the main laser resonator. When the pumping currentI is well
above the lasing threshold of the solitary laser,I th , the intro-
1063-651X/2001/63~5!/056206~6!/$20.00 63 0562
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duction of the optical feedback causes a drastic increas
the optical linewidth@6#. The phenomenon is commonly re
ferred to ascoherence collapse~CC!. At the same time, the
intensity fluctuations are well randomized, so the avera
laser intensity remains fairly constant. However, when
pumping current is reduced close to the threshold, the la
intensity starts to exhibit sudden dropouts at irregular ti
intervals, followed by a gradual recovery. The time scale
these fluctuations~microseconds to nanoseconds! is long
compared to the intrinsic time scale of the laser oscillatio
so the phenomena are calledlow-frequency fluctuations
~LFF’s!.

The origin of the LFF regime has been debated sinc
was first observed more than two decades ago@7#, with no
consensus in sight. Numerous mechanisms proposed to
emphasize either the stochastic or deterministic~chaotic! na-
ture of the phenomenon. In this paper, we present evide
that LFF’s can be understood in terms of a particular se
periodic and quasiperiodic solutions that are part of the s
tem’s dynamics. We show that such regular solutions gra
ally emerge from the overall chaotic and stochastic dynam
of the system when the pumping current is lowered close
the lasing threshold. In such parameter regimes, the reg
dynamics generates nearly periodic dropout events, wh
more recently observed in experiments@8#. More impor-
tantly, the commonly observedrandom low-frequency fluc-
tuations can be interpreted as chaotic motions over a se
destabilizedregular solutions, much like a typical scenario
a transition to chaotic dynamics in many nonlinear dynam
cal systems. These results have significant implications
understanding and applications of external cavity semic
ductor lasers. For instance, one might be interested in ap
ing control to eliminate LFF’s. Knowing that the underlyin
dynamics has embedded within itself a regular structure,
spite the irregularity of LFFs, one can attempt strategies
©2001 The American Physical Society06-1
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are different from the commonly utilized approach of co
trolling chaos@9#.

Before we detail our numerical results and analysis,
wish to comment on the role of regular solutions in nonline
dynamical systems in general. The study of a nonlinear s
tem often begins with an analysis of stationary solutio
~fixed points!. Their locations and stability determine th
structure and properties of chaotic motion in these syste
For example, one of the most common routes to chaos is
the destabilization of periodic orbits in a cascade of peri
doubling bifurcations@10#. The resulting chaotic motion is
‘‘pieced together’’ from parts of the original periodic mo
tion, and retains the general features and some character
of the original orbits. In fact, it is widely accepted that u
stable periodic orbits are the ‘‘backbone’’ or ‘‘skeleton’’ o
any chaotic set@11#. The study of the Lang-Kobayashi~LK !
model is no exception in this respect. One starts the ana
by identifying external cavity modes~ECM’s!, and then at-
tempts to interpret the behavior of the LK model at differe
parameter values in terms of the location and stability pr
erties of the ECM’s. This interpretation works reasona
well for studying the destabilization of individual ECM’
and for explaining coherence collapse as a process of ‘‘
dom’’ transitions, or hopping, among ECM’s. The situatio
is different for LFF’s, whose structure~short pulses, gradua
buildup of intensity, and dropouts! is hard to explain solely
on the basis of the ECM dynamics. Our belief is that t
difficulty in explaining the origin of the LFF regime stem
from the inadequacy of the ECM framework. The main go
of this work is to propose a framework for the study of t
LFF regime based on a different set of regular solutio
whose existence was discovered in experiments@8#. Since
the structure of the solutions is apparently similar to that
the LFF regime, we propose to use them as a basis for
analysis of the LFF dynamics@12#.

We stress that the class of regular solutions are intrinsi
the system dynamics, just as periodic orbits are intrinsic
fundamental solutions of any nonlinear dynamical syste
These regular solutions are therefore determined comple
by the LK equations, and they appear to be structura
stable, i.e., their existence persists in finite parameter
gions. While in many simple nonlinear systems, the crea
and evolution of the periodic orbits can be understood v
well based on the analysis of a few types of bifurcations s
as saddle-node and period-doubling bifurcations, analyt
studies of the regular solutions in the LK equations are
ficult, if not impossible. In fact, the existence of regular s
lutions reported in this paper comes mostly from numeri
computations. Our confidence in the existence of these s
tions is due to the following two facts:~1! the LK equations
are believed to be the fundamental equations that mo
external-cavity semiconductor lasers, and~2! the signature of
the regular solutions has been found in experiments@8#.

The rest of this paper is organized as follows. In Sec.
we briefly describe the Lang-Kobayashi model and our
merical procedure. In Sec. III, we present numerical res
supporting the existence of the regular dynamics and its
lation to the dynamics in the LFF regime. In Sec. IV, w
explore some properties of the regular solutions, and ma
05620
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heuristic argument to explain the numerical results. A disc
sion of a possible origin of the regular solutions is presen
in Sec. V.

II. LANG-KOBAYASHI PARADIGM

Here we discuss the delay differential equations@1# de-
rived by Lang and Kobayashi,@5# that model the externa
cavity semiconductor lasers. These equations describe
evolution of the complex electric field amplitudeE(t)
5E(t)eif(t) and of the excess carrier densityN(t). The LK
equations can be written in dimensionless forms@13# as fol-
lows:

Ė5N~ t !E~ t !1hE~ t2t!cos@D~ t !1f0#,

ḟ5aN~ t !2h
E~ t2t!

E~ t !
sin@D~ t !1f0#, ~1!

TṄ5P2N~ t !2@2N~ t !11#E~ t !2,

whereD(t)5f(t)2f(t2t) is the phase delay during th
external cavity round-trip timet, and timet is measured in
the units of the photon lifetime. The semiconductor mediu
is characterized by the linewidth enhancement factora and
the carrier lifetimeT. The external feedback level is repre
sented byh, while f05v0t is the round-trip phase mis
match, wherev0 is the emission frequency of the solitar
laser. The excess pump currentP is proportional to (I /I th)
21. The influence of spontaneous emission noise can als
accounted for by the addition of a Langevin term@14,15#.
Even though the LK model assumes a single-mode opera
and neglects multiple reflections from the external mirror
reproduces many experimentally observed dynamical
gimes of external cavity semiconductor lasers.

Based on the LK model, the CC regime has been in
preted as a manifestation of chaotic dynamics@16#. Coupling
of the single-mode laser with the external cavity adds a se
of new external cavity modes. These are the stationary solu
tions of Eq. ~1!, which have the formsE(t)5Es , f(t)
5vst, andN(t)5Ns , where

Es
25

P2Ns

2Ns11
.0, Ns52h cos~Ds1f0!, ~2!

and Ds[vst are determined implicitly by the equationDs

52htA11a2 sin(Ds1f01tan21a). The stationary solu-
tions appear in pairs, and their number is proportional toC
5htAa211, so that it grows with the increasing feedba
level and/or the external cavity length. One of the solutio
in each pair is intrinsically stable, and is therefore identifi
with an ECM, while the other is unstable and often called
antimode. From the standpoint and dynamical systems,
mode-antimode pairs are created after saddle-node bifu
tions, and the antimodes are located on the basin bound
separating different ECMs. Stable upon creation, each E
becomes unstable at a slightly higher feedback, and is
placed by a limit cycle due to the Hopf bifurcation. A furthe
increase in the feedback level leads to a chaotic attra
6-2
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REGULAR DYNAMICS OF LOW-FREQUENCY . . . PHYSICAL REVIEW E63 056206
along either a quasiperiodic or period-doubling route. At
higher feedback, attractors corresponding to different ECM
begin to merge via basin boundary crises, and a large at
tor appears on the ruins of many single ECM attractors.
the ECM’s span a wide range of frequencies, the sys
evolution on this large attractor corresponds to the loss
coherence of the emitted light.

When the laser is biased well above solitary threshold,
trajectory visits vicinities of different ECM’s in an esse
tially random fashion. However, when the pumping curre
is lowered close to the threshold, the system enters the
regime, in that the evolution of the system acquires a defi
direction in phase space toward ECM’s with higher ga
This drift leads to a gradual increase in the output pow
~buildup!, followed by a relatively fast decrease of the to
intensity ~dropout! when the system returns to lower ga
ECM’s. Early theoretical investigations of the nature of t
LFF attributed random dropout events to the influence
spontaneous emission noise@14,17#. It was soon realized
however, that the LFF regime is present in the LK mod
even when the noise term is omitted, thus suggesting
deterministic nature of the LFF phenomenon. This led to
interpretation of the LFF as a chaotic itinerancy with a d
~buildup! followed by a switching to the antimode controlle
dynamics~dropout!, caused by the boundary crisis of th
high-gain ECM attractors@18,19#. Recently the noise-
induced dropout scenario was revived again in conjunc
with the notion of excitability@20#. Another area of curren
debate is centered around the role of multimode behavio
the LFF regime@21–23#.

In spite of the fact that noise influences the statistics
time intervals between successive dropouts@15#, while the
presence of multiple modes changes the intensity distribu
during the buildup process in certain cases@23#, the LFF
regime is easily identified in the numerical simulations of t
fully deterministic LK model@19,24,25#. Therefore, the LK
model retains the essence of the dynamics in the LFF reg
and thus contain clues as to the origin of this phenomen

III. EVIDENCE OF THE REGULAR DYNAMICS

We now present numerical evidence of the existence
particular types of periodic or quasiperiodic solutions of t
LK equations, and conjecture that these solutions are res
sible for the drift dynamics in the LFF regime. We use t
fourth-order Adams-Bashford-Moulton predictor-correc
method@26#. Figure 1~a! shows time dependence of an ele
tric field E(t) obtained from numerical integration of Eq.~1!
with pumping near a solitary threshold. An important asp
of the laser operation is that slow variations of the fie
(;10t), which are identified with LFF’s, are in fact an en
velope for a sequence of narrow pulses. These pulses
been first predicted from numerical solution of the LK mod
@19# and later observed experimentally with streak came
@27,21,22#. The authors of Ref.@19# interpreted the pulsa
tions as a form of ‘‘mode locking.’’ Indeed, as shown in Fi
1~b!, the pulses occur roughly at the phase delaysDs of the
ECM’s @28#. In order to study the LFF phenomenon from
dynamical system standpoint, while taking into considerat
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the pulsating behavior of the laser, we construct the Poinc´

surface of section atĖ50, Ë,0. That is, we characterize
the system evolution by recording a sequence of lo
maxima of the electric field,Ei5E(t i), as well as of the
excess carrier density,Ni5N(t i), and theinstantaneous fre-

quency, v i5ḟ(t i). We usev i instead of the phase dela
coordinateD i5D(t i), since it better characterizes the dom
nant frequency of the emitted light in the pulse. The plot
Ei versusv it in Fig. 1~c! reveals a definite pattern traced b
the large pulses. To explore the nature of the dynamics,
have constructed the Poincare´ sections at decreasing value
of the pumping parameterP, as shown in Fig. 2. The remark
able result is that as the pumping parameter is lowered be
the threshold, the pattern becomes better defined, andP
520.012 the system dynamics is essentially quasiperio
i.e., the tips of the pulsesEi trace out a line in the configu
ration space. We find that the largest period associated
the quasiperiodic motion is extremely large (100–400t) and
at P520.014 tends to infinity, so that the system evoluti
is reduced to a periodic motion. ForP,20.014 the motion
again becomes quasiperiodic. The sequence of plots in F
2~a!–2~d! thus represents a generalbifurcation scenario in
which the pumping parameterP serves as a bifurcation pa
rameter. Thus, asP is increased, the periodic solution@Fig.
2~d!# undergoes a Hopf bifurcation to generate a quasip
odic solution@Fig. 2~c!#, which then becomes chaotic@Figs.
2~b! and 2~a!# through the quasiperiodic route to chaos@29#.

It is important to note that the quasiperiodic behav
emerges gradually, so that its appearance cannot be i
preted as a window of spontaneous stabilization of the o
erwise unstable quasiperiodic-periodic orbit. Instead it
more plausible to assume that, with decreasing pumping,
laser settles into a more regular regime as a means of co

FIG. 1. ~a! Numerical solution of Eq.~1! in the LFF regime:
a56, T5300, t5700, h50.07, f050, andP50.001. ~b! The
same solution is shown in the configuration space ofE(t) vs D(t).

~c! Poincare´ section (Ė50, Ë,0) of the same solution. The circle
and crosses in~b! and ~c! show the location of the ECM’s and th
antimodes, respectively.
6-3
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DAVIDCHACK, LAI, GAVRIELIDES, AND KOVANIS PHYSICAL REVIEW E 63 056206
with insufficient influx of the pumping current. Indeed, in th
CC regime, the laser operates extremely erratically, rea
expending the energy pumped into it. When the pumping
lowered close to the threshold, the laser has to find a m
efficient operation mode. One of the possibilities would be
settle into one of the ECM’s. However, a large value of t
linewidth enhancement factora in semiconductor lasers in
duces a strong coupling between the ECMs, which preve
the system from operating in a single ECM state@30#.

Our numerical results, as well as recent experiments@8#,
suggest that there exists a different type of efficient opera
regime, which is characterized by a sequence of nar
pulses with slowly varying magnitude and a wide frequen
band. The system evolution in this regime is strikingly sim
lar to that of the LFF’s; that is, both LFF’s and regular s
lutions are characterized by a drift toward ECM’s wi
higher gain, followed by a return to lower gain ECM’s. W
stress here that the comparison between our numerical re
and the experimental findings in Ref.@8# is specific for the
regular solutionsonly. In particular, a similarity is observe
if one compares Fig. 1 with Fig. 1~c! in Ref. @8#. However,
there are notable differences between the temporal shap
the time evolution of the laser fields in our numerical p
and in experiments. Such a comparison, of course, is m
to be qualitative only, as there are complicating factors s
as spontaneous emission in experimental lasers which w
not included in our computations. The focus of our pape
to look for deterministic dynamical structures of LFF’s.

The dynamical features that distinguish the LFF regi
from the efficient regime is that the former is chaotic a
admits irregularities similar to the CC regime, such as
verse switching@18#, while the latter is very regular, and i
either periodic or quasiperiodic. Thus the LFF regime sha
similarities with both the CC regime and the efficient regim
of lasers operating below the solitary threshold. Based
this evidence, we view the LFF’s, which occur at low pum

FIG. 2. Emergence of quasiperiodic~c! and periodic~d! LFF’s
with decreasing pumping parameterP. The other parameters are th
same as in Fig. 1. Each plot contains 10 000 points.
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ing, as an intermediate regime between the CC regime
the efficient regular regime.

With pumping current increasing from below the solita
threshold, the sequence of transitions appears as follo
When the pumping is very low, lasing is possible only in
sequence of short pulses with a drift, i.e., the efficient regi
shown in Figs. 2~c! and 2~d!. As the pumping increases, th
operation in the efficient regime becomes unstable and bi
cates into chaos via a quasiperiodic route. The resulting
gime is that of the LFF’s, which are irregular, but still reta
the global drift dynamics characteristic of the efficient r
gime. With higher and higher pumping currents, the amo
of irregular behavior increases, while the drift dynamics b
comes less and less apparent, until it disappears when
laser enters the CC regime. These observations are cons
with experiments exploring the parameter space in the di
tion of varying pumping@31#.

IV. SOME PROPERTIES OF THE REGULAR SOLUTIONS

Further exploring the nature of the quasiperiodic so
tions, we find that the average time interval between la
pulses in Fig. 1~a! is aboutd50.504t, which corresponds to
approximately two pulses per round-trip time, and shows
significant dependence onP, h, a, or f0. On the other hand
depending on the value of the carrier lifetime parameterT,
the system exhibits a sequence oftime-lockedstates contain-
ing an integer number of pulses pert, as shown in Fig. 3.
Note that the time-locked behavior of the fast pulsations w
observed experimentally by Vaschenkoet al. @21#, and de-
scribed as a ‘‘marked pseudoperiodicity at the round-t
time of the optical field in the external cavity.’’

The time-locking of the pulses can be easily explain
based on the LK model in Eq.~1!. From the third equation
we see thatN(t) is always negative whenP,0. This means
that, when pumped below threshold, only the second term
the first equation contributes to the formation of a new pul
That is, a new pulse is formed at the moment when

FIG. 3. Dependence of the average intervald between large
pulses on the ratiot/T. A pulse is considered ‘‘large’’ when its
peak is above the energy surface of the ECM’s, as given by Eq~2!:
Ei

2.(P2Ni)/(2Ni11). The system parameters area56, t
5700, h50.07, f050, and P520.012. Each dot represents
median value of 3000 time intervals.
6-4
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REGULAR DYNAMICS OF LOW-FREQUENCY . . . PHYSICAL REVIEW E63 056206
energy from a previous pulse returns into the laser ca
after the round-trip time. Therefore, the time-locked st
develops because the process oftriggering the laser emission
by pulses reflected from the external cavity is natura
locked to the round-trip time. The dependence of the num
of pulses pert on the carrier lifetimeT can be understood
based on the evolution of the excess carrier densityN(t).
The evolution ofN(t) during the pulse is governed esse
tially by the last term in the third equation of Eqs.~1!, TṄ
'2E2, which causes a rapid decrease ofN(t). In order to be
able to sustain the next pulse, the carrier density needs
to recover. The recovery process, during whichE'0, is de-
scribed by the exponential lawN(t)'P2N0e2t/T, so the
number of pulses pert must be inversely proportional toT.
Note that, as shown in Fig. 3, the time-locked states do
form for t/T.8. The reason is that for six or more puls
per t the interval between pulses becomes comparable
their duration, which leads to a breakdown of the trigger
mechanism.

The triggering mechanism can also explain the appa
‘‘mode locking’’ of the pulses in the phase delay variab
D(t). Indeed, efficient triggering requires that cos@D(t)1f0#
'1 in the first equation of Eqs.~1!, which means thatD(t)
'Dn52pn2f0 during the pulse, wheren is an integer.
Numerical solution of the LK model shows that the value
D(t), during large pulses, is much closer toDn than toDs .
Therefore, the mode locking cannot be associated with in
vidual ECM’s, but rather reflects a complexsimultaneous
influence of many ECM’s on the system evolution@28#.

V. DISCUSSIONS

In conclusion, we have discovered a particular type
quasiperiodic or periodic solutions of the LK model, a
provide evidence that these solutions are responsible for
drift toward the higher gain ECM’s followed by the retur
dynamics~often referred to as the ‘‘Sisyphus effect’’! in the
LFF regime.

Finally, we wish to discuss some observations as to
possible origins of the regular solutions in the LK mod
Since these solutions are much more complicated than
R.
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ECM’s, it does not appear feasible at present to derive th
analytically from the LK model without any approximation
Therefore, we will refer to a recently proposedtruncatedLK
model @32#, which is constructed by replacingE(t2t) and
ḟ(t) in Eq. ~1! with truncated Taylor series expansions
terms of E(t) and D(t), respectively:E(t2t)5E(t) and
ḟ(t)5D/t1Ḋ/2. The result is a system of threeordinary
differential equations

Ė5NE1hE cos~D1f0!,

Ḋ/252D/t1aN2h sin~D1f0!, ~3!

TṄ5P2N2~2N11!E2,

which is much easier to explore both analytically and n
merically. Even though the above expansions cannot be
tified for large values oft, the truncated system retains
very important feature in that it has the same stationary
lution as the original LK system. Moreover, the ECM’s
the truncated system also destabilize via Hopf bifurcatio
and are replaced by the limit cycles around individu
ECM’s. Most importantly, when the feedback is further i
creased, the limit cycles begin to merge via a gluing bif
cation, creating a large limit cycle revolving around ma
ECM’s. This cycle is very similar to the one shown in Fi
2~d!. Even though the small dimensionality of the truncat
system cannot support the rich variety of regimes presen
the full LK model, we do see a transition from periodic
chaotic behavior when the pumping parameterP is in-
creased. The apparent similarity between the quasiperi
or periodic LFF solutions in the LK model and the larg
cycles of the truncated model suggests that the regular
solutions also emerge in a sequence of gluing bifurcatio
We intend to explore this subject in more detail in our futu
publications.
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