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Species in nature are typically mobile over diverse distance scales, examples of which range from bacteria run
to long-distance animal migrations. These behaviors can have a significant impact on biodiversity. Addressing
the role of migration in biodiversity microscopically is fundamental but remains a challenging problem in
interdisciplinary science. We incorporate both intra- and inter-patch migrations in stochastic games of cyclic
competitions and find that the interplay between the migrations at the local and global scales can lead to
robust species coexistence characterized dynamically by the occurrence of remarkable target-wave patterns in
the absence of any external control. The waves can emerge from either mixed populations or isolated species
in different patches, regardless of the size and the location of the migration target. We also find that, even in
a single-species system, target waves can arise from rare mutations, leading to an outbreak of biodiversity. A
surprising phenomenon is that target waves in different patches can exhibit synchronization and time-delayed
synchronization, where the latter potentially enables the prediction of future evolutionary dynamics. We provide
a physical theory based on the spatiotemporal organization of the target waves to explain the synchronization
phenomena. We also investigate the basins of coexistence and extinction to establish the robustness of biodiversity
through migrations. Our results are relevant to issues of general and broader interest such as pattern formation,
control in excitable systems, and the origin of order arising from self-organization in social and natural systems.
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I. INTRODUCTION

Biodiversity is ubiquitous in nature and fundamental to
evolution in ecosystems [1–3]. However, a significant chal-
lenge remains in understanding biodiversity since, by the
principle of natural selection, only fitter species are supposed
to be capable of surviving from interactions and competitions
with other species for limited resources. To resolve this
dilemma, evolutionary game theory [4–8] has been used as
a paradigm to address the coexistence of competing species,
which is the key to sustaining biodiversity.

A fundamental type of interactions in ecosystems is cyclic,
nonhierarchical competitions. They have been observed in a
plethora of real ecosystems ranging from microbes to mating
strategies of side-blotched lizards in California [9–12]. A
paradigmatic system to study the role of competitions in biodi-
versity is the classical, cyclic game of rock-paper-scissors. One
approach is macroscopic in the sense that the mathematical
models are aimed at describing the evolution of the populations
of competing species, which are assumed to be well mixed. In
this macroscopic approach, any species is treated as a whole
through its population [13–16]. An interesting result from this
approach is that cyclic competitions alone are not sufficient
to support species coexistence [14,17]. The ubiquity of the
coexistence phenomenon in nature suggests that additional
factors must exist to promote coexistence and consequently,
biodiversity. To identify these additional factors and also to
capture the complex interacting dynamics among individuals
of competing species, microscopic game models incorporating
stochastic interactions on spatially extended scales have been
exploited with the remarkable result that, due to stochasticity
and local interactions, coexistence can arise even in the
presence of species dispersal [12]. Since then, the role of
mobility in coexistence in microscopic game models has

been investigated [18–21], where it was found that strong
local mobility can cause nonlocal interactions, which under
certain circumstances tend to hamper coexistence through the
formation of moving spiral waves of population densities in
the physical space [20]. The roles of epidemic spreading [22]
and intra-species competition [23] in species coexistence have
also been studied. A seemingly accepted notion in the field is,
then, that strong mobility is detrimental to biodiversity.

In this paper, we report a phenomenon that is in sharp
contrast to the existing notion: species migration across vast
spatial scales can in fact promote coexistence. Such move-
ments are indeed common in ecosystems [24]. Since long-
distance migrations can be regarded effectively as an extremely
strong type of mobility, according to the conventional wisdom,
coexistence would be disfavored or even prohibited. However,
our studies have revealed, strikingly, that migration favors
coexistence and thereby promotes biodiversity.

To be concrete, we consider species movements on two
distinct spatial scales (intra-patch and inter-patch migration),
and study stochastic games microscopically by focusing on
the formation and the dynamics of self-organized patterns
of species densities. As will be explained, our microscopic
model of inter-patch migration based on stochastic interactions
is quite different from the coupled patchy models described
by deterministic differential equations [25–30]. We will show
that the combination of intra- and inter-patch migrations
can result in a robust type of coexistence characterized by
the formation of a surprising class of target wave patterns
that were found previously but in different contexts such
as excitable systems [31–35]. We find that, associated with
coexistence, synchronization and time-lagged synchronization
among spatial patterns in different patches emerge, implying
the persistence of coexistence. An appealing feature of
time-lagged synchronization is that it can potentially be used
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to predict the spatiotemporal evolution of species. We also find
that the interplay between the two types of migration can result
in a spontaneous outbreak of biodiversity in a world of single
species with rare mutations. We establish the robustness of
the biodiversity-sustaining target waves with the aid of a basic
concept in nonlinear dynamics: basins of attraction in the phase
space. All the results will be demonstrated using systematic
simulations of microscopic game dynamics and substantiated
by theoretical analysis based on nonlinear partial differential
equations. Our results not only provide insights into the
dynamics of global oscillations induced by long-distance
interactions among cyclically competing species [36], but also
have implications to the emergence and maintenance of order
from randomness and disorder in natural and social systems
through self-organization in the absence of any central control.

In Sec. II, we describe the spatial RPS model with both
intra- and inter-patch migrations. In Sec. III, we present results
on synchronization and lag synchronization among target
waves in different patches and introduce an order parameter
to quantify the synchronization behaviors. In Sec. IV, we
provide analytical results for the observed phenomenon of
pattern synchronization. In Sec. V, we present the results of
outbreak of biodiversity through rare and random mutations
and explore the coexistence of target and spiral waves. In
Sec. VI, we investigate attraction basins of coexistence and
extinction in the phase space. Conclusions and discussions are
presented in Sec. VII.

II. MODEL

We consider multiple-patch systems of three subpopula-
tions (referred to as a, b, and c) under both intra- and interpatch
migrations. Within each patch, a, b, and c interact with each
other according to the following rules:

ab
u−→ aØ, bc

u−→ bØ, ca
u−→ cØ, (1)

aØ
σ−→ aa, bØ

σ−→ bb, cØ
σ−→ cc, (2)

a� ε−→ �a, b� ε−→ �b, c� ε−→ �c, (3)

where Ø represents empty sites and � represents any species
or empty sites. Relations (1)–(3) define competition, reproduc-
tion, and intra-patch migration that occur at the rates u, σ , and
ε, respectively. The occurrence probabilities are normalized by
(u + σ + ε). Since our focus is on the role of mobility, we set
u = σ = 1without loss of generality. The individual mobility
is defined as M = ε(2N )−1, which is proportional to the
number of sites explored by one individual per time step [20].
Initially, individuals are randomly located over all patches,
each of which is represented by a lattice of L × L sites with
open boundary conditions. At each simulation step, a random
pair of neighboring sites is selected for one type of interaction
from Eqs. (1)–(3) according to its probability. Whether the
chosen interaction can actually occur is determined by the
states of both sites. An actual time step t is defined when each
individual has experienced interaction once on average, i.e., in
one time step N pairwise interactions will have occurred.

Inter-patch migration is a type of long-distance species
movement among different patches. In a certain period, a
mutual migration takes place among patches, where one
randomly selected individual migrates from one patch to a

FIG. 1. (Color online) Illustration of interpatch migration in a
two-patch ecosystem with open boundary conditions. There is a
periodic migration between two patches: at each time step nTm

(n = 1,2, . . .), one randomly selected individual migrates from patch
A to patch B and vice versa. The migration (target) region can be of
any size and at any location in the patch. If the target area contains
several sites, we randomly pick one site. If there are more than two
patches, each migration individual first randomly chooses a patch and
then occupies a target site, regardless of the original individual at the
site. The individual with inter-patch migration leaves its site empty
in the original patch.

random location in the target region of another patch and
vice versa (see Fig. 1). To be as general as possible, we
assume that the target region can be either a single site or an
area. The speed of inter-patch migration is determined by the
parameter Tm, the actual time between two successive mutual
migrations. Statistically, for Tm = 1, there are on average N

intrapatch interactions. The mobility M and the inter-patch
migration time Tm thus constitute two key parameters in the
spatial game dynamics. In addition to addressing the role of
these two parameters, we will consider the effects of multiple
patches and of the position and area of the target region on
coexistence.

III. PATTERN FORMATION AND SYNCHRONIZATION

A. Synchronization of target waves among patches

We first study an ecosystem of two patches, where a
single target region is located at the center of each patch for
inter-patch migration. Without the migration, in each patch
two species will become extinct and only one species can
prevail. When inter-patch migration occurs, a predominant
species can arise due to the difference in the initial densities
at t ≈ 2500, as shown in Fig. 2. After this event, species
superior to the dominant one in the cyclic-competition loop

FIG. 2. (Color online) Emergence of target waves and pattern
synchronization in a two-patch system with initially mixed popula-
tions for M = 0.7 × 10−4 and Tm = 1. Each patch has size 300 × 300
and the target is at the center. The initial densities of species in the first
patch are ρa = 0.6 and ρb = ρc = 0.2, and in the second patch are
ρb = 0.6 and ρa = ρc = 0.2. Red (gray), blue (dark gray) and yellow
(light gray) colors represent the three species a, b, and c, respectively,
and empty sites are denoted by gray.
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FIG. 3. (Color online) (a) Initial configuration of a four-patch
system with noncentral target and (b) synchronization of target waves.
The lattice sizes of each single patch is 200 × 200. The parameters
are M = 3.2 × 10−4 and Tm = 6. Initially, three species a, b, and c

populate patches A, B, and C, respectively, and the fourth patch is
empty. To visualize the possible synchronization behavior, the target
is set at the corner of each patch and the target corners of the four
patches are put together. The boundaries among the four patches are,
in fact, disconnected. Target waves are formed in each patch, but as a
quarter of a circle, in contrast to the case of central migration targets.
The target waves among different patches can still synchronize with
identical ring numbers.

appear around the target points in both patches, inducing target
waves that emanate from their respective target points and
propagate outward. The target waves from the two patches
tend to synchronize with each other for t � 25 000. When
synchronization occurs, it can be maintained and there is then
a strong order in the system dynamics. We have examined a
three-patch system, where initially there is a single species in
each patch and a four-patch system where the target locations
deviate from the centers of patches, e.g., at the corner of
each patch (see Fig. 3). We observe synchronized target waves
as well.

The target area in each patch can have a significant influence
on pattern formation and synchronization. As shown in Fig. 4,
we observe synchronization of target waves when the target
area is small. In this case, time series of the densities of a partic-
ular species in the three patches exhibit a phase-synchronized
behavior. For a large target area, a strikingly different type of
synchronization occurs: time-delayed synchronization. In this
case, the time series exhibit the same period T but there is a
time lag of about T/Np among them, where Np is the number
of patches [Figs. 4(b)–4(d)].

B. Order parameter and phase diagram

We introduce an order parameter defined by the phase
difference between the species densities. Specifically, the
average period can be computed by the time interval between
two neighboring peaks. Since the densities in the three patches
exhibit similar oscillatory behaviors, we can define an average
period 〈T 〉 obtained from, say, ρa in three patches. We can
then calculate the order parameter of phase synchronization
between each pair of patches. For example, for B and C, the
order parameter ηBC is

ηBC = 1 − 〈min(�tBC,〈T 〉 − �tBC)〉BC

〈T 〉/2
, (4)

FIG. 4. (Color online) (a) Phase synchronization and (b) time-
delayed synchronization among target-wave patterns in a three-patch
system for small and large migration-target areas, respectively.
The parameters are M = 0.8 × 10−4 and Tm = 1. (c) Time-delayed
synchronization for a two-patch (M = 0.6 × 10−4) and (d) a four-
patch (M = 1.2 × 10−4 and Tm = 1) system, where the evolutions of
densities of species whose distances from the central target site are
less than L/2 are displayed. The target radii for synchronization and
lag synchronization are 15 and 40, respectively, and L = 300.

where 〈· · ·〉BC stands for the average over all pairs of
neighboring peaks in B and C and �tBC is the time difference
between a peak in B and the closest peak in C, so that the
value of min(�tBC,〈T 〉 − �tBC) is less than 〈T 〉/2. If ρa’s
from B and C display a phase coherence, �tBC tends to zero
and ηBCapproaches unity. If the phases are incoherent, ηBC

tends to zero. The overall order parameter η can be defined by
the average of order parameters from all patches:

η = ηAB + ηAC + ηBC

3
. (5)

Lag synchronization, however, needs to be characterized by all
pairs of order parameters. Since the time delay for each pair
is T/3, for lag synchronization we have ηAB = ηAC = ηBC =
1/3.

The order parameter enables us to quantify the dependence
of pattern synchronization on both M and Tm. As shown in
Fig. 5, for M < 2 × 10−5, target waves become unstable and
break into small spiral waves (the three insets in region I).
Once spiral waves have appeared, they are robust, making
the appearance of target waves difficult. For large values
of Tm, because of the low inter-patch migration frequency,
species coexistence in each patch is ruled out. Based on these
results, we have identified three regions in the parameter space:
(I) spiral-wave region, (II) target-wave region, and (III) ex-
tinction region. Of interest is region II, where synchronization
occurs as a result of both intra- and inter-patch migration.

C. Transition between synchronization and lag synchronization

We have observed numerically that, as the area of the
migration target region is increased, there is a transition from
pattern synchronization to lag synchronization, with the latter
meaningfully defined by the order parameters calculated from
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FIG. 5. (Color online) In a three-patch system, dependence of the
order parameter η on M and Tm. The radius of migration target is 10,
centered at the lattice. Three phases are identified in the parameter
space: (I) spiral waves, (II) target-wave region in which there is a
synchronization subregion, and (III) extinction region defined by the
criterion that in any patch at any time, the number of individuals in
a species is less than three. The size of each patch is 300 × 300 and
initially there is a single species in each patch.

all distinct pairs of patch combinations. To distinguish the two
types of synchronization from disorder states computationally,
we calculate the mean values of all the order parameters
and their variances, which can be justified, as follows. When
synchronization occurs, all order parameters obtained from
different realizations should approach unity and their variances
are small. However, for lag synchronization, the values of all
order parameters are 1/3 with small variances as well. For a
disorder state, either the mean values are low or the variances
are large. Note that order parameters obtained from different
realizations should be treated on equal footing.

Figure 6(a) demonstrates the transition from pattern syn-
chronization to lag synchronization as the area of target region
is increased. We see that, when the target is a single site,
synchronization occurs, where the order parameters have high

(a) (b)

FIG. 6. (Color online) For a three-patch (A,B,C) system,
(a) mean value and standard deviation of the order parameter η,
and (b) the number of rings nr as a function of the radius of the target
region. Parameters are L = 300, M = 0.8 × 10−4, and Tm = 1. Data
points are obtained from 20 independent realizations, where η =
(ηAB + ηAC + ηBC)/3 and the bars represent the standard deviations.
There are three distinct dynamical behaviors: synchronization in
region I, lag synchronization in region II, and disorder in other
regions.

mean values and low variances. As the radius of the target area
is increased, the target-wave patterns in all patches degrade
and disorder appears, as reflected by the low mean values
and the high variances in the order parameters. When the
radius exceeds a critical value, synchronization returns and
persists (region I). When the radius deviates from that in the
synchronization region, the wave patterns become disordered
again. This situation lasts until the target radius reaches that for
a lag synchronization region (region II) characterized by the
mean value of 1/3 in the order parameters with low variances.
The lag synchronization region is relatively wide. For example,
even when the target radius reaches 1/3 of the half length of
the square lattice, lag synchronization still occurs.

We are thus led to explore the dependence of the number
of rings on the radius of the migration target for fixed
values of intra- and inter-patch migration parameters. As
shown in Fig. 6(b), there is apparently a correlation between
the synchronization behavior and the number of rings. In
particular, in the synchronization region, the number of rings
is in the range between 3 and 6, while for lag synchronization
the number is less than 3. Disorder arises when the number of
rings in the target waves is more than 6.

IV. PHYSICAL THEORY

A. Number of rings associated with synchronization

To gain theoretical insights into pattern synchronization, we
study the number of rings nr associated with the target waves
when synchronization occurs. Without loss of generality, we
consider two patches A and B, as shown in Fig. 7. In each
patch, the central species a is surrounded by b and b is
surrounded by c. The average length Lr of an arbitrary species
in A is

Lr = TV = TmV

〈ρB(c)〉 − 〈ρB(b)〉 , (6)

where V is the front propagation velocity of target waves
and T is the time interval between two successful inter-patch
migrations between two patches. Note that, only when species
c moves to the migration target can a new ring be generated.
Because, at each time step, the individual that executes
actual migration is random, the time interval T for patch
A is determined by the average species densities 〈ρB(c)〉
and 〈ρB(b)〉 in patch B from which individuals migrate, and
vice versa. Given the lengths of the rings, nr is given by
nr = L/(

√
2Lr ).

Since the front propagation velocity V does not depend on
the inter-patch migration parameter Tm, it can be obtained by

FIG. 7. (Color online) Schematic patterns for two patches in
synchronization, where Lr defines the average length of rings.
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casting the cyclically competing game in the framework of the
complex Ginzburg-Landau equation (CGLE) [20]:

∂tz(r,t) = M�z(r,t) + (c1 − iω)z(r,t)

− c2(1 − ic3)z(r,t)|z(r,t)|2, (7)

which is obtained by incorporating spatial diffusion terms
into the rate equations. The CGLE describes the dynamical
behavior of spatial patterns in a single patch in the absence of
inter-patch migration. The spreading velocity of the propagat-
ing wave fronts can be determined by linearizing the CGLE
around the unstable point z = 0 [37]:

∂tz(r,t) = M�z(r,t) + (c1 − iω)z(r,t) + o(z2). (8)

Performing the Fourier transform

z̃(k,	) =
∫ ∞

−∞
dr dt z(r,t) eik·r+i	t

and substituting the inverted transform

z(r,t) =
∫ ∞

−∞
dk d	 z̃(k,	) e−ik·r−i	t (9)

into the linearized CGLE, we obtain, for the left-hand side,

∂tz(r,t) = −i	z(r,t). (10)

The right-hand side of the CGLE is equal to

M�z(r,t) + (c1 − iω)z(r,t) = (−Mk2 + c1 − iω)z(r,t).

(11)

Equating the two sides, we obtain

	(k) = ω + i(c1 − Mk2). (12)

The spreading velocity can be obtained by applying the saddle-
point approximation (also known as the stationary phase or
steepest descent approximation) [38]. In particular, for a saddle
point k∗, we have

V ≡ d	(k)

dk

∣∣∣∣
k∗

= Im 	(k∗)

Im k∗
. (13)

The solution to the saddle point k∗ is found to be k∗ =
i
√

c1/M . Thus, the spreading velocity is obtained as

V = 2
√

c1M, (14)

where the coefficient c1 is

c1 = uσ

2(3u + σ )
. (15)

Due to pattern synchronization, the densities of species in
patch A and patch B are identical:

ρA(b) = ρB(b) and ρA(c) = ρB(c). (16)

We can then estimate the densities of species b and c in patch
A during the propagation of the central ring occupied by a

from zero to length Lr . The average density of c is

〈ρA(c)〉 =
∫ 2Lr

Lr

π (x + Lr )2 − πx2

L2

1

Lr

dx = 4πL2
r

L2
. (17)

FIG. 8. (Color online) For a three-patch ecosystem, (a) the
dependence of the number of rings on Tm in the synchronization
regime for M = 10−5 and (b) simulation and theoretical boundary
between the target-wave and extinction regions in the parameter
space. The curve in (a) is the theoretical results from Eq. (19) and the
curve in (b) represents the estimate from Eq. (24).

Analogously, the outer boundary of species b to the center
ranges from 0 to Lr , yielding

〈ρA(b)〉 =
∫ Lr

0

π (x + Lr )2 − πx2

L2

1

Lr

dx = 2πL2
r

L2
. (18)

Inserting 〈ρA(c)〉 and 〈ρA(b)〉 into Eq. (6) yields

nr = L√
2Lr

=
(

2Tm

πL

√
uσ

3u + σ
M

)−1/3

. (19)

The analytical result agrees reasonably well with numerical
simulations, as shown in Fig. 8(a).

B. Boundary between coexistence and extinction regions

The number of rings associated with a target-wave pattern
turns out to be a useful indicator to understand the co-
evolutionary spatiotemporal dynamics. For example, based
on this number, we can estimate the boundary between the
target-wave and extinction regions in the parameter space
[Fig. 8(b)]. To demonstrate this, we consider a three-patch
system. Without loss of generality, we can express the ring
length in patch A as

LA
r = Tm

1
2 [〈ρB(c) + ρC(c)〉 − 〈ρB(b) + ρC(b)〉]V. (20)

In the lag-synchronization state, we have 〈ρB (c) + ρC(c)〉 = 1
and 〈ρB(b) + ρC(b)〉 = 〈ρB(b)〉 (Fig. 9). For the extinction
state, the length of the a ring in patch A satisfies the condition

LA
r (a) >

√
2L

4
(21)

FIG. 9. (Color online) For a three-patch ecosystem, schematic
illustration of patterns associated with the extinction state. In this
route, there is still lag synchronization.
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when a reaches the corners of the lattices. During this process,
the quantity 〈ρB(b)〉 can be approximately calculated by

〈ρB(b)〉 ≈
∫ √

2/2

0

πx2

L2

1
√

2
2 L

dx. (22)

The parameter boundary between the target-wave and extinc-
tion regions can then be obtained by inserting Eq. (22) into
Eq. (20) and setting LA

r (a) = √
2L/4:

√
2L

4
= Tm

1
2 (1 − 〈ρ0B(b)〉)2

√
uσ

2(3u + σ )
M, (23)

which yields

Tm ≈ 1

4

(
1 − π

6

) 1√
M

, (24)

for u = σ = 1 and L = 1. This theoretical estimate of the
boundary agrees reasonably well with that from direct stochas-
tic simulations, as shown in Fig. 8(b).

V. OUTBREAK OF BIODIVERSITY AND COEXISTENCE
OF DIFFERENT WAVE PATTERNS

A. Outbreak of biodiversity through rare
and random mutations

An interesting issue is whether the combination of two
types of migrations can induce a spontaneous outbreak of
biodiversity from rare mutations in a single species world.
To address this issue, we consider as an illustrative example
a two-patch ecosystem and assume initially identical single
species in both patches. We randomly reset the state of each
individual with a small probability p to mimic the effect of
random mutations that introduce two additional species in
each patch. The three species then interact with each other
cyclically, with migration occurring at all time. We then
examine the spatial patterns and the lowest density ρmin of
species in each patch, a near-zero value of which would
indicate extinction. As shown in Fig. 10, after a relatively
long transient time, a sudden change from zero in ρmin occurs,
signifying coexistence. Accompanying this are target-wave

FIG. 10. (Color online) In a two-patch system, outbreak of
biodiversity from random, rare mutations in a single species world
for M = 0.7 × 10−4 and Tm = 2. Each lattice size is 200 × 200
with a central target region, and the mutation probability for each
individual is 10−7 at each time step. The quantity ρmin is defined as
the density of the least frequent species in a patch, averaged over
the two patches. Synchronized target waves are associated with the
outbreak of biodiversity.

patterns in both patches, ensuring persistence of all three
species. This outbreak of biodiversity is triggered by the
occasional appearance of new species in a patch as the
result of mutation. Once there are three species in a patch,
with nonzero probability, inter-patch migration can induce
target waves which, in turn, warrant coexistence of all three
species. In contrast, without inter-patch migration (effectively
a single-patch environment), even though three species can
occasionally appear simultaneously, the large differences
among their densities will lead quickly to a predominant
species, excluding the other two species, as represented by
the small fluctuations of ρmin about zero. Species coexistence
can hardly be sustained without inter-patch migration even in
the presence of random mutations.

B. Coexistence of different waves and multitarget waves

We have observed the coexistence of target waves and spiral
waves in different patches, which can occur regardless of
the initial distributions of the populations. The coexistence
is stable in the sense that the patterns are formed rapidly and
each wave type cannot assimilate the other, as exemplified in
Fig. 11. For the two-patch case, there is a spiral-wave basin
in the phase space if the initial densities of the three species
are close to each other. The coexistence of spiral and target
waves occurs near the boundary of the spiral-wave basin. For
the four-patch case in Fig. 11, spiral waves can be formed in
the initially empty patch but never in other patches that are
initially occupied by species. For the empty patch (patch D),
due to the inter-patch migrations from other three patches,
three species can be mixed around the migration target. There
is thus a finite probability to form spiral waves centered at the
target, as shown in Fig. 11. However, due to the randomness
in the inter-patch migration, around the target point in patch
D, the density differences among the three species can lead to
a predominant species before the occurrence of spiral waves.

FIG. 11. (Color online) Coexistence of target and spiral waves for
a two- and a four-patch system with central targets. For the two-patch
system, species are mixed initially with the parameters M = 0.6 ×
10−4 and Tm = 1. For the four-patch system, three species populate
three patches, respectively, while the fourth patch is empty initially.
The initial configuration, except the position of the target, is the same
as that of Fig. 3. The parameters are M = 1.2 × 10−4 and Tm = 1.
The lattice size of each patch is 300 × 300.
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FIG. 12. (Color online) For a three-patch system, multitarget
waves for M = 0.8 × 10−4 and Tm = 1. In each patch, there are two
migration targets with the coordinates (L/2,L/4) and (L/2,3L/4),
respectively. The lattice size is 300 × 300.

In this scenario, the predominant species will spread fast to
the whole patch and the three species are unable to interact
with each other sufficiently strongly at the migration target to
generate spiral waves. We have observed that the spiral waves
in patch D do not affect the synchronization of target waves
among the other patches. It is noteworthy that an empty patch
is a necessary condition for the birth of spiral waves in the case
where other patches are of single species initially.

If there is more than one migration target region in a patch,
multitarget waves can arise, as demonstrated in Fig. 12 for a
three-patch system. There are two migration targets in each
patch populated initially by a single species. We observe
two coexisting target waves, each centered at a target region,
forming an “eight” shape. Multiple target waves in a common
patch are always synchronized. These behaviors have also been
observed for three- and four-patch systems.

VI. BASINS OF SPECIES COEXISTENCE
AND EXTINCTION

The basin of a final state is all initial configurations that lead
to the state. In nonlinear dynamics, basins of attraction and
the boundaries among them are a fundamental issue [39,40].
Consider again a two-patch ecosystem. A phase space can
be defined by the initial densities of the three populations in
both patches: [ρA(a), ρA(b), ρA(c)] and [ρB(a), ρB(b), ρB(c)].
Since the phase space in terms of the population densities is
six-dimensional, it is necessary to examine a reduced subspace
for visualization and analysis. We choose the subspace defined
by ρA(a) = ρB(b), ρA(b) = ρB(c), and ρA(c) = ρB(a). In
patch A (or B), the densities of the three species satisfy
the constraint ρ(a) + ρ(b) + ρ(c) = 1 − ρ0, where ρ0 is the
fraction of the empty sites. This conservation relation defines
a triangular region in the plane, making the reduced phase
space simplex S2, where the coordinates of a point represent
a group of three initial densities, and we can assign a color to
a point in S2 according to the resulting final state. Moreover,
we also investigate the convergence time tc, which provides
additional information about the basin structures.

For the two-patch system with both intra- and inter-patch
migration, there are six different evolutionarily steady states
defining six distinct basins including three extinction and three
coexistence basins distinguished by the three combinations of
target and spiral waves. All three coexistence states are stable
and determined by the initial configurations for fixed M and
Tm. It can be argued that the state where two patches are
occupied by two different species, respectively, is unstable,
and identical single species in two patches is the exclusive

extinction state, as follows. Without loss of generality, suppose
that patches A and B are full of species a and b, respectively.
Due to the cyclic competition and the presence of inter-patch
migration, after individuals from a migrate from A to B,
species b in patch B will begin to die and eventually become
extinct, and patch B will be occupied by species a. Since there
exist competitions between any two species, there can be only
one species surviving in two patches as extinction occurs.

For comparison, we have also mapped out the basins for a
single-patch system in the presence of intra-patch migration.
Basins for one-patch and two-patch systems with different
values of M and Tm are shown in Fig. 13. For the one-patch
system (leftmost column), for small values of M , e.g., M =
10−4, there is a spiral-wave basin at the center of the phase
space S2, surrounded by three entangled extinction basins.
The areas of the spiral-wave and the extinction basins are
determined by the mobility M . The spiral-wave basin is the
sole coexistence basin, which arises when the initial densities
of the three species are sufficiently close. As M is increased,
the coexistence basin shrinks, accompanied by the expansion
of the three extinction basins, which is consistent with the
previous results that strong local mobility hinders coexistence
[18–21]. When M exceeds a critical value 4.5 × 10−4, the
coexistence basin vanishes and biodiversity is lost.

In addition to basins characterized by final steady states,
we also exploit the extinction time tc to describe the basins of
single patch, as shown in the bottom panels. We see that in
the coexistence basin, tc → ∞ and 1/tc → 0. In the vicinity
of the boundary of two extinction basins, 1/tc dramatically
changes in two basins, and in each extinction basin, 1/tc tends
to decrease when rotating toward the center. The quantity
1/tc thus provides further information about the dynamics
inside basins in addition to the description of final stable
states.

For the two-patch system (the second through fourth
columns), the basins are characteristically changed as com-
pared with the one-patch case. For example, for M = 10−4,
when the frequency of inter-patch migration is high, e.g.,
Tm = 1, a vast area of double target-wave basin emerges in the
phase space, whereas extinction basins can hardly be observed.
At the center, the double spiral-wave basin is preserved,
surrounded by the one spiral- and one target-wave basin. We
see that coexistence is enhanced considerably by inter-patch
migration, as characterized by the presence of a vast area of
coexistence basins, regardless of the heterogeneity in the initial
population densities. This is a surprising feature as population
heterogeneity has been thought to be disadvantageous for
species coexistence. When the period of inter-patch migration
is increased, e.g., Tm = 15, small areas of extinction basins
inside the vast target-wave basin arise with a rotational
symmetry. We can expect that, when Tm becomes increasingly
large, the basin structure in the two-patch system tends to the
structures from the one-patch system. For large values of M ,
e.g., M = 3.0 × 10−4, for the single patch, the coexistence
basin nearly vanishes, while for the two-patch system with
Tm = 1, a double target-wave basin arises in the central area
and along the boundary among different extinction basins.
For low frequency of inter-patch migration, e.g., Tm = 15, the
double target-wave basin only exists at the center. Although
the basin structure can be dramatically changed with respect
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FIG. 13. (Color online) For a single-patch and a two-patch system, basins of extinction, target waves, and spiral waves, where the size of
each patch is 200 × 200. There are six different evolutionary steady states: three extinction states, a double spiral-wave state, one spiral- and one
target-wave state, and a double target-wave state. They are distinguished by different colors. For the single patch (the leftmost column), all the
basins exhibit a rotational symmetry around the center point (M = 10−4). As M is increased, the area of the coexistence basin is reduced. The
bottom panels for the single patch show the inverse 1/tc of the convergence time tc for different initial densities of species. For the two-patch
system (the second through fourth columns), a vast area of target-wave basins can arise, promoting biodiversity. Note that the extinction basins
appear clockwise compared to the basins in a single patch.

to the inter-patch migration, the rotational symmetry is always
preserved.

VII. CONCLUSIONS AND DISCUSSIONS

Our results demonstrate that the interplay between intra-
and inter-patch migrations in multipatch ecosystems under
cyclic competition can lead to remarkable target-wave patterns
originating from stochastic interactions. These self-organized
waves can emerge either from mixed populations or from
single species in an individual patch in the absence of external
control. Target waves can form regardless of the area and the
position of the migration target and the number of patches.
Moreover, multitarget waves can be induced by multiple
migration targets in a single patch, and target waves and spiral
waves can coexist stably. Strikingly, for proper combination
of intra- and inter-patch migration rates, synchronization and
lag synchronization of target-wave patterns among different
patches can occur, depending on the area of the migration
target. Analytic insights into the synchronization dynamics
have been obtained through the dependence of the number of
rings associated with target waves on the migration parameters.
Our computations have also revealed the phenomenon of
outbreak of biodiversity from single species through rare
mutations. The mapping of the basin structure in a proper
phase space provides further support for the robustness of
target waves in sustaining species coexistence, where both
biodiversity and extinction basins typically exhibit rotational
symmetry in the simplex S2.

It is noteworthy that the synchronization phenomena
resulting from stochastic interactions at the microscopic
level can have important applications. For example, pattern

synchronization stabilizes species persistence in a remarkable
order, in contrast to viewing population synchronization as
a cause of global population extinctions. Further, the lag
synchronization enables possible prediction of the future spa-
tiotemporal evolution of species based on current dynamical
behavior in an arbitrary patch. In particular, due to the nature of
lag synchronization, the spatiotemporal feature at the present
in one patch will be experienced by others in a future time. This
can be extremely useful for anticipating evolutionary dynamics
in ecosystems and developing effective control strategy in
advance to protect species diversity.

The outbreak of biodiversity via target-wave pattern from
single species with rare mutations demonstrates the robustness
of target waves in facilitating species coexistence. This phe-
nomenon also provides a possible approach to the exploration
of species in history. The combination of simple migration
behaviors and natural selection, two typical mechanisms for
self-organization, can successfully support species balances in
nature.

Our results are also relevant to the origin of order [41],
a significant issue in nature and society, which has been
discovered in Boolean dynamics for modeling regulatory
networks. There exist periodic attractors in the phase space
that lead to a number of periodic dynamical behaviors. In our
study, both spatial and temporal orders emerge from disordered
states, even from single species in a noisy world, as the result
of two types of migrations and stochastic interactions. When
synchronization occurs, time evolutions of species densities
become approximately periodic and, spatially, the target waves
in different patches exhibit identical length of rings. Migrations
over distant space provide an alternative route to the emergence
of spatiotemporal order in addition to Boolean dynamics.
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