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We investigate the route to synchronization in an ensemble of uncoupled chaotic oscillators under common
noise. Previous works have demonstrated that, as the common-noise amplitude is increased, both chaotic phase
synchronization and complete synchronization can occur. Our study reveals an intermediate state of synchro-
nization in between these two types of synchronization. A statistical measure is introduced to characterize this
noise-induced synchronization state and the dynamical origin of the transition to it is elucidated based on the

Lyapunov dimension of the set formed by all oscillator states.
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I. INTRODUCTION

The study of synchronization in nonlinear dynamical sys-
tems has been an active field of research [1,2]. For a system
of coupled chaotic oscillators, the route to synchronization
has been understood reasonably well. In particular, as the
coupling strength is increased from zero, a weak type of
synchronization, namely phase synchronization where the
phases of the oscillators are confined with respect to each
other but their amplitudes remain uncorrelated, can occur. As
the coupling is strengthened further, partial synchronization
in the form of synchronous clusters of oscillator can arise
[3-5]. Amplitude or complete synchronization occurs when
the coupling is sufficiently strong.

It has been known that chaotic synchronization in the ab-
sence of any coupling can also arise when the oscillators are
under common noise, the phenomenon of noise-induced syn-
chronization [6-9]. For example, phase synchronization can
arise when the common-noise amplitude & exceeds a small
value €p. As ¢ is increased through a relatively large value
£c, complete synchronization can occur [7]. The critical val-
ues of €p and e, can be related to the spectrum of the
Lyapunov exponents of an individual oscillator under noise.
In particular, ep is the critical noise amplitude at which the
originally null Lyapunov exponent begins to become nega-
tive, and for e=¢g(, the largest Lyapunov exponent crosses
zero toward negative values. We note that, for limit-cycle
oscillators, physical theories have been developed for
common-noise-induced synchronization [10,11].

In this paper, we report a state of synchronization, which
is referred to as intermediate synchronization, in an ensemble
of uncoupled chaotic oscillators under common noise. The
critical value of the noise amplitude, denoted by g, lies in
between ep and e,. To explain this new synchronization
state, we consider an infinite number of identical chaotic
oscillators (the phenomenon persists for nonidentical oscilla-
tors, as we will demonstrate in this paper). To be concrete but
without loss of generality, we first assume that each oscillator
exhibits a chaotic attractor with one positive Lyapunov ex-
ponent (hyperchaotic systems will also be treated in this
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work). The information (or Lyapunov) dimension dg of the
attractor thus assumes a value between 2 and 3. Suppose the
ensemble of chaotic oscillators starts with different but ran-
dom initial conditions. Without common noise, at any given
time the trajectory points of these oscillators will be distrib-
uted on the chaotic attractor according to its natural measure.
Visually we expect the trajectory points to spread over the
entire attractor. The details of this “covering” change with
time, but we expect the statistical properties to remain invari-
ant under time evolution. For example, the dimension d; of
the set of trajectory points is equal to d°, which is approxi-
mately the case even when ¢ is increased through €p so that
phase synchronization occurs, as the amplitudes of the oscil-
lators are still uncorrelated. For € > g so that complete syn-
chronization occurs, all trajectories will collapse into a single
point that moves randomly on the chaotic attractor in time.

The intermediate-synchronization state is characterized by
a significant deviation in the distribution of the oscillator
trajectory points from the natural distribution of the attractor.
In particular, as € is increased through ¢;, the distribution of
the trajectory points becomes localized on the attractor and
the dimension d; becomes less than 2. As e tends to e¢, d
approaches unity. For e=g,, d; changes discontinuously
from one to zero. The synchronization state that occurs for
g1<e<g is thus “stronger” than phase synchronization be-
cause there exists some degree of correlation among the am-
plitudes of the oscillators, but it is weaker than complete
synchronization. A probable reason that this synchronization
state was not uncovered previously may be that most existing
works on common-noise-induced synchronization focused
on two or a few chaotic oscillators, while the revelation of
the state requires a large number of chaotic oscillators under
common noise.

In Sec. II, we demonstrate and characterize in detail the
intermediate-synchronization state in dynamical systems
with three examples, including an ensemble of high-
dimensional chaotic oscillators. The issue of robustness with
respect to system mismatch and heterogeneity in noise is also
discussed. Conclusions are presented in Sec. III.

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.81.036201

WANG, LAI, AND ZHENG

FIG. 1. For the classical chaotic Lorenz oscillator under noise,
(a) largest Lyapunov exponent \; and (b) originally null exponent
\, as a function of the noise amplitude . For an ensemble of such
oscillators under common noise, chaotic phase synchronization oc-
curs for e=gp at which N, becomes negative, and complete syn-
chronization occurs for e=¢,- when A\ crosses zero from the posi-
tive side.

I1. NOISE-INDUCED INTERMEDIATE
SYNCHRONIZATION

A. Ensemble of chaotic Lorenz oscillators

To illustrate our finding, we consider the following en-
semble of N uncoupled chaotic Lorenz oscillators [ 12] under
both common and heterogeneous noise:

X =100y, - x;),
Vi=pxi—y;i—xiz;+ &) + n1),

Zi=xy;=8/3, i=1,....N, (1)

where p; is a parameter of the Lorenz oscillator, the white
noise term &(7) is common to all oscillators, which is char-
acterized by (&(1))=0 and (&(1)&(t'))=&>8(t—1"), and 7,(1)
are independent Gaussian processes that satisfy (7;(¢))=0
and (7,(¢) nj(t')>=025,~j5(t—t’). We write the system param-
eter as p,=py+ Op;, where p,=28.0 and Jp; represent the pa-
rameter mismatches among the oscillators. We shall consider
both situations of identical oscillators (8p;=0) and noniden-
tical oscillators (8p;# 0). We numerically solve the set of
stochastic differential equations Eq. (1) by using a standard
second-order stochastic Runge-Kutta algorithm [13].

We first consider the case of identical oscillators under
common noise by setting dp,=0 for all i and o=0. Figures
1(a) and 1(b) show, for any oscillator in the ensemble, the
largest Lyapunov exponent A; and the originally null
Lyapunov exponent A\, versus the common-noise amplitude
g, respectively. We see that A; becomes negative as & is
increased through the critical value -~ 33.3, indicating that
complete synchronization among all oscillators in the en-
semble can be achieved for €>eg.. The second largest
Lyapunov exponent, which is zero for £=0, first becomes
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FIG. 2. (Color online) For an ensemble of N=1000 chaotic Lo-
renz oscillators under common noise, spread of trajectory points
from all oscillators at an instant of time for four different values of
the noise amplitude: (a) £=0, (b) £e=5.0>¢p, (c) £=20.0<g, and
(d) e=35>g. The background represents a typical (noisy) Lorenz
attractor at the corresponding noise amplitude.

positive [14] as e is increased from zero and then becomes
negative as ¢ is increased through ep=3.3, indicating the
occurrence of phase synchronization for £ >¢gp [7]. Interme-
diate synchronization occurs for ep<g;<e<eg. where
g;~13.0.

Figures 2(a)-2(d) show, for four different values of the
common-noise amplitude, trajectory points of an ensemble
of N=1000 oscillators at a fixed instant of time (snapshot
attractor [15,16]), where the background represents a typical
(noisy) Lorenz attractor at the corresponding noise ampli-
tude. We see that, for e=0 [Fig. 2(a)], the trajectory points
spread over the deterministic attractor. The distribution of the
points follows the natural measure of the attractor. This situ-
ation holds approximately for relatively small value of &
even when phase synchronization has already set in, as
shown in Fig. 2(b) for £=5.0>¢p. However, as ¢ is in-
creased further, at any time the set of points tends to occupy
only part of the natural measure of the noisy attractor, as
shown in Fig. 2(c) for e=20.0<g. The part of the attractor
that the set of points cover changes from time to time, but its
statistical properties are invariant in time (to be demonstrated
below). This is an intermediate-synchronization state. When
complete synchronization is realized, all trajectories collapse
into a single point, as shown in Fig. 2(d).

We introduce a statistical quantity to characterize the
intermediate-synchronization state. The basic observation is
that, as the degree of synchronization among the oscillators
is increased, the “region” occupied by the oscillators in a
closure that contains the attractor decreases. In particular, in
a desynchronized state, at any given time the trajectory
points from all oscillators will “fill” the entire attractor, but
for complete synchronization all trajectories will occupy the
same point. Our idea is thus to divide a phase-space region
that encloses the attractor into a grid of small cells of size .
For any given amplitude & of the common noise, we evolve
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FIG. 3. For an ensemble of N=1000 chaotic Lorenz oscillators,
(a) time-averaged fraction of attractor volume occupied by all os-
cillators and (b) the Lyapunov dimension versus the common-noise
amplitude e. The onset of intermediate synchronization occurs at
g;~13.0 at which the Lyapunov dimension begins to decrease from
2.

an ensemble of N oscillators using random initial conditions.
Discarding transients, we count the number of nonempty
cells occupied by the oscillators at large time ¢, which is
denoted by n.(8,1). We expect n.(8,1) to exhibit fluctuations
with both 6 and 7, but if & is small, the time average of
ngy(8,1) is well defined and depends only on &. We first define

T
n.(8,t)dt

~ . . 0
y=lim lim——— (2)
T
as the time-averaged attractor volume occupied by all oscil-

lators in the ensemble, i.e., the average number of occupied
cells. We next define

(3)

n(e) =

S

as the time-averaged fraction of attractor volume, where 71,
denotes the time-averaged number of occupied cells in the
absence of noise, so 71(g) lies between 0 and 1 due to the fact
that 0 <71, <7,. An example of the behavior of 71(g) is shown
in Fig. 3(a), where the simulation parameters are 6=0.01,
N=1000, T=10000, and the three-dimensional phase-space
region that covers the chaotic Lorenz attractor is chosen to be
[-30,30]X[-55,55]%[0,90] [in (x,y,z)]. We observe that,
for small values of &, n1(e) is essentially unity, indicating that
the attractor is fully covered by oscillator trajectories, signi-
fying lack of amplitude correlation among the oscillators (al-
though phase synchronization can still occur). As & is in-
creased, n1(e) begins to decrease from unity and tends to zero
as complete synchronization is achieved. The value g; at

PHYSICAL REVIEW E 81, 036201 (2010)

which 71(g) begins to turn downward marks the onset of the
intermediate-synchronization state.

From the physical meaning and behavior of 72(g), we can
see that, associated with intermediate synchronization, not
only are the phases of the oscillators strongly correlated,
there is also amplitude correlation [17]. In particular, when
there is phase but not intermediate synchronization, the am-
plitudes of oscillators under common-noise driving are sta-
tistically uncorrelated. As a result, at any instant of time the
trajectory points from different oscillators tend to fall in dif-
ferent cells, as in the case where there is no noise and the
dynamics of oscillators are independent of each other. This
suggests that, before intermediate synchronization sets in, for
any cell in the phase space, 71(g) is about unity. After inter-
mediate synchronization arises, i(g) begins to deviate sig-
nificantly from unity, which means that, statistically, there is
a nonvanishing fraction of oscillators with similar amplitudes
for a long time, in sharp contrast to the case of phase syn-
chronization only. The fraction of both phase and amplitude
correlated oscillators increases with the strength of the com-
mon noise, and the fraction becomes unity when complete
synchronization has been achieved. The behavior of 7i1(¢) as a
function of the common-noise amplitude thus suggests that
intermediate synchronization is characteristically different
from and in fact stronger than phase synchronization in the
usual sense. Our results thus reveal that intermediate syn-
chronization is a distinct dynamical state beyond phase syn-
chronization in the evolution of the ensemble of oscillators
under common noise toward complete synchronization, and
the quantity 72(e) may be regarded as an order parameter to
characterize how far (or how close) the system is from com-
plete synchronization.

The onset of the intermediate-synchronization state can in
fact be predicted by examining the fractal dimension of the
subset of the attractor occupied by the oscillator trajectories.
In this regard the Lyapunov dimension [18] is convenient,
which is given by

N+,

N @

dp =2+

where \; (i=1,2,3) are the Lyapunov exponents of any o0s-
cillator in the ensemble under noise. In the deterministic
case, we have \; >0, \,=0, and \;<0 but |[\5/>X\,; so that
2<d2<3. Under noise, if d; is larger than 2, most part of
the attractor will be covered by oscillator trajectories. Essen-
tially partial covering occurs when d; is decreased from the
value of 2. This occurs when

A+ A, =0. (5)

Figure 3(b) shows d; versus e. We observe a sharp decrease
in d; from the value of 2 as e exceeds the critical value ¢g;.
This value coincides with that determined by the time-
averaged fraction of attractor volume occupied by all oscil-
lators, as in Fig. 3(a).

Following an arbitrary oscillator in the ensemble, we will
find that the trajectory point of this reference oscillator con-
tinuously evolves in the phase space from one cell to another.
When there is no common noise, at any given instant of time,
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FIG. 4. (Color online) Time evolution of the normalized number
s(t) of oscillators clustered into a single phase-space cell for (a)
£=5.0<g, (b) £,<&=20.0<g, and (c) £=30.0=<¢e,. We observe
a strong intermittency near the transition to complete
synchronization.

the number of oscillators whose phase points cluster into the
same cell as that for the reference oscillator is expected to be
unity for small enough cell size so that the normalized num-
ber s (by N) is of the order of 1/N. This also holds approxi-
mately before the onset of intermediate synchronization, i.e.,
for e <g,, as shown by the time evolution of s in Fig. 4(a).
For e>¢;, we expect the probability for more trajectory
points to cluster into a single cell to increase, as shown in
Fig. 4(b) for £=20.0. We see that, occasionally, almost all
oscillators fall into a single cell and s(r) exhibits an intermit-
tent behavior. As complete synchronization is approached,
the frequency with which most oscillators cluster into a
single cell becomes higher and, in fact, s(¢) exhibits a strong
intermittency between the values of zero and one, as shown
in Fig. 4(c). The intermittency can be explained by the
snapshot-attractor theory developed for transition to chaos in
random dynamical systems [16] and its connection to chaotic
synchronization under common noise [6].

B. Ensemble of Hindmarsh-Rose neurons

The Hindmarsh-Rose neural oscillator is a model often
used in computational neuroscience. We consider an en-
semble of N=1000 Hindmarsh-Rose neurons under noise

[19],

xizyi+aixi2_bx? -+ 1+ &) + (1),
yizc_dxiz_yi’

G=rSi-x -zl i=1,....N, (6)

where the parameters are b=1.0, ¢=1.0, d=5.0, S=4.0,
r=0.006, y=-1.56, and /=3.0. The parameter a;=aq+ da;
can be slightly different for each system, where ay=3.0 and
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FIG. 5. For the chaotic Hindmarsh-Rose neuron under noise, (a)
largest Lyapunov exponent \; and (b) originally null exponent \, as
a function of the noise amplitude e.

da; denotes parameter mismatches. In the absence of param-
eter mismatches and heterogeneous noise, i.e., da;=0 and
o=0, the ensemble of Hindmarsh-Rose neurons can be phase
and completely synchronized at the respective transition
points ep=1.2 and e-=~2.3, as shown in Fig. 5.

Figure 6 demonstrates different snapshot attractors
for increasing noise amplitudes from £=0 to £=3.0. A
gradual clustering of the snapshot attractor as & is
increased is evident. To calculate 7(g), we choose
the phase-space region that encloses the attractor to be
[-4.5,4.5]%[-22,0]%[1.5,3.5] [in (x,y,z)]. This region is
divided into small cells with size 6=0.001, and the simula-
tion time is 7=10 000. As shown in Fig. 7(a), i1(e) begins to
decrease toward zero for &>g;, which coincides with the
transition of the Lyapunov dimension d; to below the value
of 2. We obtain g;~1.96.

To better distinguish intermediate from phase synchroni-
zation, we plot the profile of the x components of this en-
semble of neurons at different noise amplitudes, as shown in
Fig. 8, where different colors denote different values of x. In
the noise free case, the states of each oscillator are totally
uncorrelated. When phase synchronization is established,

2

-4 -4
2 2224 2628 3 32 18 2 2224 26 28
z z

FIG. 6. (Color online) For an ensemble of N=1000 chaotic
Hindmarsh-Rose neurons under common noise, spread of trajectory
points from all oscillators at an instant of time for four
different values of the noise amplitude: (a) =0, (b) e=1.5>¢p, (c)
e=2.0<egc, and (d) £=3.0>g, The background represents a
typical (noisy) attractor at the corresponding noise amplitude.
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FIG. 7. For an ensemble of N=1000 chaotic Hindmarsh-Rose
oscillators, (a) time-averaged fraction of attractor volume occupied
by all oscillators and (b) the Lyapunov dimension versus the
common-noise amplitude e. The onset of the intermediate-
synchronization state occurs at ;= 1.96 where the Lyapunov di-
mension begins to decrease from 2.

they begin to oscillate between local extremes in a roughly
coherent way but with rather blurred boundaries that define
the coherent motion. We stress that 7=1 means that, al-
though some degree of coherence is achieved, statistically
the states of each oscillator cannot coincide for any long
stretch of time. Only when the intermediate-synchronization
state is established is it statistically possible for the coinci-
dence of oscillator states to appear persistently. At this stage,
the previously blurred boundaries become sharp.

These results indicate that in a neuronal system, synchro-
nization stronger than phase synchronization but weaker than
complete synchronization can be expected when an ensemble
of neural oscillators are subject to common noise. It would
certainly be interesting to look for the “biological usage” of
intermediate synchronization.

C. Ensemble of high-dimensional chaotic oscillators

Intermediate synchronization can also occur in high-
dimensional systems. To demonstrate this, we consider an

Oscillator Index
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50 [ | Imll

5000 1,0000
Time
FIG. 8. (Color online) Profile of the x components of the en-
semble of Hindmarsh-Rose neurons at different noise amplitudes:
(a) €=0.0; (b) e=1.5; (c) £€=2.0; and (d) £=3.0. Different colors
denote different values of x.
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FIG. 9. For an ensemble of N=1000 generalized Lorenz oscil-
lators, (a) time-averaged fraction of attractor volume occupied by
all oscillators and (b) Lyapunov dimension d; versus the common-
noise amplitude . Onsets of multiple stages of intermediate-
synchronization state occur at g;~12.0 and e;~31.5, where d;
begins to decrease from the values of 3 and 2, respectively.

ensemble of N=1000 hyperchaotic generalized Lorenz oscil-
lators [20] under common noise,

=-(258+10)(w; - x;),

%= (pi=35B)w;+ (298 = 1)x; = wiy; + z; + &(t) + ;.
Vi=— 8+ B)y/3+wux;,
Zi=- 6Wi’ (7)
where B=0.01 so that each individual oscillator
possesses two positive Lyapunov exponents, p;, & and

7 are the same as in Eq. (1). The region of the
phase space that covers the attractor is chosen to be
[-35,35]%X[-60,60]%[0,90] X [-100,100] [in (w,x,y,z)],
and the size of cell ¢ is 0.01. Simulation time is 7=10 000.
In Fig. 9(a), the behavior of 71(¢) versus ¢ is displayed. We
observe that 71(e) starts to decrease when & is increased
through the value of about 10, signaling the occurrence of
intermediate synchronization. To quantify the transition, we
examine the Lyapunov dimension as a function of e. In a
high-dimensional dynamical system, the Lyapunov dimen-
sion of an attractor is given by [21]

E Ni. (8)

d, =K
t |)\K+1|

where K is the largest integer that satisfies Efil)\iz 0. Figure
9(b) shows d; versus . We observe that for e <g;~12.0, d;
assumes the constant value of slightly above 3, which is the
dimension of the hyperchaotic attractor of an individual gen-
eralized Lorenz oscillator. As ¢ is increased through g;, d;
starts to decrease from the value of 3 in a smooth way. This
behavior continues until d; reaches the value of 2 when &
arrives at another critical point e;;,~31.5. For e > ¢y, d; de-
creases from the value of 2 smoothly but in a manner that is
different from that for 3> d; > 2. Finally, complete synchro-
nization sets in when d; reaches the value of unity and then
drops abruptly to zero. These behaviors of d; suggest the
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FIG. 10. Intermediate synchronization in the presence of system
parameter mismatches and inhomogeneous noise. Shown are time-
averaged fraction of attractor volume occupied by all oscillators
versus the common-noise amplitude for: (a) an ensemble of 1000
Lorenz oscillators; (b) an ensemble of 1000 Hindmarsh-Rose oscil-
lators; and (c) an ensemble of 1000 generalized Lorenz systems.

occurrence of different degrees of intermediate synchroniza-
tion in multiple stages.

D. Robustness of intermediate synchronization

The phenomenon of intermediate synchronization is not
restricted to systems of identical chaotic oscillators. When
there are parameter mismatches among the oscillators and/or
there is a heterogeneous component in the noise, we have
also found this synchronization state in all three systems. For
example, Fig. 10 shows the time-averaged fraction of attrac-
tor volume for (a) the Lorenz system with Sp; uniformly
distributed in [0,0.1], (b) the Hindmarsh-Rose neural system
with 8a; uniformly distributed in [-0.005,0.005], and (c) the

PHYSICAL REVIEW E 81, 036201 (2010)

generalized Lorenz system with 8p; uniformly distributed in
[0,0.1]. In all cases, the amplitude of the heterogeneous noise
is chosen as 0=0.001. We observe a strong similarity be-
tween Figs. 10(a) and 3(a), Figs. 10(b) and 7(a), and Figs.
10(c) and 9(a). These results suggest that intermediate syn-
chronization among chaotic oscillators under common noise
is a robust phenomenon.

III. CONCLUSIONS

In summary, we have investigated the transition to various
synchronization states among an ensemble of uncoupled cha-
otic oscillators under common noise and uncovered an
intermediate-synchronization state in between chaotic phase
synchronization and complete synchronization. Statistically,
this synchronization state is characterized by a decrease in
the time-averaged fraction of attractor volume occupied by
all oscillators from unity. Dynamically, intermediate syn-
chronization sets in when the Lyapunov dimension of the set
of trajectory points from all oscillators decreases from some
integer value. Despite extensive works on chaotic synchroni-
zation in the past, to our knowledge this intermediate-
synchronization state has not been reported before. Our find-
ing indicates that, similar to systems of coupled chaotic
oscillators, noise-induced synchronization in systems of un-
coupled chaotic oscillators can also exhibit a rich variety of
manifestations. In particular, a typical route of transition to
synchronization in an ensemble of uncoupled chaotic sys-
tems can be a successive process where, with the increase of
the noise amplitude, phase synchronization, intermediate
synchronization, and complete synchronization occur in turn.
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